intel_lrc.c 65.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212 213
#define WA_TAIL_DWORDS 2

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221 222
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223
 * @dev_priv: i915 device private
224 225 226
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
227
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 229 230
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
231
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232
{
233 234 235
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
236
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 238
		return 1;

239
	if (INTEL_GEN(dev_priv) >= 9)
240 241
		return 1;

242 243 244
	if (enable_execlists == 0)
		return 0;

245 246
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
247
	    i915_modparams.use_mmio_flip >= 0)
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291 292
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
293
{
294
	struct intel_engine_execlists * const execlists = &engine->execlists;
295 296 297 298
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

299
	if (unlikely(execlists->no_priolist))
300 301 302 303 304
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
305
	parent = &execlists->queue.rb_node;
306 307 308 309 310 311 312 313 314
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
315
			return p;
316 317 318 319
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
320
		p = &execlists->default_priolist;
321 322 323 324 325 326 327 328 329 330 331 332 333 334
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
335
			execlists->no_priolist = true;
336 337 338 339 340
			goto find_priolist;
		}
	}

	p->priority = prio;
341
	INIT_LIST_HEAD(&p->requests);
342
	rb_link_node(&p->node, rb, parent);
343
	rb_insert_color(&p->node, &execlists->queue);
344 345

	if (first)
346
		execlists->first = &p->node;
347

348
	return ptr_pack_bits(p, first, 1);
349 350
}

351 352 353
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
354
{
355 356 357 358 359 360
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
361

362 363
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
364 365
}

366 367 368 369 370 371 372 373 374
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

375
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
376
{
377
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
378 379
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
380
	u32 *reg_state = ce->lrc_reg_state;
381

382
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
383

384 385 386 387 388
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
389
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
390
		execlists_update_context_pdps(ppgtt, reg_state);
391 392

	return ce->lrc_desc;
393 394
}

395
static void execlists_submit_ports(struct intel_engine_cs *engine)
396
{
397
	struct execlist_port *port = engine->execlists.port;
398
	u32 __iomem *elsp =
399 400
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
401

402
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
419

420 421 422
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
423 424
}

425
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
426
{
427
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
428
		i915_gem_context_force_single_submission(ctx));
429
}
430

431 432 433 434 435
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
436

437 438
	if (ctx_single_port_submission(prev))
		return false;
439

440
	return true;
441 442
}

443 444 445 446 447 448 449 450 451 452 453
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

454
static void execlists_dequeue(struct intel_engine_cs *engine)
455
{
456
	struct drm_i915_gem_request *last;
457 458
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
459 460
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
461
	struct rb_node *rb;
462 463
	bool submit = false;

464
	last = port_request(port);
465 466 467
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
468
		 * as we resubmit the request. See gen8_emit_breadcrumb()
469 470 471 472
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
493
	 */
494

495
	spin_lock_irq(&engine->timeline->lock);
496 497
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
498
	while (rb) {
499 500 501 502 503 504 505 506 507 508 509 510 511 512
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
513
			 */
514 515 516 517 518 519
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
520
				if (port == last_port) {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
545 546

				GEM_BUG_ON(port_isset(port));
547
			}
548

549 550
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
551

552
			__i915_gem_request_submit(rq);
553
			trace_i915_gem_request_in(rq, port_index(port, execlists));
554 555
			last = rq;
			submit = true;
556
		}
557

558
		rb = rb_next(rb);
559
		rb_erase(&p->node, &execlists->queue);
560 561
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
562
			kmem_cache_free(engine->i915->priorities, p);
563
	}
564
done:
565
	execlists->first = rb;
566
	if (submit)
567
		port_assign(port, last);
568
	spin_unlock_irq(&engine->timeline->lock);
569

570 571
	if (submit)
		execlists_submit_ports(engine);
572 573
}

574 575 576 577 578 579 580 581 582 583
static void execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(execlists->port); i++)
		i915_gem_request_put(port_request(&execlists->port[i]));

	memset(execlists->port, 0, sizeof(execlists->port));
}

584 585
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
586
	struct intel_engine_execlists * const execlists = &engine->execlists;
587 588 589 590 591 592 593
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
594
	execlist_cancel_port_requests(execlists);
595 596 597 598 599 600 601 602 603

