intel_lrc.c 64.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212 213
#define WA_TAIL_DWORDS 2

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221 222
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223
 * @dev_priv: i915 device private
224 225 226
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
227
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 229 230
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
231
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232
{
233 234 235
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
236
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 238
		return 1;

239
	if (INTEL_GEN(dev_priv) >= 9)
240 241
		return 1;

242 243 244
	if (enable_execlists == 0)
		return 0;

245 246 247
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
290
				     struct intel_engine_cs *engine)
291
{
292
	return ctx->engine[engine->id].lrc_desc;
293
}
294

295 296 297
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
298
{
299 300 301 302 303 304
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
305

306 307
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
308 309
}

310 311 312 313 314 315 316 317 318
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

319
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
320
{
321
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
322 323
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
324
	u32 *reg_state = ce->lrc_reg_state;
325

326
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
327

328 329 330 331 332
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
333
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
334
		execlists_update_context_pdps(ppgtt, reg_state);
335 336

	return ce->lrc_desc;
337 338
}

339
static void execlists_submit_ports(struct intel_engine_cs *engine)
340
{
341
	struct execlist_port *port = engine->execlist_port;
342
	u32 __iomem *elsp =
343 344
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
363

364 365 366
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
367 368
}

369
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
370
{
371
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
372
		i915_gem_context_force_single_submission(ctx));
373
}
374

375 376 377 378 379
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
380

381 382
	if (ctx_single_port_submission(prev))
		return false;
383

384
	return true;
385 386
}

387 388 389 390 391 392 393 394 395 396 397
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

398
static void execlists_dequeue(struct intel_engine_cs *engine)
399
{
400
	struct drm_i915_gem_request *last;
401
	struct execlist_port *port = engine->execlist_port;
402
	struct rb_node *rb;
403 404
	bool submit = false;

405
	last = port_request(port);
406 407 408
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409
		 * as we resubmit the request. See gen8_emit_breadcrumb()
410 411 412 413
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
414

415
	GEM_BUG_ON(port_isset(&port[1]));
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
436
	 */
437

438
	spin_lock_irq(&engine->timeline->lock);
439
	rb = engine->execlist_first;
440
	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
441
	while (rb) {
442 443 444 445 446 447 448 449 450 451 452 453 454 455
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
456
			 */
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
				if (port != engine->execlist_port) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
			}
489

490 491
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
492

493 494 495 496
			__i915_gem_request_submit(rq);
			trace_i915_gem_request_in(rq, port_index(port, engine));
			last = rq;
			submit = true;
497
		}
498

499
		rb = rb_next(rb);
500 501 502
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
503
			kmem_cache_free(engine->i915->priorities, p);
504
	}
505 506 507
done:
	engine->execlist_first = rb;
	if (submit)
508
		port_assign(port, last);
509
	spin_unlock_irq(&engine->timeline->lock);
510

511 512
	if (submit)
		execlists_submit_ports(engine);
513 514
}

515
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
516
{
517
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
518

519
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
520 521
}

522
/*
523 524 525
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
526
static void intel_lrc_irq_handler(unsigned long data)
527
{
528
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
529
	struct execlist_port *port = engine->execlist_port;
530
	struct drm_i915_private *dev_priv = engine->i915;
531

532 533 534 535 536 537 538 539 540
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

541
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542

543 544 545 546 547
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
548 549 550 551
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
552
		unsigned int head, tail;
553

554 555 556 557 558 559 560 561 562 563 564
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
565 566 567 568
		head = readl(csb_mmio);
		tail = GEN8_CSB_WRITE_PTR(head);
		head = GEN8_CSB_READ_PTR(head);
		while (head != tail) {
569
			struct drm_i915_gem_request *rq;
570
			unsigned int status;
571
			unsigned int count;
572 573 574

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

593
			status = readl(buf + 2 * head);
594 595 596
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

597
			/* Check the context/desc id for this event matches */
598
			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
599
					 port->context_id);
600

601 602 603
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
604
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
605 606 607 608 609
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
610 611 612

				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
613 614
			} else {
				port_set(port, port_pack(rq, count));
615
			}
616

617 618
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
619
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
620
		}
621

622
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
623
		       csb_mmio);
624 625
	}

626 627
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
628

629
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
630 631
}

632 633 634 635
static bool
insert_request(struct intel_engine_cs *engine,
	       struct i915_priotree *pt,
	       int prio)
636
{
637 638
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
639 640
	bool first = true;

