intel_lrc.c 65.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
211

212 213 214
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

215 216
#define WA_TAIL_DWORDS 2

217
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218
					    struct intel_engine_cs *engine);
219 220 221 222
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226
 * @dev_priv: i915 device private
227 228 229
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
230
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 232 233
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
234
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235
{
236 237 238
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
239
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 241
		return 1;

242
	if (INTEL_GEN(dev_priv) >= 9)
243 244
		return 1;

245 246 247
	if (enable_execlists == 0)
		return 0;

248 249 250
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
251 252 253 254
		return 1;

	return 0;
}
255

256
/**
257 258 259
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
260
 * @engine: Engine the descriptor will be used with
261
 *
262 263 264 265 266
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
267 268
 * This is what a descriptor looks like, from LSB to MSB::
 *
269
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270 271 272 273
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
274
 */
275
static void
276
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277
				   struct intel_engine_cs *engine)
278
{
279
	struct intel_context *ce = &ctx->engine[engine->id];
280
	u64 desc;
281

282
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283

284
	desc = ctx->desc_template;				/* bits  0-11 */
285
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286
								/* bits 12-31 */
287
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
288

289
	ce->lrc_desc = desc;
290 291
}

292
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293
				     struct intel_engine_cs *engine)
294
{
295
	return ctx->engine[engine->id].lrc_desc;
296
}
297

298 299 300
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
301
{
302 303 304 305 306 307
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
308

309
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
310 311
}

312 313 314 315 316 317 318 319 320
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

321
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
322
{
323
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
324 325
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
326
	u32 *reg_state = ce->lrc_reg_state;
327

C
Chris Wilson 已提交
328
	reg_state[CTX_RING_TAIL+1] = rq->tail;
329

330 331 332 333 334 335 336
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
337 338

	return ce->lrc_desc;
339 340
}

341
static void execlists_submit_ports(struct intel_engine_cs *engine)
342
{
343 344
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
345 346 347 348
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

349
	GEM_BUG_ON(port[0].count > 1);
350 351 352 353
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
354
	port[0].count++;
355 356 357 358 359 360 361

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
362 363 364
	} else {
		desc[1] = 0;
	}
365
	GEM_BUG_ON(desc[0] == desc[1]);
366 367 368 369 370 371 372 373 374 375

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

376
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
377
{
378
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
379
		i915_gem_context_force_single_submission(ctx));
380
}
381

382 383 384 385 386
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
387

388 389
	if (ctx_single_port_submission(prev))
		return false;
390

391
	return true;
392 393
}

394
static void execlists_dequeue(struct intel_engine_cs *engine)
395
{
396
	struct drm_i915_gem_request *last;
397
	struct execlist_port *port = engine->execlist_port;
398
	unsigned long flags;
399
	struct rb_node *rb;
400 401 402 403 404 405
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
406
		 * as we resubmit the request. See gen8_emit_breadcrumb()
407 408 409 410
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
411

412
	GEM_BUG_ON(port[1].request);
413

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
433
	 */
434

435
	spin_lock_irqsave(&engine->timeline->lock, flags);
436 437 438 439 440
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

441 442 443
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
444
		 *
445 446 447 448
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
449
		 */
450 451 452 453 454 455 456 457 458 459 460 461 462
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
463 464
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
465 466 467 468 469 470 471
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
472

473 474 475 476 477
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

478
		__i915_gem_request_submit(cursor);
479 480 481 482 483
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
484
		engine->execlist_first = rb;
485
	}
486
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
487

488 489
	if (submit)
		execlists_submit_ports(engine);
490 491
}

492
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
493
{
494
	return !engine->execlist_port[0].request;
495 496
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

512 513 514 515 516 517
	for_each_engine(engine, dev_priv, id) {
		/* Interrupt/tasklet pending? */
		if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
			return false;

		/* Both ports drained, no more ELSP submission? */
518 519
		if (!execlists_elsp_idle(engine))
			return false;
520
	}
521 522 523 524

	return true;
}

525
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
526
{
527
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
528

