intel_lrc.c 61.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309 310
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
311 312
}

313 314 315 316 317 318 319 320 321
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

322
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323
{
324
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 326
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327
	u32 *reg_state = ce->lrc_reg_state;
328

329
	GEM_BUG_ON(!IS_ALIGNED(rq->tail, 8));
C
Chris Wilson 已提交
330
	reg_state[CTX_RING_TAIL+1] = rq->tail;
331

332 333 334 335 336
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
337
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
338
		execlists_update_context_pdps(ppgtt, reg_state);
339 340

	return ce->lrc_desc;
341 342
}

343
static void execlists_submit_ports(struct intel_engine_cs *engine)
344
{
345 346
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
347 348 349 350
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

351
	GEM_BUG_ON(port[0].count > 1);
352 353 354 355
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
356
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
357
	port[0].count++;
358 359 360 361 362 363

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
364
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
365
		port[1].count = 1;
366 367 368
	} else {
		desc[1] = 0;
	}
369
	GEM_BUG_ON(desc[0] == desc[1]);
370 371 372 373 374 375 376 377 378 379

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

380
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
381
{
382
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
383
		i915_gem_context_force_single_submission(ctx));
384
}
385

386 387 388 389 390
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
391

392 393
	if (ctx_single_port_submission(prev))
		return false;
394

395
	return true;
396 397
}

398
static void execlists_dequeue(struct intel_engine_cs *engine)
399
{
400
	struct drm_i915_gem_request *last;
401
	struct execlist_port *port = engine->execlist_port;
402
	unsigned long flags;
403
	struct rb_node *rb;
404 405 406 407 408 409
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
410
		 * as we resubmit the request. See gen8_emit_breadcrumb()
411 412 413 414
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
415

416
	GEM_BUG_ON(port[1].request);
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
437
	 */
438

439
	spin_lock_irqsave(&engine->timeline->lock, flags);
440 441 442 443 444
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

445 446 447
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
448
		 *
449 450 451 452
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
453
		 */
454 455 456 457 458 459 460 461 462 463 464 465 466
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
467 468
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
469 470 471 472 473 474 475
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
476

477 478 479 480 481
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

482
		__i915_gem_request_submit(cursor);
483
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
484 485 486 487 488
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
489
		engine->execlist_first = rb;
490
	}
491
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
492

493 494
	if (submit)
		execlists_submit_ports(engine);
495 496
}

497
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
498
{
499
	return !engine->execlist_port[0].request;
500 501
}

502
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
503
{
504
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
505

506
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
507 508
}

509
/*
510 511 512
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
513
static void intel_lrc_irq_handler(unsigned long data)
514
{
515
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
516
	struct execlist_port *port = engine->execlist_port;
517
	struct drm_i915_private *dev_priv = engine->i915;
518

519
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
520

521
	while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
522 523 524 525 526 527 528 529 530
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
531 532 533
		if (head == tail)
			break;

534 535
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
536
		do {
537 538 539
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

557 558 559
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

560
			/* Check the context/desc id for this event matches */
561 562
			GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
					 port[0].context_id);
563

564 565 566
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
567
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
568 569 570
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

571
				trace_i915_gem_request_out(port[0].request);
572 573 574 575
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
576

577 578
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
579
		} while (head < tail);
580

581 582 583
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
584 585
	}

586 587
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
588

589
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
590 591
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

618
static void execlists_submit_request(struct drm_i915_gem_request *request)
619
{
620
	struct intel_engine_cs *engine = request->engine;
621
	unsigned long flags;
622

623 624
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
625

626
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
627
		engine->execlist_first = &request->priotree.node;
628
		if (execlists_elsp_ready(engine))
629 630
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
631

632
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

662 663
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

692
		list_safe_reset_next(dep, p, dfs_link);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

733 734
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
735
{
736
	struct intel_context *ce = &ctx->engine[engine->id];
737
	unsigned int flags;
738
	void *vaddr;
739
	int ret;
740

741
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
742

743
	if (ce->pin_count++)
744 745
		return 0;

