intel_lrc.c 62.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309 310
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
311 312
}

313 314 315 316 317 318 319 320 321
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

322
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323
{
324
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 326
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327
	u32 *reg_state = ce->lrc_reg_state;
328

329
	GEM_BUG_ON(!IS_ALIGNED(rq->tail, 8));
C
Chris Wilson 已提交
330
	reg_state[CTX_RING_TAIL+1] = rq->tail;
331

332 333 334 335 336
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
337
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
338
		execlists_update_context_pdps(ppgtt, reg_state);
339 340

	return ce->lrc_desc;
341 342
}

343
static void execlists_submit_ports(struct intel_engine_cs *engine)
344
{
345 346
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
347 348 349 350
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

351
	GEM_BUG_ON(port[0].count > 1);
352 353 354 355
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
356
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
357
	port[0].count++;
358 359 360 361 362 363

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
364
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
365
		port[1].count = 1;
366 367 368
	} else {
		desc[1] = 0;
	}
369
	GEM_BUG_ON(desc[0] == desc[1]);
370 371 372 373 374 375 376 377 378 379

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

380
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
381
{
382
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
383
		i915_gem_context_force_single_submission(ctx));
384
}
385

386 387 388 389 390
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
391

392 393
	if (ctx_single_port_submission(prev))
		return false;
394

395
	return true;
396 397
}

398
static void execlists_dequeue(struct intel_engine_cs *engine)
399
{
400
	struct drm_i915_gem_request *last;
401
	struct execlist_port *port = engine->execlist_port;
402
	struct rb_node *rb;
403 404
	bool submit = false;

405 406 407 408 409 410 411 412 413 414 415 416
	/* After execlist_first is updated, the tasklet will be rescheduled.
	 *
	 * If we are currently running (inside the tasklet) and a third
	 * party queues a request and so updates engine->execlist_first under
	 * the spinlock (which we have elided), it will atomically set the
	 * TASKLET_SCHED flag causing the us to be re-executed and pick up
	 * the change in state (the update to TASKLET_SCHED incurs a memory
	 * barrier making this cross-cpu checking safe).
	 */
	if (!READ_ONCE(engine->execlist_first))
		return;

417 418 419 420
	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
421
		 * as we resubmit the request. See gen8_emit_breadcrumb()
422 423 424 425
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
426

427
	GEM_BUG_ON(port[1].request);
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
448
	 */
449

450
	spin_lock_irq(&engine->timeline->lock);
451 452 453 454 455
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

456 457 458
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
459
		 *
460 461 462 463
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
464
		 */
465 466 467 468 469 470 471 472 473 474 475 476 477
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
478 479
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
480 481 482 483 484 485 486
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
487

488 489 490 491 492
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

493
		__i915_gem_request_submit(cursor);
494
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
495 496 497 498 499
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
500
		engine->execlist_first = rb;
501
	}
502
	spin_unlock_irq(&engine->timeline->lock);
503

504 505
	if (submit)
		execlists_submit_ports(engine);
506 507
}

508
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
509
{
510
	return !engine->execlist_port[0].request;
511 512
}

513
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
514
{
515
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
516

517
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
518 519
}

520
/*
521 522 523
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
524
static void intel_lrc_irq_handler(unsigned long data)
525
{
526
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527
	struct execlist_port *port = engine->execlist_port;
528
	struct drm_i915_private *dev_priv = engine->i915;
529

530
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
531

532 533 534 535 536
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
537 538 539 540 541 542
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

543 544 545 546 547 548 549 550 551 552 553
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
554 555 556
		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
557 558 559
		if (head == tail)
			break;

560 561
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
562
		do {
563 564 565
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

583 584 585
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

586
			/* Check the context/desc id for this event matches */
587 588
			GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
					 port[0].context_id);
589

590 591 592
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
593
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
594 595 596
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

597
				trace_i915_gem_request_out(port[0].request);
598 599 600 601
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
602

603 604
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
605
		} while (head < tail);
606

607 608 609
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
610 611
	}

612 613
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
614

615
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
616 617
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

644
static void execlists_submit_request(struct drm_i915_gem_request *request)
645
{
646
	struct intel_engine_cs *engine = request->engine;
647
	unsigned long flags;
648

