intel_lrc.c 76.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234 235
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine);
236 237
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
238

239 240 241 242 243 244
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
250
{
251 252 253
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
254
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
255 256
		return 1;

257
	if (INTEL_GEN(dev_priv) >= 9)
258 259
		return 1;

260 261 262
	if (enable_execlists == 0)
		return 0;

263
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && USES_PPGTT(dev_priv))
264 265 266 267
		return 1;

	return 0;
}
268

269
static void
270
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271
{
272
	struct drm_i915_private *dev_priv = engine->i915;
273

274
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
275
		engine->idle_lite_restore_wa = ~0;
276

277 278
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
279
					(engine->id == VCS || engine->id == VCS2);
280

281
	engine->ctx_desc_template = GEN8_CTX_VALID;
282
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev_priv) <<
283
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
284
	if (IS_GEN8(dev_priv))
285 286
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 288 289 290 291 292 293

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 295
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 297
}

298
/**
299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
301
 *
302 303
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
304
 *
305 306 307 308 309 310
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
311
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313
 *    bits 32-52:    ctx ID, a globally unique tag
314 315
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
316
 */
317 318
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
319
				   struct intel_engine_cs *engine)
320
{
321
	u64 desc;
322

323
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324

325 326 327 328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
	desc |= ctx->engine[engine->id].lrc_vma->node.start +	/* bits 12-31 */
	       LRC_PPHWSP_PN * PAGE_SIZE;
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ctx->engine[engine->id].lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
341
{
342

343
	struct intel_engine_cs *engine = rq0->engine;
344
	struct drm_i915_private *dev_priv = rq0->i915;
345
	uint64_t desc[2];
346

347
	if (rq1) {
348
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
349 350 351 352
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
353

354
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
355
	rq0->elsp_submitted++;
356

357
	/* You must always write both descriptors in the order below. */
358 359
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
360

361
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
362
	/* The context is automatically loaded after the following */
363
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
364

365
	/* ELSP is a wo register, use another nearby reg for posting */
366
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
367 368
}

369 370 371 372 373 374 375 376 377 378
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
379
{
380
	struct intel_engine_cs *engine = rq->engine;
381
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
382
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
383

384
	reg_state[CTX_RING_TAIL+1] = rq->tail;
385

386 387 388 389 390 391 392
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
393 394
}

395 396
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
397
{
398
	struct drm_i915_private *dev_priv = rq0->i915;
399
	unsigned int fw_domains = rq0->engine->fw_domains;
400

401
	execlists_update_context(rq0);
402

403
	if (rq1)
404
		execlists_update_context(rq1);
405

406
	spin_lock_irq(&dev_priv->uncore.lock);
407
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
408

409
	execlists_elsp_write(rq0, rq1);
410

411
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
412
	spin_unlock_irq(&dev_priv->uncore.lock);
413 414
}

415
static void execlists_context_unqueue(struct intel_engine_cs *engine)
416
{
417
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
418
	struct drm_i915_gem_request *cursor, *tmp;
419

420
	assert_spin_locked(&engine->execlist_lock);
421

422 423 424 425
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
426
	WARN_ON(!intel_irqs_enabled(engine->i915));
427

428
	/* Try to read in pairs */
429
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
430 431 432
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
433
		} else if (req0->ctx == cursor->ctx) {
434 435
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
436
			cursor->elsp_submitted = req0->elsp_submitted;
437 438
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
439 440 441
			req0 = cursor;
		} else {
			req1 = cursor;
442
			WARN_ON(req1->elsp_submitted);
443 444 445 446
			break;
		}
	}

447 448 449
	if (unlikely(!req0))
		return;

450
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
451
		/*
452 453 454 455 456 457
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
458
		 */
459
		struct intel_ringbuffer *ringbuf;
460

461
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
462 463
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
464 465
	}

466
	execlists_submit_requests(req0, req1);
467 468
}

469
static unsigned int
470
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
471
{
472
	struct drm_i915_gem_request *head_req;
473

474
	assert_spin_locked(&engine->execlist_lock);
475

476
	head_req = list_first_entry_or_null(&engine->execlist_queue,
477
					    struct drm_i915_gem_request,
478 479
					    execlist_link);

480 481
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
482 483 484 485 486 487

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

488 489
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
490

491
	return 1;
492 493
}

494
static u32
495
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
496
		   u32 *context_id)
B
Ben Widawsky 已提交
497
{
498
	struct drm_i915_private *dev_priv = engine->i915;
499
	u32 status;
B
Ben Widawsky 已提交
500

