intel_lrc.c 64.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
230
					    struct intel_engine_cs *engine);
231
static int intel_lr_context_pin(struct i915_gem_context *ctx,
232
				struct intel_engine_cs *engine);
233

234 235
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236
 * @dev_priv: i915 device private
237 238 239
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
240
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 242 243
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
244
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
245
{
246 247 248
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
249
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
250 251
		return 1;

252
	if (INTEL_GEN(dev_priv) >= 9)
253 254
		return 1;

255 256 257
	if (enable_execlists == 0)
		return 0;

258 259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266
static void
267
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268
{
269
	struct drm_i915_private *dev_priv = engine->i915;
270

271 272 273 274
	engine->disable_lite_restore_wa =
		(IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
		 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
		(engine->id == VCS || engine->id == VCS2);
275

276
	engine->ctx_desc_template = GEN8_CTX_VALID;
277
	if (IS_GEN8(dev_priv))
278 279
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
280 281 282 283 284 285 286

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
287 288
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
289 290
}

291
/**
292 293 294
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
295
 * @engine: Engine the descriptor will be used with
296
 *
297 298 299 300 301
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
302 303 304 305 306 307 308
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
309
 */
310
static void
311
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
312
				   struct intel_engine_cs *engine)
313
{
314
	struct intel_context *ce = &ctx->engine[engine->id];
315
	u64 desc;
316

317
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
318

319 320
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
321
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
322
								/* bits 12-31 */
323
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
324

325
	ce->lrc_desc = desc;
326 327
}

328
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
329
				     struct intel_engine_cs *engine)
330
{
331
	return ctx->engine[engine->id].lrc_desc;
332
}
333

334 335 336
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
337
{
338 339 340 341 342 343
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
344

345
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
346 347
}

348 349 350 351 352 353 354 355 356
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

357
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
358
{
359
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
360
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361
	u32 *reg_state = ce->lrc_reg_state;
362

363
	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
364

365 366 367 368 369 370 371
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
372 373

	return ce->lrc_desc;
374 375
}

376
static void execlists_submit_ports(struct intel_engine_cs *engine)
377
{
378 379
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
380 381 382 383
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

384 385 386 387 388 389 390 391 392 393 394 395
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
396 397 398
	} else {
		desc[1] = 0;
	}
399
	GEM_BUG_ON(desc[0] == desc[1]);
400 401 402 403 404 405 406 407 408 409

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

410
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
411
{
412 413 414
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
		ctx->execlists_force_single_submission);
}
415

416 417 418 419 420
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
421

422 423
	if (ctx_single_port_submission(prev))
		return false;
424

425
	return true;
426 427
}

428
static void execlists_dequeue(struct intel_engine_cs *engine)
429
{
430 431 432 433 434 435 436 437 438 439 440 441 442
	struct drm_i915_gem_request *cursor, *last;
	struct execlist_port *port = engine->execlist_port;
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
		 * as we resubmit the request. See gen8_emit_request()
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
443

444
	GEM_BUG_ON(port[1].request);
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
465
	 */
466

467 468 469 470 471
	spin_lock(&engine->execlist_lock);
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
472
		 *
473 474 475 476
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
477
		 */
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
			if (ctx_single_port_submission(cursor->ctx))
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
		last = cursor;
		submit = true;
	}
	if (submit) {
		/* Decouple all the requests submitted from the queue */
		engine->execlist_queue.next = &cursor->execlist_link;
		cursor->execlist_link.prev = &engine->execlist_queue;

		i915_gem_request_assign(&port->request, last);
508
	}
509
	spin_unlock(&engine->execlist_lock);
510

511 512
	if (submit)
		execlists_submit_ports(engine);
513 514
}

515
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
516
{
517
	return !engine->execlist_port[0].request;
518 519
}

520
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
521
{
522
	int port;
B
Ben Widawsky 已提交
523

524 525 526
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
527

528
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
529 530
}

531
/*
532 533 534
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
535
static void intel_lrc_irq_handler(unsigned long data)
536
{
537
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
538
	struct execlist_port *port = engine->execlist_port;
539
	struct drm_i915_private *dev_priv = engine->i915;
540

541
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
574

575 576
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
577 578
		}

579 580 581
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
582 583
	}

584 585
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
586

587
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
588 589
}

590
static void execlists_submit_request(struct drm_i915_gem_request *request)
591
{
592
	struct intel_engine_cs *engine = request->engine;
593