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
604
	rb = execlists->first;
605 606 607 608 609 610 611 612 613 614 615 616
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
617
		rb_erase(&p->node, &execlists->queue);
618 619 620 621 622 623 624
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

625

626 627
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
628
	GEM_BUG_ON(port_isset(&execlists->port[0]));
629 630 631 632 633 634 635 636 637 638 639 640

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

641
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
642
{
643
	const struct execlist_port *port = engine->execlists.port;
B
Ben Widawsky 已提交
644

645
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
646 647
}

648
/*
649 650 651
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
652
static void intel_lrc_irq_handler(unsigned long data)
653
{
654 655 656
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
657
	struct drm_i915_private *dev_priv = engine->i915;
658

659 660 661 662 663 664 665 666 667
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

668
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
669

670 671 672 673 674
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
675 676 677
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
678
		unsigned int head, tail;
679

680
		/* However GVT emulation depends upon intercepting CSB mmio */
681
		if (unlikely(execlists->csb_use_mmio)) {
682 683
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
684
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
685 686
		}

687 688 689 690 691 692 693 694 695 696 697
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
698
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
699 700 701
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
702
			execlists->csb_head = head;
703 704 705 706 707
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

708
			head = execlists->csb_head;
709 710
			tail = READ_ONCE(buf[write_idx]);
		}
711

712
		while (head != tail) {
713
			struct drm_i915_gem_request *rq;
714
			unsigned int status;
715
			unsigned int count;
716 717 718

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

737
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
738 739 740
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

741
			/* Check the context/desc id for this event matches */
742
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
743

744 745 746
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
747
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
748 749 750 751 752
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
753

754
				execlists_port_complete(execlists, port);
755 756
			} else {
				port_set(port, port_pack(rq, count));
757
			}
758

759 760
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
761
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
762
		}
763

764 765
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
766 767 768
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
769 770
	}

771 772
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
773

774
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
775 776
}

777 778 779 780 781 782 783 784
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
	if (ptr_unmask_bits(p, 1) && execlists_elsp_ready(engine))
785
		tasklet_hi_schedule(&engine->execlists.irq_tasklet);
786 787
}

788
static void execlists_submit_request(struct drm_i915_gem_request *request)
789
{
790
	struct intel_engine_cs *engine = request->engine;
791
	unsigned long flags;
792

793 794
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
795

796
	insert_request(engine, &request->priotree, request->priotree.priority);
797

798
	GEM_BUG_ON(!engine->execlists.first);
799 800
	GEM_BUG_ON(list_empty(&request->priotree.link));

801
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
802 803
}

804 805 806
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
807 808 809 810
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
811 812

	if (engine != locked) {
813 814
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
815 816 817 818 819 820 821
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
822
	struct intel_engine_cs *engine;
823 824 825 826 827 828 829
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

830 831
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

856 857 858 859 860 861 862
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
863 864
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
865
		}
866

867
		list_safe_reset_next(dep, p, dfs_link);
868 869
	}

870 871 872 873 874 875 876 877 878 879 880 881 882
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (request->priotree.priority == INT_MIN) {
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

883 884 885
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

886 887 888 889 890 891 892 893 894 895 896 897
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
898 899 900
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
901
		}
902 903
	}

904
	spin_unlock_irq(&engine->timeline->lock);
905 906 907 908

	/* XXX Do we need to preempt to make room for us and our deps? */
}

909 910 911
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
912
{
913
	struct intel_context *ce = &ctx->engine[engine->id];
914
	unsigned int flags;
915
	void *vaddr;
916
	int ret;
917

918
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
919

920 921
	if (likely(ce->pin_count++))
		goto out;
922
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
923

924 925 926 927 928
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
929
	GEM_BUG_ON(!ce->state);
930

931
	flags = PIN_GLOBAL | PIN_HIGH;
932 933
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
934 935

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
936
	if (ret)
937
		goto err;
938

939
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
940 941
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
942
		goto unpin_vma;
943 944
	}

945
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
946
	if (ret)
947
		goto unpin_map;
948