529
	return port[0].count + port[1].count < 2;
B
Ben Widawsky 已提交
530 531
}

532
/*
533 534 535
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
536
static void intel_lrc_irq_handler(unsigned long data)
537
{
538
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
539
	struct execlist_port *port = engine->execlist_port;
540
	struct drm_i915_private *dev_priv = engine->i915;
541

542
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
543

544
	while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
545 546 547 548 549 550 551 552 553
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
554 555 556
		if (head == tail)
			break;

557 558
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
559
		do {
560 561 562 563 564 565
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

566 567 568 569 570
			/* Check the context/desc id for this event matches */
			GEM_BUG_ON(readl(buf + 2 * idx + 1) !=
				   upper_32_bits(intel_lr_context_descriptor(port[0].request->ctx,
									     engine)));

571 572 573 574 575 576 577 578 579 580
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
			}
581

582 583
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
584
		} while (head < tail);
585

586 587 588
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
589 590
	}

591 592
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
593

594
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

623
static void execlists_submit_request(struct drm_i915_gem_request *request)
624
{
625
	struct intel_engine_cs *engine = request->engine;
626
	unsigned long flags;
627

628 629
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
630

631
	if (insert_request(&request->priotree, &engine->execlist_queue)) {
632
		engine->execlist_first = &request->priotree.node;
633
		if (execlists_elsp_ready(engine))
634 635
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
636

637
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

667 668
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

697
		list_safe_reset_next(dep, p, dfs_link);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

738 739
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
740
{
741
	struct intel_context *ce = &ctx->engine[engine->id];
742
	unsigned int flags;
743
	void *vaddr;
744
	int ret;
745

746
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
747

748
	if (ce->pin_count++)
749 750
		return 0;

751 752 753 754 755
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
756
	GEM_BUG_ON(!ce->state);
757

758 759 760
	flags = PIN_GLOBAL;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
761
	if (i915_gem_context_is_kernel(ctx))
762 763 764
		flags |= PIN_HIGH;

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
765
	if (ret)
766
		goto err;
767

768
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
769 770
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
771
		goto unpin_vma;
772 773
	}

774
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
775
	if (ret)
776
		goto unpin_map;
777

778
	intel_lr_context_descriptor_update(ctx, engine);
779

780 781
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
782
		i915_ggtt_offset(ce->ring->vma);
783

C
Chris Wilson 已提交
784
	ce->state->obj->mm.dirty = true;
785

786
	i915_gem_context_get(ctx);
787
	return 0;
788

789
unpin_map:
790 791 792
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
793
err:
794
	ce->pin_count = 0;
795 796 797
	return ret;
}

798 799
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
800
{
801
	struct intel_context *ce = &ctx->engine[engine->id];
802

803
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
804
	GEM_BUG_ON(ce->pin_count == 0);
805

806
	if (--ce->pin_count)
807
		return;
808

809
	intel_ring_unpin(ce->ring);
810

811 812
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
813

814
	i915_gem_context_put(ctx);
815 816
}

817
static int execlists_request_alloc(struct drm_i915_gem_request *request)
818 819 820 821 822
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

823 824
	GEM_BUG_ON(!ce->pin_count);

825 826 827 828 829 830
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

831
	GEM_BUG_ON(!ce->ring);
832 833 834 835 836 837 838 839 840 841
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
842
			goto err;
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
870
err:
871 872 873
	return ret;
}

874
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
875 876
{
	int ret, i;
877
	struct intel_ring *ring = req->ring;
878
	struct i915_workarounds *w = &req->i915->workarounds;
879

880
	if (w->count == 0)
881 882
		return 0;

883
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
884 885 886
	if (ret)
		return ret;

887
	ret = intel_ring_begin(req, w->count * 2 + 2);
888 889 890
	if (ret)
		return ret;

891
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
892
	for (i = 0; i < w->count; i++) {
893 894
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
895
	}
896
	intel_ring_emit(ring, MI_NOOP);
897

898
	intel_ring_advance(ring);
899

900
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
901 902 903 904 905 906
	if (ret)
		return ret;

	return 0;
}

907
#define wa_ctx_emit(batch, index, cmd)					\
908
	do {								\
909 910
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
911 912
			return -ENOSPC;					\
		}							\
913
		batch[__index] = (cmd);					\
914 915
	} while (0)