594
	spin_lock_bh(&engine->execlist_lock);
595

596
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
597 598
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
599

600
	spin_unlock_bh(&engine->execlist_lock);
601 602
}

603
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
604
{
605
	struct intel_engine_cs *engine = request->engine;
606
	struct intel_context *ce = &request->ctx->engine[engine->id];
607
	int ret;
608

609 610 611 612
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
613
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
614

615
	if (!ce->state) {
616 617 618 619 620
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

621
	request->ring = ce->ring;
622

623 624 625 626 627 628
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
629
		ret = i915_guc_wq_check_space(request);
630 631 632 633
		if (ret)
			return ret;
	}

634 635 636
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
637

638 639 640 641
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

642
	if (!ce->initialised) {
643 644 645 646
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

647
		ce->initialised = true;
648 649 650 651 652 653 654 655 656
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

657
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
658 659 660
	return 0;

err_unpin:
661
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
662
	return ret;
663 664 665
}

/*
666
 * intel_logical_ring_advance() - advance the tail and prepare for submission
667
 * @request: Request to advance the logical ringbuffer of.
668 669 670 671 672 673
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
674
static int
675
intel_logical_ring_advance(struct drm_i915_gem_request *request)
676
{
677
	struct intel_ring *ring = request->ring;
678
	struct intel_engine_cs *engine = request->engine;
679

680 681
	intel_ring_advance(ring);
	request->tail = ring->tail;
682

683 684 685 686 687 688
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
689 690 691
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
692
	request->wa_tail = ring->tail;
693

694 695 696 697 698 699 700 701
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
702
	return 0;
703 704
}

705
static int intel_lr_context_pin(struct i915_gem_context *ctx,
706
				struct intel_engine_cs *engine)
707
{
708
	struct intel_context *ce = &ctx->engine[engine->id];
709 710
	void *vaddr;
	u32 *lrc_reg_state;
711
	int ret;
712

713
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
714

715
	if (ce->pin_count++)
716 717
		return 0;

718 719
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
720
	if (ret)
721
		goto err;
722

723
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
724 725
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
726
		goto unpin_vma;
727 728
	}

729 730
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

731
	ret = intel_ring_pin(ce->ring);
732
	if (ret)
733
		goto unpin_map;
734

735
	intel_lr_context_descriptor_update(ctx, engine);
736

737 738
	lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
739
	ce->lrc_reg_state = lrc_reg_state;
740
	ce->state->obj->dirty = true;
741

742
	/* Invalidate GuC TLB. */
743 744
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
745
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
746
	}
747

748
	i915_gem_context_get(ctx);
749
	return 0;
750

751
unpin_map:
752 753 754
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
755
err:
756
	ce->pin_count = 0;
757 758 759
	return ret;
}

760
void intel_lr_context_unpin(struct i915_gem_context *ctx,
761
			    struct intel_engine_cs *engine)
762
{
763
	struct intel_context *ce = &ctx->engine[engine->id];
764

765
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
766
	GEM_BUG_ON(ce->pin_count == 0);
767

768
	if (--ce->pin_count)
769
		return;
770

771
	intel_ring_unpin(ce->ring);
772

773 774
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
775

776
	i915_gem_context_put(ctx);
777 778
}

779
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
780 781
{
	int ret, i;
782
	struct intel_ring *ring = req->ring;
783
	struct i915_workarounds *w = &req->i915->workarounds;
784

785
	if (w->count == 0)
786 787
		return 0;

788
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
789 790 791
	if (ret)
		return ret;

792
	ret = intel_ring_begin(req, w->count * 2 + 2);
793 794 795
	if (ret)
		return ret;

796
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
797
	for (i = 0; i < w->count; i++) {
798 799
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
800
	}
801
	intel_ring_emit(ring, MI_NOOP);
802

803
	intel_ring_advance(ring);
804

805
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
806 807 808 809 810 811
	if (ret)
		return ret;

	return 0;
}

812
#define wa_ctx_emit(batch, index, cmd)					\
813
	do {								\
814 815
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
816 817
			return -ENOSPC;					\
		}							\
818
		batch[__index] = (cmd);					\
819 820
	} while (0)

V
Ville Syrjälä 已提交
821
#define wa_ctx_emit_reg(batch, index, reg) \
822
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
840
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
841
						uint32_t *batch,
842 843
						uint32_t index)
{
D
Dave Airlie 已提交
844
	struct drm_i915_private *dev_priv = engine->i915;
845 846
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