949
	intel_lr_context_descriptor_update(ctx, engine);
950

951 952
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
953
		i915_ggtt_offset(ce->ring->vma);
954

C
Chris Wilson 已提交
955
	ce->state->obj->mm.dirty = true;
956

957
	i915_gem_context_get(ctx);
958 959
out:
	return ce->ring;
960

961
unpin_map:
962 963 964
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
965
err:
966
	ce->pin_count = 0;
967
	return ERR_PTR(ret);
968 969
}

970 971
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
972
{
973
	struct intel_context *ce = &ctx->engine[engine->id];
974

975
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
976
	GEM_BUG_ON(ce->pin_count == 0);
977

978
	if (--ce->pin_count)
979
		return;
980

981
	intel_ring_unpin(ce->ring);
982

983 984
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
985

986
	i915_gem_context_put(ctx);
987 988
}

989
static int execlists_request_alloc(struct drm_i915_gem_request *request)
990 991 992
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
993
	u32 *cs;
994 995
	int ret;

996 997
	GEM_BUG_ON(!ce->pin_count);

998 999 1000 1001 1002 1003
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1004
	cs = intel_ring_begin(request, 0);
1005 1006
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1007 1008 1009 1010

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
1011
			return ret;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1043 1044
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1045
{
1046 1047 1048 1049 1050 1051 1052 1053 1054
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1055 1056 1057 1058
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1059 1060 1061 1062 1063 1064 1065

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1066 1067
}

1068 1069 1070 1071 1072 1073
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1074
 *
1075 1076
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1077
 *
1078 1079 1080 1081
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1082
 */
1083
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1084
{
1085
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1086
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1087

1088
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1089 1090
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1091

1092 1093
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1094 1095 1096 1097 1098 1099 1100
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1101

1102
	/* Pad to end of cacheline */
1103 1104
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1105 1106 1107 1108 1109 1110 1111

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1112
	return batch;
1113 1114
}

1115 1116 1117
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1118
 *
1119
 *  The number of DWORDS written are returned using this field.
1120 1121 1122 1123
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1124
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1125
{
1126
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1127 1128
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1129

1130
	return batch;
1131 1132
}

1133
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1134
{
1135
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1136
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1137

1138
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1139 1140 1141 1142 1143
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1144

1145 1146
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1147
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1148 1149 1150 1151 1152 1153 1154
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1155
	}
1156

1157
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1172 1173 1174 1175 1176 1177
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1178 1179
	}

1180
	/* Pad to end of cacheline */
1181 1182
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1183

1184
	return batch;
1185 1186
}

1187 1188 1189
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1190
{
1191 1192 1193
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1194

1195
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1196 1197
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1198

1199
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1200 1201 1202
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1203 1204
	}

1205 1206 1207 1208 1209
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1210
	return 0;
1211 1212 1213 1214

err:
	i915_gem_object_put(obj);
	return err;
1215 1216
}

1217
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1218
{
1219
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1220 1221
}

1222 1223
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1224
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1225
{
1226
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1227 1228 1229
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1230
	struct page *page;
1231 1232
	void *batch, *batch_ptr;
	unsigned int i;
1233
	int ret;
1234

1235 1236
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1237

1238
	switch (INTEL_GEN(engine->i915)) {
1239 1240
	case 10:
		return 0;
1241 1242
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1243
		wa_bb_fn[1] = NULL;
1244 1245 1246 1247 1248 1249 1250
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1251
		return 0;
1252
	}
1253

1254
	ret = lrc_setup_wa_ctx(engine);
1255 1256 1257 1258 1259
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1260
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1261
	batch = batch_ptr = kmap_atomic(page);
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1274 1275
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1276
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1277 1278
	}

1279 1280
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1281 1282
	kunmap_atomic(batch);
	if (ret)
1283
		lrc_destroy_wa_ctx(engine);
1284 1285 1286 1287

	return ret;
}

1288 1289 1290 1291 1292 1293 1294 1295
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1296
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1297
{
1298
	struct drm_i915_private *dev_priv = engine->i915;
1299
	struct intel_engine_execlists * const execlists = &engine->execlists;
1300 1301 1302 1303 1304
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1305