746 747 748 749 750
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
751
	GEM_BUG_ON(!ce->state);
752

753
	flags = PIN_GLOBAL | PIN_HIGH;
754 755
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
756 757

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
758
	if (ret)
759
		goto err;
760

761
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
762 763
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
764
		goto unpin_vma;
765 766
	}

767
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
768
	if (ret)
769
		goto unpin_map;
770

771
	intel_lr_context_descriptor_update(ctx, engine);
772

773 774
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
775
		i915_ggtt_offset(ce->ring->vma);
776

C
Chris Wilson 已提交
777
	ce->state->obj->mm.dirty = true;
778

779
	i915_gem_context_get(ctx);
780
	return 0;
781

782
unpin_map:
783 784 785
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
786
err:
787
	ce->pin_count = 0;
788 789 790
	return ret;
}

791 792
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
793
{
794
	struct intel_context *ce = &ctx->engine[engine->id];
795

796
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
797
	GEM_BUG_ON(ce->pin_count == 0);
798

799
	if (--ce->pin_count)
800
		return;
801

802
	intel_ring_unpin(ce->ring);
803

804 805
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
806

807
	i915_gem_context_put(ctx);
808 809
}

810
static int execlists_request_alloc(struct drm_i915_gem_request *request)
811 812 813
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
814
	u32 *cs;
815 816
	int ret;

817 818
	GEM_BUG_ON(!ce->pin_count);

819 820 821 822 823 824
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

825
	GEM_BUG_ON(!ce->ring);
826 827 828 829 830 831 832 833 834 835
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
836
			goto err;
837 838
	}

839 840 841
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
842
		goto err_unreserve;
843
	}
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
866
err:
867 868 869
	return ret;
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
886 887
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
888
{
889 890 891 892 893 894 895 896 897
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

898 899 900 901
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
902 903 904 905 906 907 908

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
909 910
}

911 912 913 914 915 916
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
917
 *
918 919
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
920
 *
921 922 923 924
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
925
 */
926
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
927
{
928
	/* WaDisableCtxRestoreArbitration:bdw,chv */
929
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
930

931
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
932 933
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
934

935 936
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
937 938 939 940 941 942 943
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
944

945
	/* Pad to end of cacheline */
946 947
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
948 949 950 951 952 953 954

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

955
	return batch;
956 957
}

958 959 960
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
961
 *
962
 *  The number of DWORDS written are returned using this field.
963 964 965 966
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
967
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
968
{
969
	/* WaDisableCtxRestoreArbitration:bdw,chv */
970 971
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
972

973
	return batch;
974 975
}

976
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
977
{
978
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
979
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
980

981
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
982 983 984 985 986
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
987

988 989
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
990
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
991 992 993 994 995 996 997
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
998
	}
999

1000
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1015 1016 1017 1018 1019 1020
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1021 1022
	}

1023
	/* Pad to end of cacheline */
1024 1025
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1026

1027
	return batch;
1028 1029
}

1030
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1031
{
1032
	*batch++ = MI_BATCH_BUFFER_END;
1033

1034
	return batch;
1035 1036
}

1037 1038 1039
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1040
{
1041 1042 1043
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1044

1045
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1046 1047
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1048

1049
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1050 1051 1052
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1053 1054
	}

1055 1056 1057 1058 1059
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1060
	return 0;
1061 1062 1063 1064

err:
	i915_gem_object_put(obj);
	return err;
1065 1066
}

1067
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1068
{
1069
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1070 1071
}

1072 1073
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1074
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1075
{
1076
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1077 1078 1079
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1080
	struct page *page;
1081 1082
	void *batch, *batch_ptr;
	unsigned int i;
1083
	int ret;
1084

1085 1086
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1099
		return 0;
1100
	}
1101

1102
	ret = lrc_setup_wa_ctx(engine);
1103 1104 1105 1106 1107
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1108
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1109
	batch = batch_ptr = kmap_atomic(page);
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1124 1125
	}