649 650
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
651

652
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
653
		engine->execlist_first = &request->priotree.node;
654
		if (execlists_elsp_ready(engine))
655 656
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
657

658
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
659 660
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

688 689
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

718
		list_safe_reset_next(dep, p, dfs_link);
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

759 760
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
761
{
762
	struct intel_context *ce = &ctx->engine[engine->id];
763
	unsigned int flags;
764
	void *vaddr;
765
	int ret;
766

767
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
768

769
	if (ce->pin_count++)
770
		return 0;
771
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
772

773 774 775 776 777
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
778
	GEM_BUG_ON(!ce->state);
779

780
	flags = PIN_GLOBAL | PIN_HIGH;
781 782
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
783 784

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
785
	if (ret)
786
		goto err;
787

788
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
789 790
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
791
		goto unpin_vma;
792 793
	}

794
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
795
	if (ret)
796
		goto unpin_map;
797

798
	intel_lr_context_descriptor_update(ctx, engine);
799

800 801
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
802
		i915_ggtt_offset(ce->ring->vma);
803

C
Chris Wilson 已提交
804
	ce->state->obj->mm.dirty = true;
805

806
	i915_gem_context_get(ctx);
807
	return 0;
808

809
unpin_map:
810 811 812
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
813
err:
814
	ce->pin_count = 0;
815 816 817
	return ret;
}

818 819
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
820
{
821
	struct intel_context *ce = &ctx->engine[engine->id];
822

823
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
824
	GEM_BUG_ON(ce->pin_count == 0);
825

826
	if (--ce->pin_count)
827
		return;
828

829
	intel_ring_unpin(ce->ring);
830

831 832
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
833

834
	i915_gem_context_put(ctx);
835 836
}

837
static int execlists_request_alloc(struct drm_i915_gem_request *request)
838 839 840
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
841
	u32 *cs;
842 843
	int ret;

844 845
	GEM_BUG_ON(!ce->pin_count);

846 847 848 849 850 851
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

852
	GEM_BUG_ON(!ce->ring);
853 854 855 856 857 858 859 860 861 862
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
863
			goto err;
864 865
	}

866 867 868
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
869
		goto err_unreserve;
870
	}
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
893
err:
894 895 896
	return ret;
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
913 914
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
915
{
916 917 918 919 920 921 922 923 924
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

925 926 927 928
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
929 930 931 932 933 934 935

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
936 937
}

938 939 940 941 942 943
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
944
 *
945 946
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
947
 *
948 949 950 951
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
952
 */
953
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
954
{
955
	/* WaDisableCtxRestoreArbitration:bdw,chv */
956
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
957

958
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
959 960
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
961

962 963
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
964 965 966 967 968 969 970
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
971

972
	/* Pad to end of cacheline */
973 974
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
975 976 977 978 979 980 981

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

982
	return batch;
983 984
}

985 986 987
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
988
 *
989
 *  The number of DWORDS written are returned using this field.
990 991 992 993
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
994
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
995
{
996
	/* WaDisableCtxRestoreArbitration:bdw,chv */
997 998
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
999

1000
	return batch;
1001 1002
}

1003
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1004
{
1005
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1006
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1007

1008
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1009 1010 1011 1012 1013
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1014

1015 1016
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1017
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1018 1019 1020 1021 1022 1023 1024
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1025
	}
1026

1027
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1042 1043 1044 1045 1046 1047
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1048 1049
	}

1050
	/* Pad to end of cacheline */
1051 1052
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1053

1054
	return batch;
1055 1056
}

1057
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1058
{
1059
	*batch++ = MI_BATCH_BUFFER_END;
1060

1061
	return batch;
1062 1063
}

1064 1065 1066
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1067
{
1068 1069 1070
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1071

1072
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1073 1074
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1075

1076
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1077 1078 1079
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1080 1081
	}

1082 1083 1084 1085 1086
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1087
	return 0;
1088 1089 1090 1091

err:
	i915_gem_object_put(obj);
	return err;
1092 1093
}

1094
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1095
{
1096
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1097 1098
}