641 642 643 644
	if (unlikely(engine->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
645 646
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
647 648 649 650 651 652 653 654
	parent = &engine->execlist_queue.rb_node;
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
655
			first = false;
656 657 658
		} else {
			list_add_tail(&pt->link, &p->requests);
			return false;
659 660
		}
	}
661 662 663 664

	if (prio == I915_PRIORITY_NORMAL) {
		p = &engine->default_priolist;
	} else {
665
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			engine->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
	rb_link_node(&p->node, rb, parent);
	rb_insert_color(&p->node, &engine->execlist_queue);

	INIT_LIST_HEAD(&p->requests);
	list_add_tail(&pt->link, &p->requests);

	if (first)
		engine->execlist_first = &p->node;
692 693 694 695

	return first;
}

696
static void execlists_submit_request(struct drm_i915_gem_request *request)
697
{
698
	struct intel_engine_cs *engine = request->engine;
699
	unsigned long flags;
700

701 702
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
703

704 705 706
	if (insert_request(engine,
			   &request->priotree,
			   request->priotree.priority)) {
707
		if (execlists_elsp_ready(engine))
708 709
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
710

711 712 713
	GEM_BUG_ON(!engine->execlist_first);
	GEM_BUG_ON(list_empty(&request->priotree.link));

714
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
715 716
}

717 718 719
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
720 721 722 723
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
724 725

	if (engine != locked) {
726 727
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
728 729 730 731 732 733 734
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
735
	struct intel_engine_cs *engine;
736 737 738 739 740 741 742
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

743 744
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

769 770 771 772 773 774 775
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
776 777
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
778
		}
779

780
		list_safe_reset_next(dep, p, dfs_link);
781 782
	}

783 784 785 786 787 788 789 790 791 792 793 794 795
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (request->priotree.priority == INT_MIN) {
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

796 797 798
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

799 800 801 802 803 804 805 806 807 808 809 810
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
811 812 813
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
814
		}
815 816
	}

817
	spin_unlock_irq(&engine->timeline->lock);
818 819 820 821

	/* XXX Do we need to preempt to make room for us and our deps? */
}

822 823 824
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
825
{
826
	struct intel_context *ce = &ctx->engine[engine->id];
827
	unsigned int flags;
828
	void *vaddr;
829
	int ret;
830

831
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
832

833 834
	if (likely(ce->pin_count++))
		goto out;
835
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
836

837 838 839 840 841
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
842
	GEM_BUG_ON(!ce->state);
843

844
	flags = PIN_GLOBAL | PIN_HIGH;
845 846
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
847 848

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
849
	if (ret)
850
		goto err;
851

852
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
853 854
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
855
		goto unpin_vma;
856 857
	}

858
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
859
	if (ret)
860
		goto unpin_map;
861

862
	intel_lr_context_descriptor_update(ctx, engine);
863

864 865
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
866
		i915_ggtt_offset(ce->ring->vma);
867

C
Chris Wilson 已提交
868
	ce->state->obj->mm.dirty = true;
869

870
	i915_gem_context_get(ctx);
871 872
out:
	return ce->ring;
873

874
unpin_map:
875 876 877
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
878
err:
879
	ce->pin_count = 0;
880
	return ERR_PTR(ret);
881 882
}

883 884
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
885
{
886
	struct intel_context *ce = &ctx->engine[engine->id];
887

888
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
889
	GEM_BUG_ON(ce->pin_count == 0);
890

891
	if (--ce->pin_count)
892
		return;
893

894
	intel_ring_unpin(ce->ring);
895

896 897
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
898

899
	i915_gem_context_put(ctx);
900 901
}

902
static int execlists_request_alloc(struct drm_i915_gem_request *request)
903 904 905
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
906
	u32 *cs;
907 908
	int ret;

909 910
	GEM_BUG_ON(!ce->pin_count);

911 912 913 914 915 916 917 918 919 920 921 922 923 924
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
925
			goto err;
926 927
	}

928 929 930
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
931
		goto err_unreserve;
932
	}
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
955
err:
956 957 958
	return ret;
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
975 976
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
977
{
978 979 980 981 982 983 984 985 986
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

987 988 989 990
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
991 992 993 994 995 996 997

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
998 999
}

1000 1001 1002 1003 1004 1005
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1006
 *
1007 1008
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1009
 *
1010 1011 1012 1013
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1014
 */
1015
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1016
{
1017
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1018
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1019

1020
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1021 1022
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1023

1024 1025
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1026 1027 1028 1029 1030 1031 1032
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1033

1034
	/* Pad to end of cacheline */
1035 1036
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1037 1038 1039 1040 1041 1042 1043

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1044
	return batch;
1045 1046
}

1047 1048 1049
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1050
 *
1051
 *  The number of DWORDS written are returned using this field.
1052 1053 1054 1055
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1056
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1057
{
1058
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1059 1060
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1061

