intel_lrc.c 61.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309 310
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
311 312
}

313 314 315 316 317 318 319 320 321
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

322
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323
{
324
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 326
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327
	u32 *reg_state = ce->lrc_reg_state;
328

329
	GEM_BUG_ON(!IS_ALIGNED(rq->tail, 8));
C
Chris Wilson 已提交
330
	reg_state[CTX_RING_TAIL+1] = rq->tail;
331

332 333 334 335 336
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
337
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
338
		execlists_update_context_pdps(ppgtt, reg_state);
339 340

	return ce->lrc_desc;
341 342
}

343
static void execlists_submit_ports(struct intel_engine_cs *engine)
344
{
345 346
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
347 348 349 350
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

351
	GEM_BUG_ON(port[0].count > 1);
352 353 354 355
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
356
	GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
357
	port[0].count++;
358 359 360 361 362 363

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
364
		GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
365
		port[1].count = 1;
366 367 368
	} else {
		desc[1] = 0;
	}
369
	GEM_BUG_ON(desc[0] == desc[1]);
370 371 372 373 374 375 376 377 378 379

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

380
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
381
{
382
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
383
		i915_gem_context_force_single_submission(ctx));
384
}
385

386 387 388 389 390
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
391

392 393
	if (ctx_single_port_submission(prev))
		return false;
394

395
	return true;
396 397
}

398
static void execlists_dequeue(struct intel_engine_cs *engine)
399
{
400
	struct drm_i915_gem_request *last;
401
	struct execlist_port *port = engine->execlist_port;
402
	unsigned long flags;
403
	struct rb_node *rb;
404 405
	bool submit = false;

406 407 408 409 410 411 412 413 414 415 416 417
	/* After execlist_first is updated, the tasklet will be rescheduled.
	 *
	 * If we are currently running (inside the tasklet) and a third
	 * party queues a request and so updates engine->execlist_first under
	 * the spinlock (which we have elided), it will atomically set the
	 * TASKLET_SCHED flag causing the us to be re-executed and pick up
	 * the change in state (the update to TASKLET_SCHED incurs a memory
	 * barrier making this cross-cpu checking safe).
	 */
	if (!READ_ONCE(engine->execlist_first))
		return;

418 419 420 421
	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
422
		 * as we resubmit the request. See gen8_emit_breadcrumb()
423 424 425 426
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
427

428
	GEM_BUG_ON(port[1].request);
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
449
	 */
450

451
	spin_lock_irqsave(&engine->timeline->lock, flags);
452 453 454 455 456
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

457 458 459
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
460
		 *
461 462 463 464
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
465
		 */
466 467 468 469 470 471 472 473 474 475 476 477 478
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
479 480
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
481 482 483 484 485 486 487
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
488

489 490 491 492 493
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

494
		__i915_gem_request_submit(cursor);
495
		trace_i915_gem_request_in(cursor, port - engine->execlist_port);
496 497 498 499 500
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
501
		engine->execlist_first = rb;
502
	}
503
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
504

505 506
	if (submit)
		execlists_submit_ports(engine);
507 508
}

509
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
510
{
511
	return !engine->execlist_port[0].request;
512 513
}

514
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
515
{
516
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
517

518
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
519 520
}

521
/*
522 523 524
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
525
static void intel_lrc_irq_handler(unsigned long data)
526
{
527
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528
	struct execlist_port *port = engine->execlist_port;
529
	struct drm_i915_private *dev_priv = engine->i915;
530

531
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
532

533 534 535 536 537
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
538 539 540 541 542 543
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

544
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
545 546 547
		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
548 549 550
		if (head == tail)
			break;

551 552
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
553
		do {
554 555 556
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

574 575 576
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

577
			/* Check the context/desc id for this event matches */
578 579
			GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
					 port[0].context_id);
580

581 582 583
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
584
				GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
585 586 587
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

588
				trace_i915_gem_request_out(port[0].request);
589 590 591 592
				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
593

594 595
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
596
		} while (head < tail);
597

598 599 600
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
601 602
	}

603 604
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
605

606
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
607 608
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

635
static void execlists_submit_request(struct drm_i915_gem_request *request)
636
{
637
	struct intel_engine_cs *engine = request->engine;
638
	unsigned long flags;
639