501 502
	read_pointer %= GEN8_CSB_ENTRIES;

503
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
504 505 506

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
507

508
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
509 510 511
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
512 513
}

514
/**
515
 * intel_lrc_irq_handler() - handle Context Switch interrupts
516
 * @engine: Engine Command Streamer to handle.
517 518 519 520
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
521
static void intel_lrc_irq_handler(unsigned long data)
522
{
523
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
524
	struct drm_i915_private *dev_priv = engine->i915;
525
	u32 status_pointer;
526
	unsigned int read_pointer, write_pointer;
527 528
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
529 530
	unsigned int submit_contexts = 0;

531
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
532

533
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
534

535
	read_pointer = engine->next_context_status_buffer;
536
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
537
	if (read_pointer > write_pointer)
538
		write_pointer += GEN8_CSB_ENTRIES;
539 540

	while (read_pointer < write_pointer) {
541 542 543 544 545 546
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
547

548 549 550 551 552 553 554 555
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

556
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
557 558 559 560 561 562 563

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
564 565 566 567 568
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

569
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
570 571
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
572
				execlists_check_remove_request(engine, csb[i][1]);
573 574
	}

575
	if (submit_contexts) {
576
		if (!engine->disable_lite_restore_wa ||
577 578
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
579
	}
580

581
	spin_unlock(&engine->execlist_lock);
582 583 584

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
585 586
}

587
static void execlists_context_queue(struct drm_i915_gem_request *request)
588
{
589
	struct intel_engine_cs *engine = request->engine;
590
	struct drm_i915_gem_request *cursor;
591
	int num_elements = 0;
592

593
	spin_lock_bh(&engine->execlist_lock);
594

595
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
596 597 598 599
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
600
		struct drm_i915_gem_request *tail_req;
601

602
		tail_req = list_last_entry(&engine->execlist_queue,
603
					   struct drm_i915_gem_request,
604 605
					   execlist_link);

606
		if (request->ctx == tail_req->ctx) {
607
			WARN(tail_req->elsp_submitted != 0,
608
				"More than 2 already-submitted reqs queued\n");
609 610
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
611 612 613
		}
	}

614
	i915_gem_request_reference(request);
615
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
616
	request->ctx_hw_id = request->ctx->hw_id;
617
	if (num_elements == 0)
618
		execlists_context_unqueue(engine);
619

620
	spin_unlock_bh(&engine->execlist_lock);
621 622
}

623
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
624
{
625
	struct intel_engine_cs *engine = req->engine;
626 627 628 629
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
630
	if (engine->gpu_caches_dirty)
631 632
		flush_domains = I915_GEM_GPU_DOMAINS;

633
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
634 635 636
	if (ret)
		return ret;

637
	engine->gpu_caches_dirty = false;
638 639 640
	return 0;
}

641
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
642 643
				 struct list_head *vmas)
{
644
	const unsigned other_rings = ~intel_engine_flag(req->engine);
645 646 647 648 649 650 651 652
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

653
		if (obj->active & other_rings) {
654
			ret = i915_gem_object_sync(obj, req->engine, &req);
655 656 657
			if (ret)
				return ret;
		}
658 659 660 661 662 663 664 665 666 667 668 669 670

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
671
	return logical_ring_invalidate_all_caches(req);
672 673
}

674
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
675
{
676
	struct intel_engine_cs *engine = request->engine;
677
	int ret;
678

679 680 681 682
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
683
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
684

685 686 687 688 689 690
	if (request->ctx->engine[engine->id].state == NULL) {
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

691
	request->ringbuf = request->ctx->engine[engine->id].ringbuf;
692

693 694 695 696 697 698
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
699
		ret = i915_guc_wq_check_space(request);
700 701 702 703
		if (ret)
			return ret;
	}

704 705 706
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
707

708 709 710 711
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	if (!request->ctx->engine[engine->id].initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

		request->ctx->engine[engine->id].initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

727
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
728 729 730
	return 0;

err_unpin:
731
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
732
	return ret;
733 734 735 736
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
737
 * @request: Request to advance the logical ringbuffer of.
738 739 740 741 742 743
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
744
static int
745
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
746
{
747
	struct intel_ringbuffer *ringbuf = request->ringbuf;
748
	struct intel_engine_cs *engine = request->engine;
749

750 751
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
752

753 754 755 756 757 758 759 760 761
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
762