1062
	return batch;
1063 1064
}

1065
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1066
{
1067
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1068
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1069

1070
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1071 1072 1073 1074 1075
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1076

1077 1078
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1079
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1080 1081 1082 1083 1084 1085 1086
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1087
	}
1088

1089
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1104 1105 1106 1107 1108 1109
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1110 1111
	}

1112
	/* Pad to end of cacheline */
1113 1114
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1115

1116
	return batch;
1117 1118
}

1119
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1120
{
1121
	*batch++ = MI_BATCH_BUFFER_END;
1122

1123
	return batch;
1124 1125
}

1126 1127 1128
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1129
{
1130 1131 1132
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1133

1134
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1135 1136
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1137

1138
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1139 1140 1141
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1142 1143
	}

1144 1145 1146 1147 1148
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1149
	return 0;
1150 1151 1152 1153

err:
	i915_gem_object_put(obj);
	return err;
1154 1155
}

1156
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1157
{
1158
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1159 1160
}

1161 1162
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1163
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1164
{
1165
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1166 1167 1168
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1169
	struct page *page;
1170 1171
	void *batch, *batch_ptr;
	unsigned int i;
1172
	int ret;
1173

1174 1175
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1188
		return 0;
1189
	}
1190

1191
	ret = lrc_setup_wa_ctx(engine);
1192 1193 1194 1195 1196
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1197
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1198
	batch = batch_ptr = kmap_atomic(page);
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1213 1214
	}

1215 1216
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1217 1218
	kunmap_atomic(batch);
	if (ret)
1219
		lrc_destroy_wa_ctx(engine);
1220 1221 1222 1223

	return ret;
}

1224 1225 1226 1227 1228 1229 1230 1231
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1232
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1233
{
1234
	struct drm_i915_private *dev_priv = engine->i915;
1235 1236
	struct execlist_port *port = engine->execlist_port;
	unsigned int n;
1237
	bool submit;
1238 1239 1240 1241 1242
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1243

1244
	intel_engine_reset_breadcrumbs(engine);
1245
	intel_engine_init_hangcheck(engine);
1246

1247 1248
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1249
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1250 1251 1252
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1253

1254
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1269
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1270

1271
	/* After a GPU reset, we may have requests to replay */
1272
	submit = false;
1273
	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1274
		if (!port_isset(&port[n]))
1275 1276 1277 1278
			break;

		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
				 engine->name, n,
1279
				 port_request(&port[n])->global_seqno);
1280 1281

		/* Discard the current inflight count */
1282 1283
		port_set(&port[n], port_request(&port[n]));
		submit = true;
1284
	}
1285

1286
	if (submit && !i915.enable_guc_submission)
1287 1288
		execlists_submit_ports(engine);

1289
	return 0;
1290 1291
}

1292
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1293
{
1294
	struct drm_i915_private *dev_priv = engine->i915;
1295 1296
	int ret;

1297
	ret = gen8_init_common_ring(engine);
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1311
	return init_workarounds_ring(engine);
1312 1313
}

1314
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1315 1316 1317
{
	int ret;

1318
	ret = gen8_init_common_ring(engine);
1319 1320 1321
	if (ret)
		return ret;

1322
	return init_workarounds_ring(engine);
1323 1324
}

1325 1326 1327 1328
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1329
	struct intel_context *ce;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	unsigned int n;

	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
	if (!request) {
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		return;
	}

	if (request->ctx != port_request(port)->ctx) {
		i915_gem_request_put(port_request(port));
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1366
	if (request->fence.error != -EIO)
1367
		return;
1368

1369 1370 1371 1372 1373 1374 1375
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1376
	ce = &request->ctx->engine[engine->id];
1377 1378 1379
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1380
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1381 1382
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1383
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1384

1385 1386 1387
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1388
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1389 1390 1391
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1392
	assert_ring_tail_valid(request->ring, request->tail);
1393 1394
}

1395 1396 1397
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1398
	struct intel_engine_cs *engine = req->engine;
1399
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1400 1401
	u32 *cs;
	int i;
1402

1403 1404 1405
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1406

1407
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1408
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1409 1410
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1411 1412 1413 1414
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1415 1416
	}

1417 1418
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1419 1420 1421 1422

	return 0;
}

1423
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1424
			      u64 offset, u32 len,
1425
			      const unsigned int flags)
1426
{
1427
	u32 *cs;
1428 1429
	int ret;

1430 1431 1432 1433
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1434 1435
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1436
	if (req->ctx->ppgtt &&
1437 1438 1439 1440 1441 1442
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1443