847
	/*
848
	 * WaDisableLSQCROPERFforOCL:skl,kbl
849 850 851 852
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
853 854
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
855 856
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

857
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
858
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
859
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
860
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
861 862 863
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
864
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
865 866 867 868 869 870 871 872 873 874
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

875
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
876
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
877
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
878
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
879
	wa_ctx_emit(batch, index, 0);
880 881 882 883

	return index;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

903 904 905 906 907 908
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
909
 *
910 911
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
912
 *
913 914 915 916
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
917
 */
918
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
919
				    struct i915_wa_ctx_bb *wa_ctx,
920
				    uint32_t *batch,
921 922
				    uint32_t *offset)
{
923
	uint32_t scratch_addr;
924 925
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

926
	/* WaDisableCtxRestoreArbitration:bdw,chv */
927
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
928

929
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
930
	if (IS_BROADWELL(engine->i915)) {
931
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
932 933 934
		if (rc < 0)
			return rc;
		index = rc;
935 936
	}

937 938
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
939
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
940

941 942 943 944 945 946 947 948 949
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
950

951 952
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
953
		wa_ctx_emit(batch, index, MI_NOOP);
954 955 956 957 958 959 960 961 962 963

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

964 965 966
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
967
 *
968
 *  The number of DWORDS written are returned using this field.
969 970 971 972
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
973
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
974
			       struct i915_wa_ctx_bb *wa_ctx,
975
			       uint32_t *batch,
976 977 978 979
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

980
	/* WaDisableCtxRestoreArbitration:bdw,chv */
981
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
982

983
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
984 985 986 987

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

988
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
989
				    struct i915_wa_ctx_bb *wa_ctx,
990
				    uint32_t *batch,
991 992
				    uint32_t *offset)
{
993
	int ret;
D
Dave Airlie 已提交
994
	struct drm_i915_private *dev_priv = engine->i915;
995 996
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

997
	/* WaDisableCtxRestoreArbitration:skl,bxt */
D
Dave Airlie 已提交
998 999
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1000
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1001

1002
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1003
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1004 1005 1006 1007
	if (ret < 0)
		return ret;
	index = ret;

1008 1009 1010 1011 1012 1013 1014
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1015 1016
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1017
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1018
		u32 scratch_addr =
1019
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1056 1057 1058 1059 1060 1061 1062
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1063
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1064
			       struct i915_wa_ctx_bb *wa_ctx,
1065
			       uint32_t *batch,
1066 1067 1068 1069
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1070
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1071 1072
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1073
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1074
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1075 1076 1077 1078 1079
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1080
	/* WaClearTdlStateAckDirtyBits:bxt */
1081
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1099
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1100 1101
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1102 1103
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1104 1105 1106 1107 1108
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1109
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1110
{
1111 1112 1113
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1114

1115 1116 1117
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1118

1119 1120 1121 1122
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1123 1124
	}

1125 1126 1127 1128 1129
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1130
	return 0;
1131 1132 1133 1134

err:
	i915_gem_object_put(obj);
	return err;
1135 1136
}

1137
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1138
{
1139
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1140 1141
}

1142
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1143
{
1144
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1145 1146 1147
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1148
	int ret;
1149

1150
	WARN_ON(engine->id != RCS);
1151

1152
	/* update this when WA for higher Gen are added */
1153
	if (INTEL_GEN(engine->i915) > 9) {
1154
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1155
			  INTEL_GEN(engine->i915));
1156
		return 0;
1157
	}
1158

1159
	/* some WA perform writes to scratch page, ensure it is valid */
1160
	if (!engine->scratch) {
1161
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1162 1163 1164
		return -EINVAL;
	}

1165
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1166 1167 1168 1169 1170
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1171
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1172 1173 1174
	batch = kmap_atomic(page);
	offset = 0;

1175
	if (IS_GEN8(engine->i915)) {
1176
		ret = gen8_init_indirectctx_bb(engine,
1177 1178 1179 1180 1181 1182
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1183
		ret = gen8_init_perctx_bb(engine,
1184 1185 1186 1187 1188
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1189
	} else if (IS_GEN9(engine->i915)) {
1190
		ret = gen9_init_indirectctx_bb(engine,
1191 1192 1193 1194 1195 1196
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1197
		ret = gen9_init_perctx_bb(engine,
1198 1199 1200 1201 1202
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1203 1204 1205 1206 1207
	}

out:
	kunmap_atomic(batch);
	if (ret)
1208
		lrc_destroy_wa_ctx_obj(engine);
1209 1210 1211 1212

	return ret;
}

1213 1214
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1215
	struct drm_i915_private *dev_priv = engine->i915;
1216 1217