V
Ville Syrjälä 已提交
916
#define wa_ctx_emit_reg(batch, index, reg) \
917
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
935
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
936
						uint32_t *batch,
937 938 939 940
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

941
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
942
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
943
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
944
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
945 946 947
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
948
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
949 950 951 952 953 954 955 956 957 958
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

959
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
960
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
961
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
962
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
963
	wa_ctx_emit(batch, index, 0);
964 965 966 967

	return index;
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

987 988 989 990 991 992
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
993
 *
994 995
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
996
 *
997 998 999 1000
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1001
 */
1002
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1003
				    struct i915_wa_ctx_bb *wa_ctx,
1004
				    uint32_t *batch,
1005 1006
				    uint32_t *offset)
{
1007
	uint32_t scratch_addr;
1008 1009
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1010
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1011
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1012

1013
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1014
	if (IS_BROADWELL(engine->i915)) {
1015
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1016 1017 1018
		if (rc < 0)
			return rc;
		index = rc;
1019 1020
	}

1021 1022
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1023
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1034

1035 1036
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1037
		wa_ctx_emit(batch, index, MI_NOOP);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1048 1049 1050
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1051
 *
1052
 *  The number of DWORDS written are returned using this field.
1053 1054 1055 1056
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1057
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1058
			       struct i915_wa_ctx_bb *wa_ctx,
1059
			       uint32_t *batch,
1060 1061 1062 1063
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1064
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1065
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1066

1067
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1068 1069 1070 1071

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1072
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1073
				    struct i915_wa_ctx_bb *wa_ctx,
1074
				    uint32_t *batch,
1075 1076
				    uint32_t *offset)
{
1077
	int ret;
D
Dave Airlie 已提交
1078
	struct drm_i915_private *dev_priv = engine->i915;
1079 1080
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1081
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1082
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1083 1084 1085 1086
	if (ret < 0)
		return ret;
	index = ret;

1087
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1088 1089 1090 1091 1092 1093
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1094 1095
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1096
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1097
		u32 scratch_addr =
1098
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1110

1111
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1135 1136 1137 1138 1139 1140 1141
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1142
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1143
			       struct i915_wa_ctx_bb *wa_ctx,
1144
			       uint32_t *batch,
1145 1146 1147 1148 1149 1150 1151 1152 1153
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1154
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1155
{
1156 1157 1158
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1159

1160
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1161 1162
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1163

1164
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1165 1166 1167
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1168 1169
	}

1170 1171 1172 1173 1174
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1175
	return 0;
1176 1177 1178 1179

err:
	i915_gem_object_put(obj);
	return err;
1180 1181
}

1182
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1183
{
1184
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1185 1186
}

1187
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1188
{
1189
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1190 1191 1192
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1193
	int ret;
1194

1195
	WARN_ON(engine->id != RCS);
1196

1197
	/* update this when WA for higher Gen are added */
1198
	if (INTEL_GEN(engine->i915) > 9) {
1199
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1200
			  INTEL_GEN(engine->i915));
1201
		return 0;
1202
	}
1203

1204
	/* some WA perform writes to scratch page, ensure it is valid */
1205
	if (!engine->scratch) {
1206
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1207 1208 1209
		return -EINVAL;
	}

1210
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1211 1212 1213 1214 1215
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1216
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1217 1218 1219
	batch = kmap_atomic(page);
	offset = 0;

1220
	if (IS_GEN8(engine->i915)) {
1221
		ret = gen8_init_indirectctx_bb(engine,
1222 1223 1224 1225 1226 1227
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1228
		ret = gen8_init_perctx_bb(engine,
1229 1230 1231 1232 1233
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1234
	} else if (IS_GEN9(engine->i915)) {
1235
		ret = gen9_init_indirectctx_bb(engine,
1236 1237 1238 1239 1240 1241
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1242
		ret = gen9_init_perctx_bb(engine,
1243 1244 1245 1246 1247
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1248 1249 1250 1251 1252
	}

out:
	kunmap_atomic(batch);
	if (ret)
1253
		lrc_destroy_wa_ctx_obj(engine);
1254 1255 1256 1257

	return ret;
}

1258 1259 1260 1261 1262
static u32 port_seqno(struct execlist_port *port)
{
	return port->request ? port->request->global_seqno : 0;
}