1444
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1445 1446
	}

1447 1448 1449
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1450 1451

	/* FIXME(BDW): Address space and security selectors. */
1452 1453 1454
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1455 1456 1457 1458
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1459 1460 1461 1462

	return 0;
}

1463
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1464
{
1465
	struct drm_i915_private *dev_priv = engine->i915;
1466 1467 1468
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1469 1470
}

1471
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1472
{
1473
	struct drm_i915_private *dev_priv = engine->i915;
1474
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1475 1476
}

1477
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1478
{
1479
	u32 cmd, *cs;
1480

1481 1482 1483
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1484 1485 1486

	cmd = MI_FLUSH_DW + 1;

1487 1488 1489 1490 1491 1492 1493
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1494
	if (mode & EMIT_INVALIDATE) {
1495
		cmd |= MI_INVALIDATE_TLB;
1496
		if (request->engine->id == VCS)
1497
			cmd |= MI_INVALIDATE_BSD;
1498 1499
	}

1500 1501 1502 1503 1504
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1505 1506 1507 1508

	return 0;
}

1509
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1510
				  u32 mode)
1511
{
1512
	struct intel_engine_cs *engine = request->engine;
1513 1514
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1515
	bool vf_flush_wa = false, dc_flush_wa = false;
1516
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1517
	int len;
1518 1519 1520

	flags |= PIPE_CONTROL_CS_STALL;

1521
	if (mode & EMIT_FLUSH) {
1522 1523
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1524
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1525
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1526 1527
	}

1528
	if (mode & EMIT_INVALIDATE) {
1529 1530 1531 1532 1533 1534 1535 1536 1537
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1538 1539 1540 1541
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1542
		if (IS_GEN9(request->i915))
1543
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1544 1545 1546 1547

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1548
	}
1549

M
Mika Kuoppala 已提交
1550 1551 1552 1553 1554 1555 1556 1557
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1558 1559 1560
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1561

1562 1563
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1564

1565 1566 1567
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1568

1569
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1570

1571 1572
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1573

1574
	intel_ring_advance(request, cs);
1575 1576 1577 1578

	return 0;
}

1579 1580 1581 1582 1583
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1584
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1585
{
1586 1587 1588
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1589
}
1590

1591
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1592
{
1593 1594
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1595

1596 1597 1598 1599 1600 1601 1602
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1603
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1604

1605
	gen8_emit_wa_tail(request, cs);
1606
}
1607

1608 1609
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1610
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1611
					u32 *cs)
1612
{
1613 1614 1615
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1616 1617 1618 1619
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1620 1621 1622 1623 1624 1625
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1626
	/* We're thrashing one dword of HWS. */
1627 1628 1629 1630
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1631
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1632

1633
	gen8_emit_wa_tail(request, cs);
1634 1635
}

1636 1637
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1638
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1639 1640 1641
{
	int ret;

1642
	ret = intel_ring_workarounds_emit(req);
1643 1644 1645
	if (ret)
		return ret;

1646 1647 1648 1649 1650 1651 1652 1653
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1654
	return i915_gem_render_state_emit(req);
1655 1656
}

1657 1658
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1659
 * @engine: Engine Command Streamer.
1660
 */
1661
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1662
{
1663
	struct drm_i915_private *dev_priv;
1664

1665 1666 1667 1668 1669 1670 1671
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1672
	dev_priv = engine->i915;
1673

1674 1675
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1676
	}
1677

1678 1679
	if (engine->cleanup)
		engine->cleanup(engine);
1680

1681 1682 1683
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1684
	}
1685 1686

	intel_engine_cleanup_common(engine);
1687

1688
	lrc_destroy_wa_ctx(engine);
1689
	engine->i915 = NULL;
1690 1691
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1692 1693
}

1694
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1695
{
1696 1697
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1698
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1699 1700
}

1701
static void
1702
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1703 1704
{
	/* Default vfuncs which can be overriden by each engine. */
1705
	engine->init_hw = gen8_init_common_ring;
1706
	engine->reset_hw = reset_common_ring;
1707 1708 1709 1710

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1711 1712
	engine->request_alloc = execlists_request_alloc;

1713
	engine->emit_flush = gen8_emit_flush;
1714
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1715
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1716 1717

	engine->set_default_submission = execlists_set_default_submission;
1718

1719 1720
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1721
	engine->emit_bb_start = gen8_emit_bb_start;
1722 1723
}

1724
static inline void
1725
logical_ring_default_irqs(struct intel_engine_cs *engine)
1726
{
1727
	unsigned shift = engine->irq_shift;
1728 1729
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1730 1731
}