640 641
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
642

643
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
644
		engine->execlist_first = &request->priotree.node;
645
		if (execlists_elsp_ready(engine))
646 647
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
648

649
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
650 651
}

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

679 680
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

709
		list_safe_reset_next(dep, p, dfs_link);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

750 751
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
752
{
753
	struct intel_context *ce = &ctx->engine[engine->id];
754
	unsigned int flags;
755
	void *vaddr;
756
	int ret;
757

758
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
759

760
	if (ce->pin_count++)
761
		return 0;
762
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
763

764 765 766 767 768
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
769
	GEM_BUG_ON(!ce->state);
770

771
	flags = PIN_GLOBAL | PIN_HIGH;
772 773
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
774 775

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
776
	if (ret)
777
		goto err;
778

779
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
780 781
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
782
		goto unpin_vma;
783 784
	}

785
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
786
	if (ret)
787
		goto unpin_map;
788

789
	intel_lr_context_descriptor_update(ctx, engine);
790

791 792
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
793
		i915_ggtt_offset(ce->ring->vma);
794

C
Chris Wilson 已提交
795
	ce->state->obj->mm.dirty = true;
796

797
	i915_gem_context_get(ctx);
798
	return 0;
799

800
unpin_map:
801 802 803
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
804
err:
805
	ce->pin_count = 0;
806 807 808
	return ret;
}

809 810
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
811
{
812
	struct intel_context *ce = &ctx->engine[engine->id];
813

814
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
815
	GEM_BUG_ON(ce->pin_count == 0);
816

817
	if (--ce->pin_count)
818
		return;
819

820
	intel_ring_unpin(ce->ring);
821

822 823
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
824

825
	i915_gem_context_put(ctx);
826 827
}

828
static int execlists_request_alloc(struct drm_i915_gem_request *request)
829 830 831
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
832
	u32 *cs;
833 834
	int ret;

835 836
	GEM_BUG_ON(!ce->pin_count);

837 838 839 840 841 842
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

843
	GEM_BUG_ON(!ce->ring);
844 845 846 847 848 849 850 851 852 853
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
854
			goto err;
855 856
	}

857 858 859
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
860
		goto err_unreserve;
861
	}
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
884
err:
885 886 887
	return ret;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
904 905
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
906
{
907 908 909 910 911 912 913 914 915
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

916 917 918 919
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
920 921 922 923 924 925 926

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
927 928
}

929 930 931 932 933 934
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
935
 *
936 937
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
938
 *
939 940 941 942
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
943
 */
944
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
945
{
946
	/* WaDisableCtxRestoreArbitration:bdw,chv */
947
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
948

949
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
950 951
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
952

953 954
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
955 956 957 958 959 960 961
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
962

963
	/* Pad to end of cacheline */
964 965
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
966 967 968 969 970 971 972

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

973
	return batch;
974 975
}

976 977 978
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
979
 *
980
 *  The number of DWORDS written are returned using this field.
981 982 983 984
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
985
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
986
{
987
	/* WaDisableCtxRestoreArbitration:bdw,chv */
988 989
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
990

991
	return batch;
992 993
}

994
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
995
{
996
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
997
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
998

999
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1000 1001 1002 1003 1004
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1005

1006 1007
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1008
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1009 1010 1011 1012 1013 1014 1015
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1016
	}
1017

1018
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1033 1034 1035 1036 1037 1038
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1039 1040
	}

1041
	/* Pad to end of cacheline */
1042 1043
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1044

1045
	return batch;
1046 1047
}

1048
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1049
{
1050
	*batch++ = MI_BATCH_BUFFER_END;
1051

1052
	return batch;
1053 1054
}

1055 1056 1057
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1058
{
1059 1060 1061
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1062

1063
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1064 1065
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1066

1067
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1068 1069 1070
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1071 1072
	}

1073 1074 1075 1076 1077
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1078
	return 0;
1079 1080 1081 1082

err:
	i915_gem_object_put(obj);
	return err;
1083 1084
}

1085
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1086
{
1087
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1088 1089
}

1090 1091
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1092
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1093
{
1094
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1095 1096 1097
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1098
	struct page *page;
1099 1100
	void *batch, *batch_ptr;
	unsigned int i;
1101
	int ret;
1102