1126 1127
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1128 1129
	kunmap_atomic(batch);
	if (ret)
1130
		lrc_destroy_wa_ctx(engine);
1131 1132 1133 1134

	return ret;
}

1135 1136 1137 1138 1139
static u32 port_seqno(struct execlist_port *port)
{
	return port->request ? port->request->global_seqno : 0;
}

1140
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1141
{
1142
	struct drm_i915_private *dev_priv = engine->i915;
1143 1144 1145 1146 1147
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1148

1149
	intel_engine_reset_breadcrumbs(engine);
1150
	intel_engine_init_hangcheck(engine);
1151

1152 1153
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1154
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1155 1156 1157
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1158

1159
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1160

1161
	/* After a GPU reset, we may have requests to replay */
1162
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1163
	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
1164 1165 1166 1167
		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
				 engine->name,
				 port_seqno(&engine->execlist_port[0]),
				 port_seqno(&engine->execlist_port[1]));
1168 1169
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1170
		execlists_submit_ports(engine);
1171
	}
1172 1173

	return 0;
1174 1175
}

1176
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1177
{
1178
	struct drm_i915_private *dev_priv = engine->i915;
1179 1180
	int ret;

1181
	ret = gen8_init_common_ring(engine);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1195
	return init_workarounds_ring(engine);
1196 1197
}

1198
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1199 1200 1201
{
	int ret;

1202
	ret = gen8_init_common_ring(engine);
1203 1204 1205
	if (ret)
		return ret;

1206
	return init_workarounds_ring(engine);
1207 1208
}

1209 1210 1211 1212
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1227

1228 1229 1230 1231 1232 1233 1234
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1235
	ce = &request->ctx->engine[engine->id];
1236 1237 1238
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1239
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1240 1241
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1242
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1256 1257 1258

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1259
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
1260 1261
}

1262 1263 1264
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1265
	struct intel_engine_cs *engine = req->engine;
1266
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1267 1268
	u32 *cs;
	int i;
1269

1270 1271 1272
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1273

1274
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1275
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1276 1277
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1278 1279 1280 1281
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1282 1283
	}

1284 1285
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1286 1287 1288 1289

	return 0;
}

1290
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1291
			      u64 offset, u32 len,
1292
			      const unsigned int flags)
1293
{
1294
	u32 *cs;
1295 1296
	int ret;

1297 1298 1299 1300
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1301 1302
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1303
	if (req->ctx->ppgtt &&
1304 1305 1306 1307 1308 1309
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1310

1311
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1312 1313
	}

1314 1315 1316
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1317 1318

	/* FIXME(BDW): Address space and security selectors. */
1319 1320 1321
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1322 1323 1324 1325
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1326 1327 1328 1329

	return 0;
}

1330
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1331
{
1332
	struct drm_i915_private *dev_priv = engine->i915;
1333 1334 1335
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1336 1337
}

1338
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1339
{
1340
	struct drm_i915_private *dev_priv = engine->i915;
1341
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1342 1343
}

1344
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1345
{
1346
	u32 cmd, *cs;
1347

1348 1349 1350
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1351 1352 1353

	cmd = MI_FLUSH_DW + 1;

1354 1355 1356 1357 1358 1359 1360
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1361
	if (mode & EMIT_INVALIDATE) {
1362
		cmd |= MI_INVALIDATE_TLB;
1363
		if (request->engine->id == VCS)
1364
			cmd |= MI_INVALIDATE_BSD;
1365 1366
	}

1367 1368 1369 1370 1371
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1372 1373 1374 1375

	return 0;
}

1376
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1377
				  u32 mode)
1378
{
1379
	struct intel_engine_cs *engine = request->engine;
1380 1381
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1382
	bool vf_flush_wa = false, dc_flush_wa = false;
1383
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1384
	int len;
1385 1386 1387

	flags |= PIPE_CONTROL_CS_STALL;

1388
	if (mode & EMIT_FLUSH) {
1389 1390
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1391
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1392
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1393 1394
	}