1099 1100
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1101
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1102
{
1103
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1104 1105 1106
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1107
	struct page *page;
1108 1109
	void *batch, *batch_ptr;
	unsigned int i;
1110
	int ret;
1111

1112 1113
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1126
		return 0;
1127
	}
1128

1129
	ret = lrc_setup_wa_ctx(engine);
1130 1131 1132 1133 1134
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1135
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1136
	batch = batch_ptr = kmap_atomic(page);
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1151 1152
	}

1153 1154
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1155 1156
	kunmap_atomic(batch);
	if (ret)
1157
		lrc_destroy_wa_ctx(engine);
1158 1159 1160 1161

	return ret;
}

1162 1163 1164 1165 1166
static u32 port_seqno(struct execlist_port *port)
{
	return port->request ? port->request->global_seqno : 0;
}

1167
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1168
{
1169
	struct drm_i915_private *dev_priv = engine->i915;
1170 1171 1172 1173 1174
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1175

1176
	intel_engine_reset_breadcrumbs(engine);
1177
	intel_engine_init_hangcheck(engine);
1178

1179 1180
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1181
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1182 1183 1184
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1185

1186
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1187

1188
	/* After a GPU reset, we may have requests to replay */
1189
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1190
	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
1191 1192 1193 1194
		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
				 engine->name,
				 port_seqno(&engine->execlist_port[0]),
				 port_seqno(&engine->execlist_port[1]));
1195 1196
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1197
		execlists_submit_ports(engine);
1198
	}
1199 1200

	return 0;
1201 1202
}

1203
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1204
{
1205
	struct drm_i915_private *dev_priv = engine->i915;
1206 1207
	int ret;

1208
	ret = gen8_init_common_ring(engine);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1222
	return init_workarounds_ring(engine);
1223 1224
}

1225
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1226 1227 1228
{
	int ret;

1229
	ret = gen8_init_common_ring(engine);
1230 1231 1232
	if (ret)
		return ret;

1233
	return init_workarounds_ring(engine);
1234 1235
}

1236 1237 1238 1239
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1254

1255 1256 1257 1258 1259 1260 1261
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1262
	ce = &request->ctx->engine[engine->id];
1263 1264 1265
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1266
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1267 1268
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1269
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1282 1283 1284

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1285
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
1286 1287
}

1288 1289 1290
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1291
	struct intel_engine_cs *engine = req->engine;
1292
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1293 1294
	u32 *cs;
	int i;
1295

1296 1297 1298
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1299

1300
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1301
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1302 1303
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1304 1305 1306 1307
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1308 1309
	}

1310 1311
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1312 1313 1314 1315

	return 0;
}

1316
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1317
			      u64 offset, u32 len,
1318
			      const unsigned int flags)
1319
{
1320
	u32 *cs;
1321 1322
	int ret;

1323 1324 1325 1326
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1327 1328
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1329
	if (req->ctx->ppgtt &&
1330 1331 1332 1333 1334 1335
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1336

1337
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1338 1339
	}

1340 1341 1342
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1343 1344

	/* FIXME(BDW): Address space and security selectors. */
1345 1346 1347
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1348 1349 1350 1351
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1352 1353 1354 1355

	return 0;
}

1356
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1357
{
1358
	struct drm_i915_private *dev_priv = engine->i915;
1359 1360 1361
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1362 1363
}

1364
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1365
{
1366
	struct drm_i915_private *dev_priv = engine->i915;
1367
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1368 1369
}

1370
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1371
{
1372
	u32 cmd, *cs;
1373

1374 1375 1376
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1377 1378 1379

	cmd = MI_FLUSH_DW + 1;

1380 1381 1382 1383 1384 1385 1386
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1387
	if (mode & EMIT_INVALIDATE) {
1388
		cmd |= MI_INVALIDATE_TLB;
1389
		if (request->engine->id == VCS)
1390
			cmd |= MI_INVALIDATE_BSD;
1391 1392
	}

1393 1394 1395 1396 1397
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1398 1399 1400 1401

	return 0;
}

1402
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1403
				  u32 mode)
1404
{
1405
	struct intel_engine_cs *engine = request->engine;
1406 1407
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1408
	bool vf_flush_wa = false, dc_flush_wa = false;
1409
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1410
	int len;
1411 1412 1413

	flags |= PIPE_CONTROL_CS_STALL;