1103 1104
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1117
		return 0;
1118
	}
1119

1120
	ret = lrc_setup_wa_ctx(engine);
1121 1122 1123 1124 1125
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1126
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1127
	batch = batch_ptr = kmap_atomic(page);
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1142 1143
	}

1144 1145
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1146 1147
	kunmap_atomic(batch);
	if (ret)
1148
		lrc_destroy_wa_ctx(engine);
1149 1150 1151 1152

	return ret;
}

1153 1154 1155 1156 1157
static u32 port_seqno(struct execlist_port *port)
{
	return port->request ? port->request->global_seqno : 0;
}

1158
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1159
{
1160
	struct drm_i915_private *dev_priv = engine->i915;
1161 1162 1163 1164 1165
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1166

1167
	intel_engine_reset_breadcrumbs(engine);
1168
	intel_engine_init_hangcheck(engine);
1169

1170 1171
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1172
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1173 1174 1175
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1176

1177
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1178

1179
	/* After a GPU reset, we may have requests to replay */
1180
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1181
	if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
1182 1183 1184 1185
		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
				 engine->name,
				 port_seqno(&engine->execlist_port[0]),
				 port_seqno(&engine->execlist_port[1]));
1186 1187
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1188
		execlists_submit_ports(engine);
1189
	}
1190 1191

	return 0;
1192 1193
}

1194
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1195
{
1196
	struct drm_i915_private *dev_priv = engine->i915;
1197 1198
	int ret;

1199
	ret = gen8_init_common_ring(engine);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1213
	return init_workarounds_ring(engine);
1214 1215
}

1216
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1217 1218 1219
{
	int ret;

1220
	ret = gen8_init_common_ring(engine);
1221 1222 1223
	if (ret)
		return ret;

1224
	return init_workarounds_ring(engine);
1225 1226
}

1227 1228 1229 1230
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1245

1246 1247 1248 1249 1250 1251 1252
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1253
	ce = &request->ctx->engine[engine->id];
1254 1255 1256
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1257
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1258 1259
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1260
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1273 1274 1275

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1276
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
1277 1278
}

1279 1280 1281
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1282
	struct intel_engine_cs *engine = req->engine;
1283
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1284 1285
	u32 *cs;
	int i;
1286

1287 1288 1289
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1290

1291
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1292
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1293 1294
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1295 1296 1297 1298
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1299 1300
	}

1301 1302
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1303 1304 1305 1306

	return 0;
}

1307
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1308
			      u64 offset, u32 len,
1309
			      const unsigned int flags)
1310
{
1311
	u32 *cs;
1312 1313
	int ret;

1314 1315 1316 1317
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1318 1319
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1320
	if (req->ctx->ppgtt &&
1321 1322 1323 1324 1325 1326
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1327

1328
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1329 1330
	}

1331 1332 1333
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1334 1335

	/* FIXME(BDW): Address space and security selectors. */
1336 1337 1338
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1339 1340 1341 1342
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1343 1344 1345 1346

	return 0;
}

1347
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1348
{
1349
	struct drm_i915_private *dev_priv = engine->i915;
1350 1351 1352
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1353 1354
}

1355
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1356
{
1357
	struct drm_i915_private *dev_priv = engine->i915;
1358
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1359 1360
}

1361
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1362
{
1363
	u32 cmd, *cs;
1364

1365 1366 1367
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1368 1369 1370

	cmd = MI_FLUSH_DW + 1;

1371 1372 1373 1374 1375 1376 1377
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1378
	if (mode & EMIT_INVALIDATE) {
1379
		cmd |= MI_INVALIDATE_TLB;
1380
		if (request->engine->id == VCS)
1381
			cmd |= MI_INVALIDATE_BSD;
1382 1383
	}

1384 1385 1386 1387 1388
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1389 1390 1391 1392

	return 0;
}

1393
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1394
				  u32 mode)
1395
{
1396
	struct intel_engine_cs *engine = request->engine;
1397 1398
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1399
	bool vf_flush_wa = false, dc_flush_wa = false;
1400
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1401
	int len;
1402 1403 1404

	flags |= PIPE_CONTROL_CS_STALL;