1395
	if (mode & EMIT_INVALIDATE) {
1396 1397 1398 1399 1400 1401 1402 1403 1404
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1405 1406 1407 1408
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1409
		if (IS_GEN9(request->i915))
1410
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1411 1412 1413 1414

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1415
	}
1416

M
Mika Kuoppala 已提交
1417 1418 1419 1420 1421 1422 1423 1424
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1425 1426 1427
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1428

1429 1430
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1431

1432 1433 1434
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1435

1436
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1437

1438 1439
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1440

1441
	intel_ring_advance(request, cs);
1442 1443 1444 1445

	return 0;
}

1446 1447 1448 1449 1450
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1451
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1452
{
1453 1454 1455
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1456
}
1457

1458
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1459
{
1460 1461
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1462

1463 1464 1465 1466 1467 1468 1469
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1470
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1471

1472
	gen8_emit_wa_tail(request, cs);
1473
}
1474

1475 1476
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1477
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1478
					u32 *cs)
1479
{
1480 1481 1482
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1483 1484 1485 1486
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1487 1488 1489 1490 1491 1492
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1493
	/* We're thrashing one dword of HWS. */
1494 1495 1496 1497
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1498
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1499

1500
	gen8_emit_wa_tail(request, cs);
1501 1502
}

1503 1504
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1505
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1506 1507 1508
{
	int ret;

1509
	ret = intel_ring_workarounds_emit(req);
1510 1511 1512
	if (ret)
		return ret;

1513 1514 1515 1516 1517 1518 1519 1520
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1521
	return i915_gem_render_state_emit(req);
1522 1523
}

1524 1525
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1526
 * @engine: Engine Command Streamer.
1527
 */
1528
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1529
{
1530
	struct drm_i915_private *dev_priv;
1531

1532 1533 1534 1535 1536 1537 1538
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1539
	dev_priv = engine->i915;
1540

1541 1542
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1543
	}
1544

1545 1546
	if (engine->cleanup)
		engine->cleanup(engine);
1547

1548 1549 1550
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1551
	}
1552 1553

	intel_engine_cleanup_common(engine);
1554

1555
	lrc_destroy_wa_ctx(engine);
1556
	engine->i915 = NULL;
1557 1558
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1559 1560
}

1561
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1562
{
1563 1564
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1565 1566
}

1567
static void
1568
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1569 1570
{
	/* Default vfuncs which can be overriden by each engine. */
1571
	engine->init_hw = gen8_init_common_ring;
1572
	engine->reset_hw = reset_common_ring;
1573 1574 1575 1576

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1577 1578
	engine->request_alloc = execlists_request_alloc;

1579
	engine->emit_flush = gen8_emit_flush;
1580
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1581
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1582 1583

	engine->set_default_submission = execlists_set_default_submission;
1584

1585 1586
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1587
	engine->emit_bb_start = gen8_emit_bb_start;
1588 1589
}

1590
static inline void
1591
logical_ring_default_irqs(struct intel_engine_cs *engine)
1592
{
1593
	unsigned shift = engine->irq_shift;
1594 1595
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1596 1597
}

1598
static int
1599
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1600
{
1601
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1602
	void *hws;
1603 1604

	/* The HWSP is part of the default context object in LRC mode. */
1605
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1606 1607
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1608 1609

	engine->status_page.page_addr = hws + hws_offset;
1610
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1611
	engine->status_page.vma = vma;
1612 1613

	return 0;
1614 1615
}

1616 1617 1618 1619 1620 1621
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1622 1623
	intel_engine_setup_common(engine);

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1648 1649 1650 1651 1652 1653
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1654
	ret = intel_engine_init_common(engine);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1672
int logical_render_ring_init(struct intel_engine_cs *engine)
1673 1674 1675 1676
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1677 1678
	logical_ring_setup(engine);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1689
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1690
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1691

1692
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1707
	return logical_ring_init(engine);
1708 1709
}

1710
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1711 1712 1713 1714
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1715 1716
}