1732
static int
1733
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1734
{
1735
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1736
	void *hws;
1737 1738

	/* The HWSP is part of the default context object in LRC mode. */
1739
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1740 1741
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1742 1743

	engine->status_page.page_addr = hws + hws_offset;
1744
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1745
	engine->status_page.vma = vma;
1746 1747

	return 0;
1748 1749
}

1750 1751 1752 1753 1754 1755
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1756 1757
	intel_engine_setup_common(engine);

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1782 1783 1784 1785 1786 1787
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1788
	ret = intel_engine_init_common(engine);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1806
int logical_render_ring_init(struct intel_engine_cs *engine)
1807 1808 1809 1810
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1811 1812
	logical_ring_setup(engine);

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1823
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1824
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1825

1826
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1841
	return logical_ring_init(engine);
1842 1843
}

1844
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1845 1846 1847 1848
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1849 1850
}

1851
static u32
1852
make_rpcs(struct drm_i915_private *dev_priv)
1853 1854 1855 1856 1857 1858 1859
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1860
	if (INTEL_GEN(dev_priv) < 9)
1861 1862 1863 1864 1865 1866 1867 1868
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1869
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1870
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1871
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1872 1873 1874 1875
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1876
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1877
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1878
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1879 1880 1881 1882
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1883 1884
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1885
			GEN8_RPCS_EU_MIN_SHIFT;
1886
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1887 1888 1889 1890 1891 1892 1893
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1894
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1895 1896 1897
{
	u32 indirect_ctx_offset;

1898
	switch (INTEL_GEN(engine->i915)) {
1899
	default:
1900
		MISSING_CASE(INTEL_GEN(engine->i915));
1901
		/* fall through */
1902 1903 1904 1905
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1919
static void execlists_init_reg_state(u32 *regs,
1920 1921 1922
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1923
{
1924 1925
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1960

1961
		if (engine->wa_ctx.vma) {
1962
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1963
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1964

1965
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1966 1967
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1968

1969
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1970
				intel_lr_indirect_ctx_offset(engine) << 6;
1971

1972
			regs[CTX_BB_PER_CTX_PTR + 1] =
1973
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1974
		}
1975
	}
1976 1977 1978 1979

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1980
	/* PDP values well be assigned later if needed */
1981 1982 1983 1984 1985 1986 1987 1988
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1989

1990
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1991 1992 1993 1994
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1995
		ASSIGN_CTX_PML4(ppgtt, regs);
1996 1997
	}

1998 1999 2000 2001
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2002 2003

		i915_oa_init_reg_state(engine, ctx, regs);
2004
	}
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2028
	ctx_obj->mm.dirty = true;
2029 2030 2031 2032 2033 2034

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2035

2036
	i915_gem_object_unpin_map(ctx_obj);
2037 2038 2039 2040

	return 0;
}

2041
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2042
					    struct intel_engine_cs *engine)
2043
{
2044
	struct drm_i915_gem_object *ctx_obj;
2045
	struct intel_context *ce = &ctx->engine[engine->id];
2046
	struct i915_vma *vma;
2047
	uint32_t context_size;
2048
	struct intel_ring *ring;
2049 2050
	int ret;

2051
	WARN_ON(ce->state);
2052

2053
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2054

2055 2056 2057
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2058
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2059
	if (IS_ERR(ctx_obj)) {
2060
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2061
		return PTR_ERR(ctx_obj);
2062 2063
	}

2064
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2065 2066 2067 2068 2069
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2070
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2071 2072
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2073
		goto error_deref_obj;
2074 2075
	}

2076
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2077 2078
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2079
		goto error_ring_free;
2080 2081
	}

2082
	ce->ring = ring;
2083
	ce->state = vma;
2084
	ce->initialised |= engine->init_context == NULL;
2085 2086

	return 0;
2087

2088
error_ring_free:
2089
	intel_ring_free(ring);
2090
error_deref_obj:
2091
	i915_gem_object_put(ctx_obj);
2092
	return ret;
2093
}
2094

2095
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2096
{
2097
	struct intel_engine_cs *engine;
2098
	struct i915_gem_context *ctx;
2099
	enum intel_engine_id id;
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2111
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2112
		for_each_engine(engine, dev_priv, id) {
2113 2114
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2115

2116 2117
			if (!ce->state)
				continue;
2118

2119 2120 2121 2122
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2123

2124 2125 2126
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2127

C
Chris Wilson 已提交
2128
			ce->state->obj->mm.dirty = true;
2129
			i915_gem_object_unpin_map(ce->state->obj);
2130

2131
			intel_ring_reset(ce->ring, 0);
2132
		}
2133 2134
	}
}