1263
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1264
{
1265
	struct drm_i915_private *dev_priv = engine->i915;
1266 1267 1268 1269 1270
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1271

1272
	intel_engine_reset_breadcrumbs(engine);
1273
	intel_engine_init_hangcheck(engine);
1274

1275 1276
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1277 1278
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1279 1280 1281
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1282

1283
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1284

1285
	/* After a GPU reset, we may have requests to replay */
1286
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1287
	if (!execlists_elsp_idle(engine)) {
1288 1289 1290 1291
		DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
				 engine->name,
				 port_seqno(&engine->execlist_port[0]),
				 port_seqno(&engine->execlist_port[1]));
1292 1293
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1294
		execlists_submit_ports(engine);
1295
	}
1296 1297

	return 0;
1298 1299
}

1300
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1301
{
1302
	struct drm_i915_private *dev_priv = engine->i915;
1303 1304
	int ret;

1305
	ret = gen8_init_common_ring(engine);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1319
	return init_workarounds_ring(engine);
1320 1321
}

1322
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1323 1324 1325
{
	int ret;

1326
	ret = gen8_init_common_ring(engine);
1327 1328 1329
	if (ret)
		return ret;

1330
	return init_workarounds_ring(engine);
1331 1332
}

1333 1334 1335 1336 1337 1338
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1349
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1350 1351
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1352
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1369 1370 1371

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1372 1373
}

1374 1375 1376
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1377
	struct intel_ring *ring = req->ring;
1378
	struct intel_engine_cs *engine = req->engine;
1379 1380 1381
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1382
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1383 1384 1385
	if (ret)
		return ret;

1386
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1387 1388 1389
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1390 1391 1392 1393
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1394 1395
	}

1396 1397
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1398 1399 1400 1401

	return 0;
}

1402
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1403 1404
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1405
{
1406
	struct intel_ring *ring = req->ring;
1407
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1408 1409
	int ret;

1410 1411 1412 1413
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1414 1415
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1416
	if (req->ctx->ppgtt &&
1417
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1418
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1419
		    !intel_vgpu_active(req->i915)) {
1420 1421 1422 1423
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1424

1425
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1426 1427
	}

1428
	ret = intel_ring_begin(req, 4);
1429 1430 1431 1432
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1433 1434 1435 1436 1437 1438 1439 1440
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1441 1442 1443 1444

	return 0;
}

1445
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1446
{
1447
	struct drm_i915_private *dev_priv = engine->i915;
1448 1449 1450
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1451 1452
}

1453
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1454
{
1455
	struct drm_i915_private *dev_priv = engine->i915;
1456
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1457 1458
}

1459
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1460
{
1461 1462
	struct intel_ring *ring = request->ring;
	u32 cmd;
1463 1464
	int ret;

1465
	ret = intel_ring_begin(request, 4);
1466 1467 1468 1469 1470
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1471 1472 1473 1474 1475 1476 1477
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1478
	if (mode & EMIT_INVALIDATE) {
1479
		cmd |= MI_INVALIDATE_TLB;
1480
		if (request->engine->id == VCS)
1481
			cmd |= MI_INVALIDATE_BSD;
1482 1483
	}

1484 1485 1486 1487 1488 1489 1490
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1491 1492 1493 1494

	return 0;
}

1495
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1496
				  u32 mode)
1497
{
1498
	struct intel_ring *ring = request->ring;
1499
	struct intel_engine_cs *engine = request->engine;
1500 1501
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1502
	bool vf_flush_wa = false, dc_flush_wa = false;
1503 1504
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1505
	int len;
1506 1507 1508

	flags |= PIPE_CONTROL_CS_STALL;

1509
	if (mode & EMIT_FLUSH) {
1510 1511
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1512
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1513
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1514 1515
	}

1516
	if (mode & EMIT_INVALIDATE) {
1517 1518 1519 1520 1521 1522 1523 1524 1525
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1526 1527 1528 1529
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1530
		if (IS_GEN9(request->i915))
1531
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1532 1533 1534 1535