1414
	if (mode & EMIT_FLUSH) {
1415 1416
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1417
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1418
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1419 1420
	}

1421
	if (mode & EMIT_INVALIDATE) {
1422 1423 1424 1425 1426 1427 1428 1429 1430
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1431 1432 1433 1434
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1435
		if (IS_GEN9(request->i915))
1436
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1437 1438 1439 1440

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1441
	}
1442

M
Mika Kuoppala 已提交
1443 1444 1445 1446 1447 1448 1449 1450
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1451 1452 1453
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1454

1455 1456
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1457

1458 1459 1460
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1461

1462
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1463

1464 1465
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1466

1467
	intel_ring_advance(request, cs);
1468 1469 1470 1471

	return 0;
}

1472 1473 1474 1475 1476
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1477
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1478
{
1479 1480 1481
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1482
}
1483

1484
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1485
{
1486 1487
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1488

1489 1490 1491 1492 1493 1494 1495
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1496
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1497

1498
	gen8_emit_wa_tail(request, cs);
1499
}
1500

1501 1502
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1503
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1504
					u32 *cs)
1505
{
1506 1507 1508
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1509 1510 1511 1512
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1513 1514 1515 1516 1517 1518
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1519
	/* We're thrashing one dword of HWS. */
1520 1521 1522 1523
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1524
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1525

1526
	gen8_emit_wa_tail(request, cs);
1527 1528
}

1529 1530
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1531
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1532 1533 1534
{
	int ret;

1535
	ret = intel_ring_workarounds_emit(req);
1536 1537 1538
	if (ret)
		return ret;

1539 1540 1541 1542 1543 1544 1545 1546
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1547
	return i915_gem_render_state_emit(req);
1548 1549
}

1550 1551
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1552
 * @engine: Engine Command Streamer.
1553
 */
1554
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1555
{
1556
	struct drm_i915_private *dev_priv;
1557

1558 1559 1560 1561 1562 1563 1564
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1565
	dev_priv = engine->i915;
1566

1567 1568
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1569
	}
1570

1571 1572
	if (engine->cleanup)
		engine->cleanup(engine);
1573

1574 1575 1576
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1577
	}
1578 1579

	intel_engine_cleanup_common(engine);
1580

1581
	lrc_destroy_wa_ctx(engine);
1582
	engine->i915 = NULL;
1583 1584
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1585 1586
}

1587
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1588
{
1589 1590
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1591
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1592 1593
}

1594
static void
1595
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1596 1597
{
	/* Default vfuncs which can be overriden by each engine. */
1598
	engine->init_hw = gen8_init_common_ring;
1599
	engine->reset_hw = reset_common_ring;
1600 1601 1602 1603

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1604 1605
	engine->request_alloc = execlists_request_alloc;

1606
	engine->emit_flush = gen8_emit_flush;
1607
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1608
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1609 1610

	engine->set_default_submission = execlists_set_default_submission;
1611

1612 1613
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1614
	engine->emit_bb_start = gen8_emit_bb_start;
1615 1616
}

1617
static inline void
1618
logical_ring_default_irqs(struct intel_engine_cs *engine)
1619
{
1620
	unsigned shift = engine->irq_shift;
1621 1622
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1623 1624
}

1625
static int
1626
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1627
{
1628
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1629
	void *hws;
1630 1631

	/* The HWSP is part of the default context object in LRC mode. */
1632
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1633 1634
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1635 1636

	engine->status_page.page_addr = hws + hws_offset;
1637
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1638
	engine->status_page.vma = vma;
1639 1640

	return 0;
1641 1642
}

1643 1644 1645 1646 1647 1648
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1649 1650
	intel_engine_setup_common(engine);

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1675 1676 1677 1678 1679 1680
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1681
	ret = intel_engine_init_common(engine);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1699
int logical_render_ring_init(struct intel_engine_cs *engine)
1700 1701 1702 1703
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1704 1705
	logical_ring_setup(engine);

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1716
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1717
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1718

1719
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1734
	return logical_ring_init(engine);
1735 1736
}

1737
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1738 1739 1740 1741
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1742 1743
}