763
	if (intel_engine_stopped(engine))
764
		return 0;
765

766 767 768 769 770 771 772 773
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
774

775 776
	if (i915.enable_guc_submission)
		i915_guc_submit(request);
777 778
	else
		execlists_context_queue(request);
779 780

	return 0;
781 782
}

783 784 785 786 787 788 789 790 791 792
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
793
 * @dispatch_flags: translated execbuffer call flags.
794 795 796 797 798 799
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
800
int intel_execlists_submission(struct i915_execbuffer_params *params,
801
			       struct drm_i915_gem_execbuffer2 *args,
802
			       struct list_head *vmas)
803
{
804
	struct drm_device       *dev = params->dev;
805
	struct intel_engine_cs *engine = params->engine;
806
	struct drm_i915_private *dev_priv = dev->dev_private;
807
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
808
	u64 exec_start;
809 810 811 812 813 814 815 816 817 818
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
819
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

844
	ret = execlists_move_to_gpu(params->request, vmas);
845 846 847
	if (ret)
		return ret;

848
	if (engine == &dev_priv->engine[RCS] &&
849
	    instp_mode != dev_priv->relative_constants_mode) {
850
		ret = intel_ring_begin(params->request, 4);
851 852 853 854 855
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
856
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
857 858 859 860 861 862
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

863 864 865
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

866
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
867 868 869
	if (ret)
		return ret;

870
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
871

872
	i915_gem_execbuffer_move_to_active(vmas, params->request);
873

874 875 876
	return 0;
}

877
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
878
{
879
	struct drm_i915_gem_request *req, *tmp;
880
	LIST_HEAD(cancel_list);
881

882
	WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
883

884
	spin_lock_bh(&engine->execlist_lock);
885
	list_replace_init(&engine->execlist_queue, &cancel_list);
886
	spin_unlock_bh(&engine->execlist_lock);
887

888
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
889
		list_del(&req->execlist_link);
890
		i915_gem_request_unreference(req);
891 892 893
	}
}

894
void intel_logical_ring_stop(struct intel_engine_cs *engine)
895
{
896
	struct drm_i915_private *dev_priv = engine->i915;
897 898
	int ret;

899
	if (!intel_engine_initialized(engine))
900 901
		return;

902
	ret = intel_engine_idle(engine);
903
	if (ret)
904
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
905
			  engine->name, ret);
906 907

	/* TODO: Is this correct with Execlists enabled? */
908 909 910
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
911 912
		return;
	}
913
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
914 915
}

916
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
917
{
918
	struct intel_engine_cs *engine = req->engine;
919 920
	int ret;

921
	if (!engine->gpu_caches_dirty)
922 923
		return 0;

924
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
925 926 927
	if (ret)
		return ret;

928
	engine->gpu_caches_dirty = false;
929 930 931
	return 0;
}

932 933
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
934
{
935 936 937
	struct drm_i915_private *dev_priv = ctx->i915;
	struct drm_i915_gem_object *ctx_obj;
	struct intel_ringbuffer *ringbuf;
938 939
	void *vaddr;
	u32 *lrc_reg_state;
940
	int ret;
941

942
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
943

944 945 946 947
	if (ctx->engine[engine->id].pin_count++)
		return 0;

	ctx_obj = ctx->engine[engine->id].state;
948 949 950
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
951
		goto err;
952

953 954 955
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
956 957 958
		goto unpin_ctx_obj;
	}

959 960
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

961
	ringbuf = ctx->engine[engine->id].ringbuf;
962
	ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
963
	if (ret)
964
		goto unpin_map;
965

966
	i915_gem_context_reference(ctx);
967 968
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
969
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
970
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
971
	ctx_obj->dirty = true;
972

973 974 975
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
976

977
	return 0;
978

979 980
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
981 982
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
983 984
err:
	ctx->engine[engine->id].pin_count = 0;
985 986 987
	return ret;
}

988 989
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
990
{
991
	struct drm_i915_gem_object *ctx_obj;
992

993 994
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
	GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
995

996 997
	if (--ctx->engine[engine->id].pin_count)
		return;
998

999
	intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1000

1001 1002 1003
	ctx_obj = ctx->engine[engine->id].state;
	i915_gem_object_unpin_map(ctx_obj);
	i915_gem_object_ggtt_unpin(ctx_obj);
1004

1005 1006 1007
	ctx->engine[engine->id].lrc_vma = NULL;
	ctx->engine[engine->id].lrc_desc = 0;
	ctx->engine[engine->id].lrc_reg_state = NULL;
1008