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1536
	}
1537

M
Mika Kuoppala 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1547 1548 1549
	if (ret)
		return ret;

1550
	if (vf_flush_wa) {
1551 1552 1553 1554 1555 1556
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1557 1558
	}

M
Mika Kuoppala 已提交
1559
	if (dc_flush_wa) {
1560 1561 1562 1563 1564 1565
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1566 1567
	}

1568 1569 1570 1571 1572 1573
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1574 1575

	if (dc_flush_wa) {
1576 1577 1578 1579 1580 1581
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1582 1583
	}

1584
	intel_ring_advance(ring);
1585 1586 1587 1588

	return 0;
}

1589 1590 1591 1592 1593
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1594
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1595
{
C
Chris Wilson 已提交
1596 1597 1598 1599
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1600

C
Chris Wilson 已提交
1601 1602 1603
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1604 1605
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1606

C
Chris Wilson 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1616
}
1617

1618 1619
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1620 1621
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1622
{
1623 1624 1625
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1626 1627 1628 1629
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1630 1631 1632 1633 1634 1635 1636
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1637
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1638 1639 1640 1641 1642 1643
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1644 1645
}

1646 1647
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1648
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1649 1650 1651
{
	int ret;

1652
	ret = intel_logical_ring_workarounds_emit(req);
1653 1654 1655
	if (ret)
		return ret;

1656 1657 1658 1659 1660 1661 1662 1663
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1664
	return i915_gem_render_state_emit(req);
1665 1666
}

1667 1668
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1669
 * @engine: Engine Command Streamer.
1670
 */
1671
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1672
{
1673
	struct drm_i915_private *dev_priv;
1674

1675 1676 1677 1678 1679 1680 1681
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1682
	dev_priv = engine->i915;
1683

1684 1685
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1686
	}
1687

1688 1689
	if (engine->cleanup)
		engine->cleanup(engine);
1690

1691 1692 1693
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1694
	}
1695 1696

	intel_engine_cleanup_common(engine);
1697

1698
	lrc_destroy_wa_ctx_obj(engine);
1699
	engine->i915 = NULL;
1700 1701
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1702 1703
}

1704 1705 1706
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1707
	enum intel_engine_id id;
1708

1709
	for_each_engine(engine, dev_priv, id) {
1710
		engine->submit_request = execlists_submit_request;
1711 1712
		engine->schedule = execlists_schedule;
	}
1713 1714
}

1715
static void
1716
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1717 1718
{
	/* Default vfuncs which can be overriden by each engine. */
1719
	engine->init_hw = gen8_init_common_ring;
1720
	engine->reset_hw = reset_common_ring;
1721 1722 1723 1724

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1725 1726
	engine->request_alloc = execlists_request_alloc;

1727
	engine->emit_flush = gen8_emit_flush;
1728
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1729
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1730
	engine->submit_request = execlists_submit_request;
1731
	engine->schedule = execlists_schedule;
1732

1733 1734
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1735
	engine->emit_bb_start = gen8_emit_bb_start;
1736 1737
}

1738
static inline void
1739
logical_ring_default_irqs(struct intel_engine_cs *engine)
1740
{
1741
	unsigned shift = engine->irq_shift;
1742 1743
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1744 1745
}

1746
static int
1747
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1748
{
1749
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1750
	void *hws;
1751 1752

	/* The HWSP is part of the default context object in LRC mode. */
1753
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1754 1755
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1756 1757

	engine->status_page.page_addr = hws + hws_offset;
1758
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1759
	engine->status_page.vma = vma;
1760 1761

	return 0;
1762 1763
}

1764 1765 1766 1767 1768 1769
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1770 1771
	intel_engine_setup_common(engine);

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1796 1797 1798 1799 1800 1801
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1802
	ret = intel_engine_init_common(engine);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1820
int logical_render_ring_init(struct intel_engine_cs *engine)
1821 1822 1823 1824
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1825 1826
	logical_ring_setup(engine);

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1837
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1838
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1839

1840
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1855
	return logical_ring_init(engine);
1856 1857
}

1858
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1859 1860 1861 1862
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1863 1864
}