1306
	intel_engine_reset_breadcrumbs(engine);
1307
	intel_engine_init_hangcheck(engine);
1308

1309 1310
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1311
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1312 1313 1314
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1315

1316
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1331
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1332
	execlists->csb_head = -1;
1333

1334
	/* After a GPU reset, we may have requests to replay */
1335 1336
	if (!i915_modparams.enable_guc_submission && execlists->first)
		tasklet_schedule(&execlists->irq_tasklet);
1337

1338
	return 0;
1339 1340
}

1341
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1342
{
1343
	struct drm_i915_private *dev_priv = engine->i915;
1344 1345
	int ret;

1346
	ret = gen8_init_common_ring(engine);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1360
	return init_workarounds_ring(engine);
1361 1362
}

1363
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1364 1365 1366
{
	int ret;

1367
	ret = gen8_init_common_ring(engine);
1368 1369 1370
	if (ret)
		return ret;

1371
	return init_workarounds_ring(engine);
1372 1373
}

1374 1375 1376
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1377
	struct intel_engine_execlists * const execlists = &engine->execlists;
1378
	struct drm_i915_gem_request *rq, *rn;
1379
	struct intel_context *ce;
1380
	unsigned long flags;
1381

1382 1383
	spin_lock_irqsave(&engine->timeline->lock, flags);

1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1393
	execlist_cancel_port_requests(execlists);
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/* Push back any incomplete requests for replay after the reset. */
	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests, link) {
		struct i915_priolist *p;

		if (i915_gem_request_completed(rq))
			break;

		__i915_gem_request_unsubmit(rq);

		p = lookup_priolist(engine,
				    &rq->priotree,
				    rq->priotree.priority);
		list_add(&rq->priotree.link,
			 &ptr_mask_bits(p, 1)->requests);
1410 1411
	}

1412
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1424
	if (!request || request->fence.error != -EIO)
1425
		return;
1426

1427 1428 1429 1430 1431 1432 1433
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1434
	ce = &request->ctx->engine[engine->id];
1435 1436 1437
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1438
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1439 1440
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1441
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1442

1443 1444 1445
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1446
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1447 1448 1449
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1450
	assert_ring_tail_valid(request->ring, request->tail);
1451 1452
}

1453 1454 1455
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1456
	struct intel_engine_cs *engine = req->engine;
1457
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1458 1459
	u32 *cs;
	int i;
1460

1461 1462 1463
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1464

1465
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1466
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1467 1468
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1469 1470 1471 1472
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1473 1474
	}

1475 1476
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1477 1478 1479 1480

	return 0;
}

1481
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1482
			      u64 offset, u32 len,
1483
			      const unsigned int flags)
1484
{
1485
	u32 *cs;
1486 1487
	int ret;

1488 1489 1490 1491
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1492 1493
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1494
	if (req->ctx->ppgtt &&
1495 1496 1497 1498 1499 1500
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1501

1502
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1503 1504
	}

1505 1506 1507
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1508 1509

	/* FIXME(BDW): Address space and security selectors. */
1510 1511 1512
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1513 1514 1515 1516
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1517 1518 1519 1520

	return 0;
}

1521
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1522
{
1523
	struct drm_i915_private *dev_priv = engine->i915;
1524 1525 1526
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1527 1528
}

1529
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1530
{
1531
	struct drm_i915_private *dev_priv = engine->i915;
1532
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1533 1534
}

1535
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1536
{
1537
	u32 cmd, *cs;
1538

1539 1540 1541
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1542 1543 1544

	cmd = MI_FLUSH_DW + 1;

1545 1546 1547 1548 1549 1550 1551
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1552
	if (mode & EMIT_INVALIDATE) {
1553
		cmd |= MI_INVALIDATE_TLB;
1554
		if (request->engine->id == VCS)
1555
			cmd |= MI_INVALIDATE_BSD;
1556 1557
	}

1558 1559 1560 1561 1562
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1563 1564 1565 1566

	return 0;
}

1567
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1568
				  u32 mode)
1569
{
1570
	struct intel_engine_cs *engine = request->engine;
1571 1572
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1573
	bool vf_flush_wa = false, dc_flush_wa = false;
1574
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1575
	int len;
1576 1577 1578

	flags |= PIPE_CONTROL_CS_STALL;