1717
static u32
1718
make_rpcs(struct drm_i915_private *dev_priv)
1719 1720 1721 1722 1723 1724 1725
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1726
	if (INTEL_GEN(dev_priv) < 9)
1727 1728 1729 1730 1731 1732 1733 1734
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1735
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1736
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1737
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1738 1739 1740 1741
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1742
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1743
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1744
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1745 1746 1747 1748
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1749 1750
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1751
			GEN8_RPCS_EU_MIN_SHIFT;
1752
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1753 1754 1755 1756 1757 1758 1759
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1760
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1761 1762 1763
{
	u32 indirect_ctx_offset;

1764
	switch (INTEL_GEN(engine->i915)) {
1765
	default:
1766
		MISSING_CASE(INTEL_GEN(engine->i915));
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1781
static void execlists_init_reg_state(u32 *regs,
1782 1783 1784
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1785
{
1786 1787
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1822

1823
		if (engine->wa_ctx.vma) {
1824
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1825
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1826

1827
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1828 1829
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1830

1831
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1832
				intel_lr_indirect_ctx_offset(engine) << 6;
1833

1834
			regs[CTX_BB_PER_CTX_PTR + 1] =
1835
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1836
		}
1837
	}
1838 1839 1840 1841

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1842
	/* PDP values well be assigned later if needed */
1843 1844 1845 1846 1847 1848 1849 1850
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1851

1852
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1853 1854 1855 1856
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1857
		ASSIGN_CTX_PML4(ppgtt, regs);
1858 1859
	}

1860 1861 1862 1863
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1864
	}
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1888
	ctx_obj->mm.dirty = true;
1889 1890 1891 1892 1893 1894

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1895

1896
	i915_gem_object_unpin_map(ctx_obj);
1897 1898 1899 1900

	return 0;
}

1901 1902
/**
 * intel_lr_context_size() - return the size of the context for an engine
1903
 * @engine: which engine to find the context size for
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1915
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1916 1917 1918
{
	int ret = 0;

1919
	WARN_ON(INTEL_GEN(engine->i915) < 8);
1920

1921
	switch (engine->id) {
1922
	case RCS:
1923
		if (INTEL_GEN(engine->i915) >= 9)
1924 1925 1926
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1937 1938
}

1939
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1940
					    struct intel_engine_cs *engine)
1941
{
1942
	struct drm_i915_gem_object *ctx_obj;
1943
	struct intel_context *ce = &ctx->engine[engine->id];
1944
	struct i915_vma *vma;
1945
	uint32_t context_size;
1946
	struct intel_ring *ring;
1947 1948
	int ret;

1949
	WARN_ON(ce->state);
1950

1951 1952
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
1953

1954 1955 1956
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1957
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1958
	if (IS_ERR(ctx_obj)) {
1959
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1960
		return PTR_ERR(ctx_obj);
1961 1962
	}

1963
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1964 1965 1966 1967 1968
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1969
	ring = intel_engine_create_ring(engine, ctx->ring_size);
1970 1971
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1972
		goto error_deref_obj;
1973 1974
	}

1975
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1976 1977
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1978
		goto error_ring_free;
1979 1980
	}

1981
	ce->ring = ring;
1982
	ce->state = vma;
1983
	ce->initialised = engine->init_context == NULL;
1984 1985

	return 0;
1986

1987
error_ring_free:
1988
	intel_ring_free(ring);
1989
error_deref_obj:
1990
	i915_gem_object_put(ctx_obj);
1991
	return ret;
1992
}
1993

1994
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
1995
{
1996
	struct intel_engine_cs *engine;
1997
	struct i915_gem_context *ctx;
1998
	enum intel_engine_id id;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2011
		for_each_engine(engine, dev_priv, id) {
2012 2013
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2014

2015 2016
			if (!ce->state)
				continue;
2017

2018 2019 2020 2021
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2022

2023 2024 2025
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2026

C
Chris Wilson 已提交
2027
			ce->state->obj->mm.dirty = true;
2028
			i915_gem_object_unpin_map(ce->state->obj);
2029

2030 2031 2032 2033
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2034 2035
	}
}