1009
	i915_gem_context_unreference(ctx);
1010 1011
}

1012
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1013 1014
{
	int ret, i;
1015
	struct intel_engine_cs *engine = req->engine;
1016
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1017
	struct i915_workarounds *w = &req->i915->workarounds;
1018

1019
	if (w->count == 0)
1020 1021
		return 0;

1022
	engine->gpu_caches_dirty = true;
1023
	ret = logical_ring_flush_all_caches(req);
1024 1025 1026
	if (ret)
		return ret;

1027
	ret = intel_ring_begin(req, w->count * 2 + 2);
1028 1029 1030 1031 1032
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1033
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1034 1035 1036 1037 1038 1039
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1040
	engine->gpu_caches_dirty = true;
1041
	ret = logical_ring_flush_all_caches(req);
1042 1043 1044 1045 1046 1047
	if (ret)
		return ret;

	return 0;
}

1048
#define wa_ctx_emit(batch, index, cmd)					\
1049
	do {								\
1050 1051
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1052 1053
			return -ENOSPC;					\
		}							\
1054
		batch[__index] = (cmd);					\
1055 1056
	} while (0)

V
Ville Syrjälä 已提交
1057
#define wa_ctx_emit_reg(batch, index, reg) \
1058
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1076
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1077 1078 1079 1080 1081
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1082 1083 1084 1085 1086 1087
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1088
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0))
1089 1090
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1091
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1092
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1093
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1094
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1095 1096 1097
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1098
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1109
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1110
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1111
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1112
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1113
	wa_ctx_emit(batch, index, 0);
1114 1115 1116 1117

	return index;
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1156
 *
1157 1158 1159 1160 1161 1162 1163 1164
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1165
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1166 1167 1168 1169
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1170
	uint32_t scratch_addr;
1171 1172
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1173
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1174
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1175

1176
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1177
	if (IS_BROADWELL(engine->i915)) {
1178
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1179 1180 1181
		if (rc < 0)
			return rc;
		index = rc;
1182 1183
	}

1184 1185
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1186
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1197

1198 1199
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1200
		wa_ctx_emit(batch, index, MI_NOOP);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1218
 * @batch: page in which WA are loaded
1219 1220 1221 1222 1223 1224 1225 1226 1227
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1228
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1229 1230 1231 1232 1233 1234
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1235
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1236
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1237

1238
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1239 1240 1241 1242

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1243
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1244 1245 1246 1247
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1248
	int ret;
1249 1250
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1251
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1252 1253
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1254
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1255

1256
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1257
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1258 1259 1260 1261
	if (ret < 0)
		return ret;
	index = ret;

1262 1263 1264 1265 1266 1267 1268
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1269
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1270 1271 1272 1273 1274 1275
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1276
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1277 1278
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1279
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1280
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1281 1282 1283 1284 1285
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1286
	/* WaClearTdlStateAckDirtyBits:bxt */
1287
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1305
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1306 1307
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1308 1309
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1310 1311 1312 1313 1314
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1315
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1316 1317 1318
{
	int ret;

1319
	engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
1320
						   PAGE_ALIGN(size));
1321
	if (IS_ERR(engine->wa_ctx.obj)) {
1322
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1323 1324 1325
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1326 1327
	}

1328
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1329 1330 1331
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1332
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1333 1334 1335 1336 1337 1338
		return ret;
	}

	return 0;
}

1339
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1340
{
1341 1342 1343 1344
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1345 1346 1347
	}
}

1348
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1349 1350 1351 1352 1353
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1354
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1355

1356
	WARN_ON(engine->id != RCS);
1357

1358
	/* update this when WA for higher Gen are added */
1359
	if (INTEL_GEN(engine->i915) > 9) {
1360
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1361
			  INTEL_GEN(engine->i915));
1362
		return 0;
1363
	}
1364

1365
	/* some WA perform writes to scratch page, ensure it is valid */
1366 1367
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1368 1369 1370
		return -EINVAL;
	}

1371
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1372 1373 1374 1375 1376
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1377
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1378 1379 1380
	batch = kmap_atomic(page);
	offset = 0;