1865
static u32
1866
make_rpcs(struct drm_i915_private *dev_priv)
1867 1868 1869 1870 1871 1872 1873
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1874
	if (INTEL_GEN(dev_priv) < 9)
1875 1876 1877 1878 1879 1880 1881 1882
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1883
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1884
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1885
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1886 1887 1888 1889
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1890
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1891
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1892
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1893 1894 1895 1896
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1897 1898
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1899
			GEN8_RPCS_EU_MIN_SHIFT;
1900
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1901 1902 1903 1904 1905 1906 1907
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1908
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1909 1910 1911
{
	u32 indirect_ctx_offset;

1912
	switch (INTEL_GEN(engine->i915)) {
1913
	default:
1914
		MISSING_CASE(INTEL_GEN(engine->i915));
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1929 1930 1931 1932
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1933
{
1934 1935
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1936 1937 1938 1939 1940 1941

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1942
	reg_state[CTX_LRI_HEADER_0] =
1943 1944 1945
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1946 1947
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1948
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1949
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
1950 1951 1952 1953 1954 1955 1956 1957
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1958
		       RING_CTL_SIZE(ring->size) | RING_VALID);
1959 1960 1961 1962 1963 1964
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1965
		       RING_BB_PPGTT);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1979
		if (engine->wa_ctx.vma) {
1980
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1981
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1982 1983 1984 1985 1986 1987

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1988
				intel_lr_indirect_ctx_offset(engine) << 6;
1989 1990 1991 1992 1993

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
1994
	}
1995
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1996 1997
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1998
	/* PDP values well be assigned later if needed */
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2015

2016
	if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2017 2018 2019 2020 2021 2022 2023
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	}

2024
	if (engine->id == RCS) {
2025
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2026
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2027
			       make_rpcs(dev_priv));
2028
	}
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2052
	ctx_obj->mm.dirty = true;
2053 2054 2055 2056 2057 2058

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2059

2060
	i915_gem_object_unpin_map(ctx_obj);
2061 2062 2063 2064

	return 0;
}

2065 2066
/**
 * intel_lr_context_size() - return the size of the context for an engine
2067
 * @engine: which engine to find the context size for
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2079
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2080 2081 2082
{
	int ret = 0;

2083
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2084

2085
	switch (engine->id) {
2086
	case RCS:
2087
		if (INTEL_GEN(engine->i915) >= 9)
2088 2089 2090
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2101 2102
}

2103
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2104
					    struct intel_engine_cs *engine)
2105
{
2106
	struct drm_i915_gem_object *ctx_obj;
2107
	struct intel_context *ce = &ctx->engine[engine->id];
2108
	struct i915_vma *vma;
2109
	uint32_t context_size;
2110
	struct intel_ring *ring;
2111 2112
	int ret;

2113
	WARN_ON(ce->state);
2114

2115 2116
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
2117

2118 2119 2120
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2121
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2122
	if (IS_ERR(ctx_obj)) {
2123
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2124
		return PTR_ERR(ctx_obj);
2125 2126
	}

2127
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2128 2129 2130 2131 2132
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2133
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2134 2135
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2136
		goto error_deref_obj;
2137 2138
	}

2139
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2140 2141
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2142
		goto error_ring_free;
2143 2144
	}

2145
	ce->ring = ring;
2146
	ce->state = vma;
2147
	ce->initialised = engine->init_context == NULL;
2148 2149

	return 0;
2150

2151
error_ring_free:
2152
	intel_ring_free(ring);
2153
error_deref_obj:
2154
	i915_gem_object_put(ctx_obj);
2155
	return ret;
2156
}
2157

2158
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2159
{
2160
	struct intel_engine_cs *engine;
2161
	struct i915_gem_context *ctx;
2162
	enum intel_engine_id id;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2175
		for_each_engine(engine, dev_priv, id) {
2176 2177
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2178

2179 2180
			if (!ce->state)
				continue;
2181

2182 2183 2184 2185
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2186

2187 2188 2189
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2190

C
Chris Wilson 已提交
2191
			ce->state->obj->mm.dirty = true;
2192
			i915_gem_object_unpin_map(ce->state->obj);
2193

2194 2195 2196 2197
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2198 2199
	}
}