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1218
		   engine->status_page.ggtt_offset);
1219 1220 1221
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1222
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1223
{
1224
	struct drm_i915_private *dev_priv = engine->i915;
1225 1226 1227 1228 1229
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1230

1231
	lrc_init_hws(engine);
1232

1233 1234
	intel_engine_reset_irq(engine);

1235
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1236

1237
	I915_WRITE(RING_MODE_GEN7(engine),
1238 1239
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1240

1241
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1242

1243
	intel_engine_init_hangcheck(engine);
1244

1245 1246 1247 1248
	if (!execlists_elsp_idle(engine))
		execlists_submit_ports(engine);

	return 0;
1249 1250
}

1251
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1252
{
1253
	struct drm_i915_private *dev_priv = engine->i915;
1254 1255
	int ret;

1256
	ret = gen8_init_common_ring(engine);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1270
	return init_workarounds_ring(engine);
1271 1272
}

1273
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1274 1275 1276
{
	int ret;

1277
	ret = gen8_init_common_ring(engine);
1278 1279 1280
	if (ret)
		return ret;

1281
	return init_workarounds_ring(engine);
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	/* CS is stopped, and we will resubmit both ports on resume */
	GEM_BUG_ON(request->ctx != port[0].request->ctx);
	port[0].count = 0;
	port[1].count = 0;
}

1314 1315 1316
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1317
	struct intel_ring *ring = req->ring;
1318
	struct intel_engine_cs *engine = req->engine;
1319 1320 1321
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1322
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1323 1324 1325
	if (ret)
		return ret;

1326
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1327 1328 1329
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1330 1331 1332 1333
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1334 1335
	}

1336 1337
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1338 1339 1340 1341

	return 0;
}

1342
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1343 1344
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1345
{
1346
	struct intel_ring *ring = req->ring;
1347
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1348 1349
	int ret;

1350 1351 1352 1353
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1354 1355
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1356
	if (req->ctx->ppgtt &&
1357
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1358
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1359
		    !intel_vgpu_active(req->i915)) {
1360 1361 1362 1363
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1364

1365
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1366 1367
	}

1368
	ret = intel_ring_begin(req, 4);
1369 1370 1371 1372
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1373 1374 1375 1376 1377 1378 1379 1380
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1381 1382 1383 1384

	return 0;
}

1385
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1386
{
1387
	struct drm_i915_private *dev_priv = engine->i915;
1388 1389 1390
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1391 1392
}

1393
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1394
{
1395
	struct drm_i915_private *dev_priv = engine->i915;
1396
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1397 1398
}

1399
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1400
{
1401 1402
	struct intel_ring *ring = request->ring;
	u32 cmd;
1403 1404
	int ret;

1405
	ret = intel_ring_begin(request, 4);
1406 1407 1408 1409 1410
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1411 1412 1413 1414 1415 1416 1417
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1418
	if (mode & EMIT_INVALIDATE) {
1419
		cmd |= MI_INVALIDATE_TLB;
1420
		if (request->engine->id == VCS)
1421
			cmd |= MI_INVALIDATE_BSD;
1422 1423
	}

1424 1425 1426 1427 1428 1429 1430
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1431 1432 1433 1434

	return 0;
}

1435
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1436
				  u32 mode)
1437
{
1438
	struct intel_ring *ring = request->ring;
1439
	struct intel_engine_cs *engine = request->engine;
1440 1441
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1442
	bool vf_flush_wa = false, dc_flush_wa = false;
1443 1444
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1445
	int len;
1446 1447 1448

	flags |= PIPE_CONTROL_CS_STALL;

1449
	if (mode & EMIT_FLUSH) {
1450 1451
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1452
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1453
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1454 1455
	}

1456
	if (mode & EMIT_INVALIDATE) {
1457 1458 1459 1460 1461 1462 1463 1464 1465
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1466 1467 1468 1469
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1470
		if (IS_GEN9(request->i915))
1471
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1472 1473 1474 1475

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1476
	}
1477

M
Mika Kuoppala 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1487 1488 1489
	if (ret)
		return ret;

1490
	if (vf_flush_wa) {
1491 1492 1493 1494 1495 1496
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1497 1498
	}

M
Mika Kuoppala 已提交
1499
	if (dc_flush_wa) {
1500 1501 1502 1503 1504 1505
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1506 1507
	}