1381
	if (IS_GEN8(engine->i915)) {
1382
		ret = gen8_init_indirectctx_bb(engine,
1383 1384 1385 1386 1387 1388
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1389
		ret = gen8_init_perctx_bb(engine,
1390 1391 1392 1393 1394
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1395
	} else if (IS_GEN9(engine->i915)) {
1396
		ret = gen9_init_indirectctx_bb(engine,
1397 1398 1399 1400 1401 1402
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1403
		ret = gen9_init_perctx_bb(engine,
1404 1405 1406 1407 1408
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1409 1410 1411 1412 1413
	}

out:
	kunmap_atomic(batch);
	if (ret)
1414
		lrc_destroy_wa_ctx_obj(engine);
1415 1416 1417 1418

	return ret;
}

1419 1420
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1421
	struct drm_i915_private *dev_priv = engine->i915;
1422 1423 1424 1425 1426 1427

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1428
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1429
{
1430
	struct drm_i915_private *dev_priv = engine->i915;
1431
	unsigned int next_context_status_buffer_hw;
1432

1433
	lrc_init_hws(engine);
1434

1435 1436 1437
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1438

1439
	I915_WRITE(RING_MODE_GEN7(engine),
1440 1441
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1442
	POSTING_READ(RING_MODE_GEN7(engine));
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1453 1454
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1455
	 */
1456
	next_context_status_buffer_hw =
1457
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1458 1459 1460 1461 1462 1463 1464 1465 1466

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1467 1468
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1469

1470
	intel_engine_init_hangcheck(engine);
1471

1472
	return intel_mocs_init_engine(engine);
1473 1474
}

1475
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1476
{
1477
	struct drm_i915_private *dev_priv = engine->i915;
1478 1479
	int ret;

1480
	ret = gen8_init_common_ring(engine);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1494
	return init_workarounds_ring(engine);
1495 1496
}

1497
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1498 1499 1500
{
	int ret;

1501
	ret = gen8_init_common_ring(engine);
1502 1503 1504
	if (ret)
		return ret;

1505
	return init_workarounds_ring(engine);
1506 1507
}

1508 1509 1510
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1511
	struct intel_engine_cs *engine = req->engine;
1512 1513 1514 1515
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1516
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1517 1518 1519 1520 1521 1522 1523
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1524 1525
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1526
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1527 1528
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1529 1530 1531 1532 1533 1534 1535 1536 1537
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1538
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1539
			      u64 offset, unsigned dispatch_flags)
1540
{
1541
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1542
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1543 1544
	int ret;

1545 1546 1547 1548
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1549 1550
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1551
	if (req->ctx->ppgtt &&
1552
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1553
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1554
		    !intel_vgpu_active(req->i915)) {
1555 1556 1557 1558
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1559

1560
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1561 1562
	}

1563
	ret = intel_ring_begin(req, 4);
1564 1565 1566 1567
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1568 1569 1570 1571
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1572 1573 1574 1575 1576 1577 1578 1579
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1580
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1581
{
1582
	struct drm_i915_private *dev_priv = engine->i915;
1583 1584
	unsigned long flags;

1585
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1586 1587 1588
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1589 1590 1591 1592
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1593 1594 1595 1596 1597 1598
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1599
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1600
{
1601
	struct drm_i915_private *dev_priv = engine->i915;
1602 1603 1604
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1605 1606 1607
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1608 1609 1610 1611
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1612
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1613 1614 1615
			   u32 invalidate_domains,
			   u32 unused)
{
1616
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1617
	struct intel_engine_cs *engine = ringbuf->engine;
1618
	struct drm_i915_private *dev_priv = request->i915;
1619 1620 1621
	uint32_t cmd;
	int ret;

1622
	ret = intel_ring_begin(request, 4);
1623 1624 1625 1626 1627
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1628 1629 1630 1631 1632 1633 1634 1635 1636
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1637
		if (engine == &dev_priv->engine[VCS])
1638
			cmd |= MI_INVALIDATE_BSD;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1652
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1653 1654 1655
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1656
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1657
	struct intel_engine_cs *engine = ringbuf->engine;
1658
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1659
	bool vf_flush_wa = false;
1660 1661 1662 1663 1664 1665 1666 1667
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1668
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1669
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1682 1683 1684 1685
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1686
		if (IS_GEN9(request->i915))
1687 1688
			vf_flush_wa = true;
	}
1689

1690
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1691 1692 1693
	if (ret)
		return ret;

1694 1695 1696 1697 1698 1699 1700 1701 1702
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1714
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1715
{
1716
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1717 1718
}

1719
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1720
{
1721
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1722 1723
}

1724
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1736
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1737 1738
}

1739
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1740
{
1741
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1742 1743

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1744
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1745 1746
}

1747 1748 1749 1750 1751 1752 1753
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1754
static int gen8_emit_request(struct drm_i915_gem_request *request)
1755
{
1756
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1757 1758
	int ret;