1744
static u32
1745
make_rpcs(struct drm_i915_private *dev_priv)
1746 1747 1748 1749 1750 1751 1752
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1753
	if (INTEL_GEN(dev_priv) < 9)
1754 1755 1756 1757 1758 1759 1760 1761
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1762
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1763
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1764
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1765 1766 1767 1768
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1769
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1770
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1771
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1772 1773 1774 1775
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1776 1777
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1778
			GEN8_RPCS_EU_MIN_SHIFT;
1779
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1780 1781 1782 1783 1784 1785 1786
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1787
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1788 1789 1790
{
	u32 indirect_ctx_offset;

1791
	switch (INTEL_GEN(engine->i915)) {
1792
	default:
1793
		MISSING_CASE(INTEL_GEN(engine->i915));
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1808
static void execlists_init_reg_state(u32 *regs,
1809 1810 1811
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1812
{
1813 1814
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1849

1850
		if (engine->wa_ctx.vma) {
1851
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1852
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1853

1854
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1855 1856
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1857

1858
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1859
				intel_lr_indirect_ctx_offset(engine) << 6;
1860

1861
			regs[CTX_BB_PER_CTX_PTR + 1] =
1862
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1863
		}
1864
	}
1865 1866 1867 1868

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1869
	/* PDP values well be assigned later if needed */
1870 1871 1872 1873 1874 1875 1876 1877
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1878

1879
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1880 1881 1882 1883
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1884
		ASSIGN_CTX_PML4(ppgtt, regs);
1885 1886
	}

1887 1888 1889 1890
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1891
	}
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1915
	ctx_obj->mm.dirty = true;
1916 1917 1918 1919 1920 1921

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1922

1923
	i915_gem_object_unpin_map(ctx_obj);
1924 1925 1926 1927

	return 0;
}

1928 1929
/**
 * intel_lr_context_size() - return the size of the context for an engine
1930
 * @engine: which engine to find the context size for
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1942
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1943 1944 1945
{
	int ret = 0;

1946
	WARN_ON(INTEL_GEN(engine->i915) < 8);
1947

1948
	switch (engine->id) {
1949
	case RCS:
1950
		if (INTEL_GEN(engine->i915) >= 9)
1951 1952 1953
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1964 1965
}

1966
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1967
					    struct intel_engine_cs *engine)
1968
{
1969
	struct drm_i915_gem_object *ctx_obj;
1970
	struct intel_context *ce = &ctx->engine[engine->id];
1971
	struct i915_vma *vma;
1972
	uint32_t context_size;
1973
	struct intel_ring *ring;
1974 1975
	int ret;

1976
	WARN_ON(ce->state);
1977

1978 1979
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
1980

1981 1982 1983
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1984
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1985
	if (IS_ERR(ctx_obj)) {
1986
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1987
		return PTR_ERR(ctx_obj);
1988 1989
	}

1990
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1991 1992 1993 1994 1995
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1996
	ring = intel_engine_create_ring(engine, ctx->ring_size);
1997 1998
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1999
		goto error_deref_obj;
2000 2001
	}

2002
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2003 2004
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2005
		goto error_ring_free;
2006 2007
	}

2008
	ce->ring = ring;
2009
	ce->state = vma;
2010
	ce->initialised = engine->init_context == NULL;
2011 2012

	return 0;
2013

2014
error_ring_free:
2015
	intel_ring_free(ring);
2016
error_deref_obj:
2017
	i915_gem_object_put(ctx_obj);
2018
	return ret;
2019
}
2020

2021
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2022
{
2023
	struct intel_engine_cs *engine;
2024
	struct i915_gem_context *ctx;
2025
	enum intel_engine_id id;
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2038
		for_each_engine(engine, dev_priv, id) {
2039 2040
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2041

2042 2043
			if (!ce->state)
				continue;
2044

2045 2046 2047 2048
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2049

2050 2051 2052
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2053

C
Chris Wilson 已提交
2054
			ce->state->obj->mm.dirty = true;
2055
			i915_gem_object_unpin_map(ce->state->obj);
2056

2057 2058 2059
			ce->ring->head = ce->ring->tail = 0;
			intel_ring_update_space(ce->ring);
		}
2060 2061
	}
}