1508 1509 1510 1511 1512 1513
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1514 1515

	if (dc_flush_wa) {
1516 1517 1518 1519 1520 1521
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1522 1523
	}

1524
	intel_ring_advance(ring);
1525 1526 1527 1528

	return 0;
}

1529
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1541
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1542 1543
}

1544 1545 1546 1547 1548 1549 1550
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1551
static int gen8_emit_request(struct drm_i915_gem_request *request)
1552
{
1553
	struct intel_ring *ring = request->ring;
1554 1555
	int ret;

1556
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1557 1558 1559
	if (ret)
		return ret;

1560 1561
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1562

1563 1564 1565 1566 1567 1568 1569 1570
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1571
	return intel_logical_ring_advance(request);
1572
}
1573

1574 1575
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1576
	struct intel_ring *ring = request->ring;
1577
	int ret;
1578

1579
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1580 1581 1582
	if (ret)
		return ret;

1583 1584 1585
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1586 1587 1588 1589
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1590 1591 1592 1593 1594 1595 1596 1597
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1598
	/* We're thrashing one dword of HWS. */
1599 1600 1601
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1602
	return intel_logical_ring_advance(request);
1603 1604
}

1605
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1606 1607 1608
{
	int ret;

1609
	ret = intel_logical_ring_workarounds_emit(req);
1610 1611 1612
	if (ret)
		return ret;

1613 1614 1615 1616 1617 1618 1619 1620
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1621
	return i915_gem_render_state_init(req);
1622 1623
}

1624 1625
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1626
 * @engine: Engine Command Streamer.
1627
 */
1628
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1629
{
1630
	struct drm_i915_private *dev_priv;
1631

1632
	if (!intel_engine_initialized(engine))
1633 1634
		return;

1635 1636 1637 1638 1639 1640 1641
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1642
	dev_priv = engine->i915;
1643

1644 1645
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1646
	}
1647

1648 1649
	if (engine->cleanup)
		engine->cleanup(engine);
1650

1651
	intel_engine_cleanup_common(engine);
1652

1653 1654 1655
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1656
	}
1657
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1658

1659
	lrc_destroy_wa_ctx_obj(engine);
1660
	engine->i915 = NULL;
1661 1662
}

1663 1664 1665 1666 1667
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv)
1668
		engine->submit_request = execlists_submit_request;
1669 1670
}

1671
static void
1672
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1673 1674
{
	/* Default vfuncs which can be overriden by each engine. */
1675
	engine->init_hw = gen8_init_common_ring;
1676
	engine->reset_hw = reset_common_ring;
1677
	engine->emit_flush = gen8_emit_flush;
1678
	engine->emit_request = gen8_emit_request;
1679
	engine->submit_request = execlists_submit_request;
1680

1681 1682
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1683
	engine->emit_bb_start = gen8_emit_bb_start;
1684
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1685
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1686 1687
}

1688
static inline void
1689
logical_ring_default_irqs(struct intel_engine_cs *engine)
1690
{
1691
	unsigned shift = engine->irq_shift;
1692 1693
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1694 1695
}

1696
static int
1697
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1698
{
1699
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1700
	void *hws;
1701 1702

	/* The HWSP is part of the default context object in LRC mode. */
1703
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1704 1705
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1706 1707

	engine->status_page.page_addr = hws + hws_offset;
1708
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1709
	engine->status_page.vma = vma;
1710 1711

	return 0;
1712 1713
}

1714 1715 1716 1717 1718 1719
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1720 1721
	intel_engine_setup_common(engine);

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1747 1748 1749 1750 1751 1752
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1753
	ret = intel_engine_init_common(engine);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1783
int logical_render_ring_init(struct intel_engine_cs *engine)
1784 1785 1786 1787
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1788 1789
	logical_ring_setup(engine);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

1802
	ret = intel_engine_create_scratch(engine, 4096);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1825
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1826 1827 1828 1829
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1830 1831
}

1832
static u32
1833
make_rpcs(struct drm_i915_private *dev_priv)
1834 1835 1836 1837 1838 1839 1840
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1841
	if (INTEL_GEN(dev_priv) < 9)
1842 1843 1844 1845 1846 1847 1848 1849
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1850
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1851
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1852
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1853 1854 1855 1856
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1857
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1858
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1859
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1860 1861 1862 1863
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1864 1865
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1866
			GEN8_RPCS_EU_MIN_SHIFT;
1867
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1868 1869 1870 1871 1872 1873 1874
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1875
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1876 1877 1878
{
	u32 indirect_ctx_offset;