1759
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1760 1761 1762
	if (ret)
		return ret;

1763 1764
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1765 1766

	intel_logical_ring_emit(ringbuf,
1767 1768
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1769
				intel_hws_seqno_address(request->engine) |
1770
				MI_FLUSH_DW_USE_GTT);
1771
	intel_logical_ring_emit(ringbuf, 0);
1772
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1773 1774
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1775 1776
	return intel_logical_ring_advance_and_submit(request);
}
1777

1778 1779 1780 1781
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1782

1783
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1784 1785 1786
	if (ret)
		return ret;

1787 1788 1789
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1790 1791 1792 1793
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1794
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1795 1796 1797 1798
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1799 1800
	intel_logical_ring_emit(ringbuf,
				intel_hws_seqno_address(request->engine));
1801 1802
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1803 1804
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1805
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1806
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1807
	return intel_logical_ring_advance_and_submit(request);
1808 1809
}

1810
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1811 1812 1813 1814
{
	struct render_state so;
	int ret;

1815
	ret = i915_gem_render_state_prepare(req->engine, &so);
1816 1817 1818 1819 1820 1821
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1822
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1823
				       I915_DISPATCH_SECURE);
1824 1825 1826
	if (ret)
		goto out;

1827
	ret = req->engine->emit_bb_start(req,
1828 1829 1830 1831 1832
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1833
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1834 1835 1836 1837 1838 1839

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1840
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1841 1842 1843
{
	int ret;

1844
	ret = intel_logical_ring_workarounds_emit(req);
1845 1846 1847
	if (ret)
		return ret;

1848 1849 1850 1851 1852 1853 1854 1855
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1856
	return intel_lr_context_render_state_init(req);
1857 1858
}

1859 1860 1861 1862 1863 1864
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1865
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1866
{
1867
	struct drm_i915_private *dev_priv;
1868

1869
	if (!intel_engine_initialized(engine))
1870 1871
		return;

1872 1873 1874 1875 1876 1877 1878
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1879
	dev_priv = engine->i915;
1880

1881 1882 1883
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1884
	}
1885

1886 1887
	if (engine->cleanup)
		engine->cleanup(engine);
1888

1889 1890
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1891

1892
	if (engine->status_page.obj) {
1893
		i915_gem_object_unpin_map(engine->status_page.obj);
1894
		engine->status_page.obj = NULL;
1895
	}
1896
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1897

1898 1899 1900
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1901

1902
	lrc_destroy_wa_ctx_obj(engine);
1903
	engine->i915 = NULL;
1904 1905
}

1906
static void
1907
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1908 1909
{
	/* Default vfuncs which can be overriden by each engine. */
1910 1911 1912 1913 1914 1915
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1916 1917
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1918
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1919
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1920
		engine->set_seqno = bxt_a_set_seqno;
1921 1922 1923
	}
}

1924
static inline void
1925
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1926
{
1927 1928
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1929
	init_waitqueue_head(&engine->irq_queue);
1930 1931
}

1932
static int
1933 1934 1935
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1936
	void *hws;
1937 1938 1939 1940

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1941 1942 1943 1944
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1945
	engine->status_page.obj = dctx_obj;
1946 1947

	return 0;
1948 1949
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
static const struct logical_ring_info {
	const char *name;
	unsigned exec_id;
	unsigned guc_id;
	u32 mmio_base;
	unsigned irq_shift;
} logical_rings[] = {
	[RCS] = {
		.name = "render ring",
		.exec_id = I915_EXEC_RENDER,
		.guc_id = GUC_RENDER_ENGINE,
		.mmio_base = RENDER_RING_BASE,
		.irq_shift = GEN8_RCS_IRQ_SHIFT,
	},
	[BCS] = {
		.name = "blitter ring",
		.exec_id = I915_EXEC_BLT,
		.guc_id = GUC_BLITTER_ENGINE,
		.mmio_base = BLT_RING_BASE,
		.irq_shift = GEN8_BCS_IRQ_SHIFT,
	},
	[VCS] = {
		.name = "bsd ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE,
		.mmio_base = GEN6_BSD_RING_BASE,
		.irq_shift = GEN8_VCS1_IRQ_SHIFT,
	},
	[VCS2] = {
		.name = "bsd2 ring",
		.exec_id = I915_EXEC_BSD,
		.guc_id = GUC_VIDEO_ENGINE2,
		.mmio_base = GEN8_BSD2_RING_BASE,
		.irq_shift = GEN8_VCS2_IRQ_SHIFT,
	},
	[VECS] = {
		.name = "video enhancement ring",
		.exec_id = I915_EXEC_VEBOX,
		.guc_id = GUC_VIDEOENHANCE_ENGINE,
		.mmio_base = VEBOX_RING_BASE,
		.irq_shift = GEN8_VECS_IRQ_SHIFT,
	},
};