1405
	if (mode & EMIT_FLUSH) {
1406 1407
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1408
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1409
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1410 1411
	}

1412
	if (mode & EMIT_INVALIDATE) {
1413 1414 1415 1416 1417 1418 1419 1420 1421
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1422 1423 1424 1425
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1426
		if (IS_GEN9(request->i915))
1427
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1428 1429 1430 1431

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1432
	}
1433

M
Mika Kuoppala 已提交
1434 1435 1436 1437 1438 1439 1440 1441
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1442 1443 1444
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1445

1446 1447
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1448

1449 1450 1451
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1452

1453
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1454

1455 1456
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1457

1458
	intel_ring_advance(request, cs);
1459 1460 1461 1462

	return 0;
}

1463 1464 1465 1466 1467
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1468
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1469
{
1470 1471 1472
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1473
}
1474

1475
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1476
{
1477 1478
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1479

1480 1481 1482 1483 1484 1485 1486
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1487
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1488

1489
	gen8_emit_wa_tail(request, cs);
1490
}
1491

1492 1493
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1494
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1495
					u32 *cs)
1496
{
1497 1498 1499
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1500 1501 1502 1503
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1504 1505 1506 1507 1508 1509
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1510
	/* We're thrashing one dword of HWS. */
1511 1512 1513 1514
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1515
	GEM_BUG_ON(!IS_ALIGNED(request->tail, 8));
C
Chris Wilson 已提交
1516

1517
	gen8_emit_wa_tail(request, cs);
1518 1519
}

1520 1521
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1522
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1523 1524 1525
{
	int ret;

1526
	ret = intel_ring_workarounds_emit(req);
1527 1528 1529
	if (ret)
		return ret;

1530 1531 1532 1533 1534 1535 1536 1537
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1538
	return i915_gem_render_state_emit(req);
1539 1540
}

1541 1542
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1543
 * @engine: Engine Command Streamer.
1544
 */
1545
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1546
{
1547
	struct drm_i915_private *dev_priv;
1548

1549 1550 1551 1552 1553 1554 1555
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1556
	dev_priv = engine->i915;
1557

1558 1559
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1560
	}
1561

1562 1563
	if (engine->cleanup)
		engine->cleanup(engine);
1564

1565 1566 1567
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1568
	}
1569 1570

	intel_engine_cleanup_common(engine);
1571

1572
	lrc_destroy_wa_ctx(engine);
1573
	engine->i915 = NULL;
1574 1575
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1576 1577
}

1578
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1579
{
1580 1581
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1582
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1583 1584
}

1585
static void
1586
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1587 1588
{
	/* Default vfuncs which can be overriden by each engine. */
1589
	engine->init_hw = gen8_init_common_ring;
1590
	engine->reset_hw = reset_common_ring;
1591 1592 1593 1594

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1595 1596
	engine->request_alloc = execlists_request_alloc;

1597
	engine->emit_flush = gen8_emit_flush;
1598
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1599
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1600 1601

	engine->set_default_submission = execlists_set_default_submission;
1602

1603 1604
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1605
	engine->emit_bb_start = gen8_emit_bb_start;
1606 1607
}

1608
static inline void
1609
logical_ring_default_irqs(struct intel_engine_cs *engine)
1610
{
1611
	unsigned shift = engine->irq_shift;
1612 1613
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1614 1615
}

1616
static int
1617
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1618
{
1619
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1620
	void *hws;
1621 1622

	/* The HWSP is part of the default context object in LRC mode. */
1623
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1624 1625
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1626 1627

	engine->status_page.page_addr = hws + hws_offset;
1628
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1629
	engine->status_page.vma = vma;
1630 1631

	return 0;
1632 1633
}

1634 1635 1636 1637 1638 1639
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1640 1641
	intel_engine_setup_common(engine);

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1666 1667 1668 1669 1670 1671
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1672
	ret = intel_engine_init_common(engine);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1690
int logical_render_ring_init(struct intel_engine_cs *engine)
1691 1692 1693 1694
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1695 1696
	logical_ring_setup(engine);

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1707
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1708
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1709

1710
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1725
	return logical_ring_init(engine);
1726 1727
}

1728
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1729 1730 1731 1732
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1733 1734
}