1879
	switch (INTEL_GEN(engine->i915)) {
1880
	default:
1881
		MISSING_CASE(INTEL_GEN(engine->i915));
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1896
static int
1897
populate_lr_context(struct i915_gem_context *ctx,
1898
		    struct drm_i915_gem_object *ctx_obj,
1899
		    struct intel_engine_cs *engine,
1900
		    struct intel_ring *ring)
1901
{
1902
	struct drm_i915_private *dev_priv = ctx->i915;
1903
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1904 1905
	void *vaddr;
	u32 *reg_state;
1906 1907
	int ret;

1908 1909 1910
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1911 1912 1913 1914 1915 1916
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

1917
	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1918 1919 1920
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1921 1922
		return ret;
	}
1923
	ctx_obj->dirty = true;
1924 1925 1926

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
1927
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1928 1929 1930 1931 1932 1933

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1934
	reg_state[CTX_LRI_HEADER_0] =
1935 1936 1937
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1938 1939
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1940
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1941
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
1942 1943 1944 1945
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
1946 1947 1948
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1949 1950 1951 1952
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1953
		       ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1954 1955 1956 1957 1958 1959
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1960
		       RING_BB_PPGTT);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1974
		if (engine->wa_ctx.vma) {
1975
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1976
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1977 1978 1979 1980 1981 1982

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1983
				intel_lr_indirect_ctx_offset(engine) << 6;
1984 1985 1986 1987 1988

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1989
	}
1990
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1991 1992
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1993
	/* PDP values well be assigned later if needed */
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2023
		execlists_update_context_pdps(ppgtt, reg_state);
2024 2025
	}

2026
	if (engine->id == RCS) {
2027
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2028
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2029
			       make_rpcs(dev_priv));
2030 2031
	}

2032
	i915_gem_object_unpin_map(ctx_obj);
2033 2034 2035 2036

	return 0;
}

2037 2038
/**
 * intel_lr_context_size() - return the size of the context for an engine
2039
 * @engine: which engine to find the context size for
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2051
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2052 2053 2054
{
	int ret = 0;

2055
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2056

2057
	switch (engine->id) {
2058
	case RCS:
2059
		if (INTEL_GEN(engine->i915) >= 9)
2060 2061 2062
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2073 2074
}

2075
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2076
					    struct intel_engine_cs *engine)
2077
{
2078
	struct drm_i915_gem_object *ctx_obj;
2079
	struct intel_context *ce = &ctx->engine[engine->id];
2080
	struct i915_vma *vma;
2081
	uint32_t context_size;
2082
	struct intel_ring *ring;
2083 2084
	int ret;

2085
	WARN_ON(ce->state);
2086

2087
	context_size = round_up(intel_lr_context_size(engine), 4096);
2088

2089 2090 2091
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2092
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2093
	if (IS_ERR(ctx_obj)) {
2094
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2095
		return PTR_ERR(ctx_obj);
2096 2097
	}

2098 2099 2100 2101 2102 2103
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2104
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2105 2106
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2107
		goto error_deref_obj;
2108 2109
	}

2110
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2111 2112
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2113
		goto error_ring_free;
2114 2115
	}

2116
	ce->ring = ring;
2117
	ce->state = vma;
2118
	ce->initialised = engine->init_context == NULL;
2119 2120

	return 0;
2121

2122
error_ring_free:
2123
	intel_ring_free(ring);
2124
error_deref_obj:
2125
	i915_gem_object_put(ctx_obj);
2126
	return ret;
2127
}
2128

2129
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2130
{
2131
	struct i915_gem_context *ctx = dev_priv->kernel_context;
2132
	struct intel_engine_cs *engine;
2133

2134
	for_each_engine(engine, dev_priv) {
2135
		struct intel_context *ce = &ctx->engine[engine->id];
2136
		void *vaddr;
2137 2138
		uint32_t *reg_state;

2139
		if (!ce->state)
2140 2141
			continue;

2142
		vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2143
		if (WARN_ON(IS_ERR(vaddr)))
2144
			continue;
2145 2146

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2147 2148 2149 2150

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2151 2152
		ce->state->obj->dirty = true;
		i915_gem_object_unpin_map(ce->state->obj);
2153

2154 2155
		ce->ring->head = 0;
		ce->ring->tail = 0;
2156 2157
	}
}