1579
	if (mode & EMIT_FLUSH) {
1580 1581
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1582
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1583
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1584 1585
	}

1586
	if (mode & EMIT_INVALIDATE) {
1587 1588 1589 1590 1591 1592 1593 1594 1595
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1596 1597 1598 1599
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1600
		if (IS_GEN9(request->i915))
1601
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1602 1603 1604 1605

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1606
	}
1607

M
Mika Kuoppala 已提交
1608 1609 1610 1611 1612 1613 1614 1615
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1616 1617 1618
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1619

1620 1621
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1622

1623 1624 1625
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1626

1627
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1628

1629 1630
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1631

1632
	intel_ring_advance(request, cs);
1633 1634 1635 1636

	return 0;
}

1637 1638 1639 1640 1641
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1642
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1643
{
1644 1645 1646
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1647
}
1648

1649
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1650
{
1651 1652
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1653

1654 1655 1656 1657 1658 1659 1660
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1661
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1662

1663
	gen8_emit_wa_tail(request, cs);
1664
}
1665

1666 1667
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1668
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1669
					u32 *cs)
1670
{
1671 1672 1673
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1674 1675 1676 1677
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1678 1679 1680 1681 1682 1683
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1684
	/* We're thrashing one dword of HWS. */
1685 1686 1687 1688
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1689
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1690

1691
	gen8_emit_wa_tail(request, cs);
1692 1693
}

1694 1695
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1696
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1697 1698 1699
{
	int ret;

1700
	ret = intel_ring_workarounds_emit(req);
1701 1702 1703
	if (ret)
		return ret;

1704 1705 1706 1707 1708 1709 1710 1711
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1712
	return i915_gem_render_state_emit(req);
1713 1714
}

1715 1716
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1717
 * @engine: Engine Command Streamer.
1718
 */
1719
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1720
{
1721
	struct drm_i915_private *dev_priv;
1722

1723 1724 1725 1726
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1727 1728
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
		tasklet_kill(&engine->execlists.irq_tasklet);
1729

1730
	dev_priv = engine->i915;
1731

1732 1733
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1734
	}
1735

1736 1737
	if (engine->cleanup)
		engine->cleanup(engine);
1738

1739
	intel_engine_cleanup_common(engine);
1740

1741
	lrc_destroy_wa_ctx(engine);
1742
	engine->i915 = NULL;
1743 1744
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1745 1746
}

1747
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1748
{
1749
	engine->submit_request = execlists_submit_request;
1750
	engine->cancel_requests = execlists_cancel_requests;
1751
	engine->schedule = execlists_schedule;
1752
	engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1753 1754
}

1755
static void
1756
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1757 1758
{
	/* Default vfuncs which can be overriden by each engine. */
1759
	engine->init_hw = gen8_init_common_ring;
1760
	engine->reset_hw = reset_common_ring;
1761 1762 1763 1764

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1765 1766
	engine->request_alloc = execlists_request_alloc;

1767
	engine->emit_flush = gen8_emit_flush;
1768
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1769
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1770 1771

	engine->set_default_submission = execlists_set_default_submission;
1772

1773 1774
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1775
	engine->emit_bb_start = gen8_emit_bb_start;
1776 1777
}

1778
static inline void
1779
logical_ring_default_irqs(struct intel_engine_cs *engine)
1780
{
1781
	unsigned shift = engine->irq_shift;
1782 1783
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1784 1785
}

1786 1787 1788 1789 1790 1791
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1792 1793
	intel_engine_setup_common(engine);

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1809
	engine->execlists.fw_domains = fw_domains;
1810

1811
	tasklet_init(&engine->execlists.irq_tasklet,
1812 1813 1814 1815 1816 1817
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1818
static int logical_ring_init(struct intel_engine_cs *engine)
1819 1820 1821
{
	int ret;

1822
	ret = intel_engine_init_common(engine);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1833
int logical_render_ring_init(struct intel_engine_cs *engine)
1834 1835 1836 1837
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1838 1839
	logical_ring_setup(engine);