1735
static u32
1736
make_rpcs(struct drm_i915_private *dev_priv)
1737 1738 1739 1740 1741 1742 1743
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1744
	if (INTEL_GEN(dev_priv) < 9)
1745 1746 1747 1748 1749 1750 1751 1752
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1753
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1754
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1755
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1756 1757 1758 1759
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1760
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1761
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1762
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1763 1764 1765 1766
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1767 1768
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1769
			GEN8_RPCS_EU_MIN_SHIFT;
1770
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1771 1772 1773 1774 1775 1776 1777
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1778
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1779 1780 1781
{
	u32 indirect_ctx_offset;

1782
	switch (INTEL_GEN(engine->i915)) {
1783
	default:
1784
		MISSING_CASE(INTEL_GEN(engine->i915));
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1799
static void execlists_init_reg_state(u32 *regs,
1800 1801 1802
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1803
{
1804 1805
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1840

1841
		if (engine->wa_ctx.vma) {
1842
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1843
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1844

1845
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1846 1847
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1848

1849
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1850
				intel_lr_indirect_ctx_offset(engine) << 6;
1851

1852
			regs[CTX_BB_PER_CTX_PTR + 1] =
1853
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1854
		}
1855
	}
1856 1857 1858 1859

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1860
	/* PDP values well be assigned later if needed */
1861 1862 1863 1864 1865 1866 1867 1868
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1869

1870
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1871 1872 1873 1874
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1875
		ASSIGN_CTX_PML4(ppgtt, regs);
1876 1877
	}

1878 1879 1880 1881
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1882
	}
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1906
	ctx_obj->mm.dirty = true;
1907 1908 1909 1910 1911 1912

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1913

1914
	i915_gem_object_unpin_map(ctx_obj);
1915 1916 1917 1918

	return 0;
}

1919 1920
/**
 * intel_lr_context_size() - return the size of the context for an engine
1921
 * @engine: which engine to find the context size for
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
1933
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1934 1935 1936
{
	int ret = 0;

1937
	WARN_ON(INTEL_GEN(engine->i915) < 8);
1938

1939
	switch (engine->id) {
1940
	case RCS:
1941
		if (INTEL_GEN(engine->i915) >= 9)
1942 1943 1944
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
1955 1956
}

1957
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1958
					    struct intel_engine_cs *engine)
1959
{
1960
	struct drm_i915_gem_object *ctx_obj;
1961
	struct intel_context *ce = &ctx->engine[engine->id];
1962
	struct i915_vma *vma;
1963
	uint32_t context_size;
1964
	struct intel_ring *ring;
1965 1966
	int ret;

1967
	WARN_ON(ce->state);
1968

1969 1970
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
1971

1972 1973 1974
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

1975
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1976
	if (IS_ERR(ctx_obj)) {
1977
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1978
		return PTR_ERR(ctx_obj);
1979 1980
	}

1981
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1982 1983 1984 1985 1986
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

1987
	ring = intel_engine_create_ring(engine, ctx->ring_size);
1988 1989
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
1990
		goto error_deref_obj;
1991 1992
	}

1993
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1994 1995
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1996
		goto error_ring_free;
1997 1998
	}

1999
	ce->ring = ring;
2000
	ce->state = vma;
2001
	ce->initialised = engine->init_context == NULL;
2002 2003

	return 0;
2004

2005
error_ring_free:
2006
	intel_ring_free(ring);
2007
error_deref_obj:
2008
	i915_gem_object_put(ctx_obj);
2009
	return ret;
2010
}
2011

2012
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2013
{
2014
	struct intel_engine_cs *engine;
2015
	struct i915_gem_context *ctx;
2016
	enum intel_engine_id id;
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2029
		for_each_engine(engine, dev_priv, id) {
2030 2031
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2032

2033 2034
			if (!ce->state)
				continue;
2035

2036 2037 2038 2039
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2040

2041 2042 2043
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2044

C
Chris Wilson 已提交
2045
			ce->state->obj->mm.dirty = true;
2046
			i915_gem_object_unpin_map(ce->state->obj);
2047

2048 2049 2050
			ce->ring->head = ce->ring->tail = 0;
			intel_ring_update_space(ce->ring);
		}
2051 2052
	}
}