static struct intel_engine_cs *
logical_ring_setup(struct drm_device *dev, enum intel_engine_id id)
1996
{
1997
	const struct logical_ring_info *info = &logical_rings[id];
1998
	struct drm_i915_private *dev_priv = to_i915(dev);
1999
	struct intel_engine_cs *engine = &dev_priv->engine[id];
2000
	enum forcewake_domains fw_domains;
2001

2002 2003 2004 2005 2006
	engine->id = id;
	engine->name = info->name;
	engine->exec_id = info->exec_id;
	engine->guc_id = info->guc_id;
	engine->mmio_base = info->mmio_base;
2007

2008
	engine->i915 = dev_priv;
2009

2010 2011
	/* Intentionally left blank. */
	engine->buffer = NULL;
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine, info->irq_shift);

	intel_engine_init_hangcheck(engine);
2041
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
2042 2043 2044 2045 2046 2047 2048

	return engine;
}

static int
logical_ring_init(struct intel_engine_cs *engine)
{
2049
	struct intel_context *dctx = engine->i915->kernel_context;
2050 2051
	int ret;

2052
	ret = i915_cmd_parser_init_ring(engine);
2053
	if (ret)
2054
		goto error;
2055

2056
	ret = execlists_context_deferred_alloc(dctx, engine);
2057
	if (ret)
2058
		goto error;
2059 2060

	/* As this is the default context, always pin it */
2061
	ret = intel_lr_context_pin(dctx, engine);
2062
	if (ret) {
2063 2064
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2065
		goto error;
2066
	}
2067

2068
	/* And setup the hardware status page. */
2069 2070 2071 2072 2073
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2074

2075 2076 2077
	return 0;

error:
2078
	intel_logical_ring_cleanup(engine);
2079
	return ret;
2080 2081 2082 2083
}

static int logical_render_ring_init(struct drm_device *dev)
{
2084
	struct intel_engine_cs *engine = logical_ring_setup(dev, RCS);
2085
	int ret;
2086

2087
	if (HAS_L3_DPF(dev))
2088
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2089

2090
	/* Override some for render ring. */
2091
	if (INTEL_INFO(dev)->gen >= 9)
2092
		engine->init_hw = gen9_init_render_ring;
2093
	else
2094 2095 2096 2097 2098
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2099

2100
	ret = intel_init_pipe_control(engine);
2101 2102 2103
	if (ret)
		return ret;

2104
	ret = intel_init_workaround_bb(engine);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2115
	ret = logical_ring_init(engine);
2116
	if (ret) {
2117
		lrc_destroy_wa_ctx_obj(engine);
2118
	}
2119 2120

	return ret;
2121 2122 2123 2124
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
2125
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS);
2126

2127
	return logical_ring_init(engine);
2128 2129 2130 2131
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
2132
	struct intel_engine_cs *engine = logical_ring_setup(dev, VCS2);
2133

2134
	return logical_ring_init(engine);
2135 2136 2137 2138
}

static int logical_blt_ring_init(struct drm_device *dev)
{
2139
	struct intel_engine_cs *engine = logical_ring_setup(dev, BCS);
2140

2141
	return logical_ring_init(engine);
2142 2143 2144 2145
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
2146
	struct intel_engine_cs *engine = logical_ring_setup(dev, VECS);
2147

2148
	return logical_ring_init(engine);
2149 2150
}

2151 2152 2153 2154 2155
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2156
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2157 2158 2159 2160
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2197
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2198
cleanup_blt_ring:
2199
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2200
cleanup_bsd_ring:
2201
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2202
cleanup_render_ring:
2203
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2204 2205 2206 2207

	return ret;
}

2208
static u32
2209
make_rpcs(struct drm_i915_private *dev_priv)
2210 2211 2212 2213 2214 2215 2216
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2217
	if (INTEL_GEN(dev_priv) < 9)
2218 2219 2220 2221 2222 2223 2224 2225
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2226
	if (INTEL_INFO(dev_priv)->has_slice_pg) {
2227
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2228
		rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2229 2230 2231 2232
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2233
	if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2234
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2235
		rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2236 2237 2238 2239
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2240 2241
	if (INTEL_INFO(dev_priv)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2242
			GEN8_RPCS_EU_MIN_SHIFT;
2243
		rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2244 2245 2246 2247 2248 2249 2250
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2251
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2252 2253 2254
{
	u32 indirect_ctx_offset;