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1850
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1851
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1852

1853
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1868
	return logical_ring_init(engine);
1869 1870
}

1871
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1872 1873 1874 1875
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1876 1877
}

1878
static u32
1879
make_rpcs(struct drm_i915_private *dev_priv)
1880 1881 1882 1883 1884 1885 1886
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1887
	if (INTEL_GEN(dev_priv) < 9)
1888 1889 1890 1891 1892 1893 1894 1895
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1896
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1897
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1898
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1899 1900 1901 1902
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1903
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1904
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1905
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1906 1907 1908 1909
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1910 1911
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1912
			GEN8_RPCS_EU_MIN_SHIFT;
1913
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1914 1915 1916 1917 1918 1919 1920
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1921
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1922 1923 1924
{
	u32 indirect_ctx_offset;

1925
	switch (INTEL_GEN(engine->i915)) {
1926
	default:
1927
		MISSING_CASE(INTEL_GEN(engine->i915));
1928
		/* fall through */
1929 1930 1931 1932
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1946
static void execlists_init_reg_state(u32 *regs,
1947 1948 1949
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1950
{
1951 1952
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
1983 1984
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

1985 1986 1987
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1988
		if (wa_ctx->indirect_ctx.size) {
1989
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1990

1991
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1992 1993
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1994

1995
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1996
				intel_lr_indirect_ctx_offset(engine) << 6;
1997 1998 1999 2000 2001
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2002

2003
			regs[CTX_BB_PER_CTX_PTR + 1] =
2004
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2005
		}
2006
	}
2007 2008 2009 2010

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2011
	/* PDP values well be assigned later if needed */
2012 2013 2014 2015 2016 2017 2018 2019
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2020

2021
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2022 2023 2024 2025
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2026
		ASSIGN_CTX_PML4(ppgtt, regs);
2027 2028
	}

2029 2030 2031 2032
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2033 2034

		i915_oa_init_reg_state(engine, ctx, regs);
2035
	}
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2059
	ctx_obj->mm.dirty = true;
2060 2061 2062 2063 2064 2065

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2066

2067
	i915_gem_object_unpin_map(ctx_obj);
2068 2069 2070 2071

	return 0;
}

2072
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2073
					    struct intel_engine_cs *engine)
2074
{
2075
	struct drm_i915_gem_object *ctx_obj;
2076
	struct intel_context *ce = &ctx->engine[engine->id];
2077
	struct i915_vma *vma;
2078
	uint32_t context_size;
2079
	struct intel_ring *ring;
2080 2081
	int ret;

2082
	WARN_ON(ce->state);
2083

2084
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2085

2086 2087 2088 2089 2090
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2091

2092
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2093
	if (IS_ERR(ctx_obj)) {
2094
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2095
		return PTR_ERR(ctx_obj);
2096 2097
	}

2098
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2099 2100 2101 2102 2103
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2104
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2105 2106
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2107
		goto error_deref_obj;
2108 2109
	}

2110
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2111 2112
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2113
		goto error_ring_free;
2114 2115
	}

2116
	ce->ring = ring;
2117
	ce->state = vma;
2118
	ce->initialised |= engine->init_context == NULL;
2119 2120

	return 0;
2121

2122
error_ring_free:
2123
	intel_ring_free(ring);
2124
error_deref_obj:
2125
	i915_gem_object_put(ctx_obj);
2126
	return ret;
2127
}
2128

2129
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2130
{
2131
	struct intel_engine_cs *engine;
2132
	struct i915_gem_context *ctx;
2133
	enum intel_engine_id id;
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2145
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2146
		for_each_engine(engine, dev_priv, id) {
2147 2148
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2149

2150 2151
			if (!ce->state)
				continue;
2152

2153 2154 2155 2156
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2157

2158 2159 2160
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2161

C
Chris Wilson 已提交
2162
			ce->state->obj->mm.dirty = true;
2163
			i915_gem_object_unpin_map(ce->state->obj);
2164

2165
			intel_ring_reset(ce->ring, 0);
2166
		}
2167 2168
	}
}