2255
	switch (INTEL_GEN(engine->i915)) {
2256
	default:
2257
		MISSING_CASE(INTEL_GEN(engine->i915));
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2272
static int
2273 2274
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2275 2276
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2277
{
2278
	struct drm_i915_private *dev_priv = ctx->i915;
2279
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2280 2281
	void *vaddr;
	u32 *reg_state;
2282 2283
	int ret;

2284 2285 2286
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2287 2288 2289 2290 2291 2292
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2293 2294 2295 2296
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2297 2298
		return ret;
	}
2299
	ctx_obj->dirty = true;
2300 2301 2302

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2303
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2304 2305 2306 2307 2308 2309

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2310
	reg_state[CTX_LRI_HEADER_0] =
2311 2312 2313
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2314 2315
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2316
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2317
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2318 2319 2320 2321
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2322 2323 2324
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2325 2326 2327 2328
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2329
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2330 2331 2332 2333 2334 2335
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2336
		       RING_BB_PPGTT);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2352 2353 2354 2355 2356 2357 2358
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2359
				intel_lr_indirect_ctx_offset(engine) << 6;
2360 2361 2362 2363 2364

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2365
	}
2366
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2367 2368
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2369
	/* PDP values well be assigned later if needed */
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2386

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2399
		execlists_update_context_pdps(ppgtt, reg_state);
2400 2401
	}

2402
	if (engine->id == RCS) {
2403
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2404
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2405
			       make_rpcs(dev_priv));
2406 2407
	}

2408
	i915_gem_object_unpin_map(ctx_obj);
2409 2410 2411 2412

	return 0;
}

2413 2414 2415 2416 2417 2418 2419 2420
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2421 2422
void intel_lr_context_free(struct intel_context *ctx)
{
2423 2424
	int i;

2425
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2426
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2427
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2428

D
Dave Gordon 已提交
2429 2430
		if (!ctx_obj)
			continue;
2431

D
Dave Gordon 已提交
2432 2433 2434
		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2435 2436 2437
	}
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2452
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2453 2454 2455
{
	int ret = 0;

2456
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2457

2458
	switch (engine->id) {
2459
	case RCS:
2460
		if (INTEL_GEN(engine->i915) >= 9)
2461 2462 2463
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2474 2475
}

2476
/**
2477
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2478
 * @ctx: LR context to create.
2479
 * @engine: engine to be used with the context.
2480 2481 2482 2483 2484 2485 2486
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2487
 * Return: non-zero on error.
2488
 */
2489 2490
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine)
2491
{
2492 2493
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2494
	struct intel_ringbuffer *ringbuf;
2495 2496
	int ret;

2497
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2498
	WARN_ON(ctx->engine[engine->id].state);
2499

2500
	context_size = round_up(intel_lr_context_size(engine), 4096);
2501

2502 2503 2504
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2505
	ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
2506
	if (IS_ERR(ctx_obj)) {
2507
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2508
		return PTR_ERR(ctx_obj);
2509 2510
	}

2511
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2512 2513
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2514
		goto error_deref_obj;
2515 2516
	}

2517
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2518 2519
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2520
		goto error_ringbuf;
2521 2522
	}

2523 2524
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2525
	ctx->engine[engine->id].initialised = engine->init_context == NULL;
2526 2527

	return 0;
2528

2529 2530
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2531
error_deref_obj:
2532
	drm_gem_object_unreference(&ctx_obj->base);
2533 2534
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2535
	return ret;
2536
}
2537

2538 2539
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2540
{
2541
	struct intel_engine_cs *engine;
2542

2543
	for_each_engine(engine, dev_priv) {
2544
		struct drm_i915_gem_object *ctx_obj =
2545
				ctx->engine[engine->id].state;
2546
		struct intel_ringbuffer *ringbuf =
2547
				ctx->engine[engine->id].ringbuf;
2548
		void *vaddr;
2549 2550 2551 2552 2553
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2554 2555
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2556
			continue;
2557 2558 2559

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2560 2561 2562 2563

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2564
		i915_gem_object_unpin_map(ctx_obj);
2565 2566 2567 2568 2569

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}