core.c 186.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
T
Thomas Gleixner 已提交
43

44 45
#include "internal.h"

46 47
#include <asm/irq_regs.h>

48
struct remote_function_call {
49 50 51 52
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
86 87 88 89
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
110 111 112 113
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
114 115 116 117 118 119 120
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
121 122
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
123 124
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
125

126 127 128 129 130 131 132
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

133 134 135 136 137 138
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
139 140 141 142
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
143
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
144
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
145
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
146

147 148 149
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
150
static atomic_t nr_freq_events __read_mostly;
151

P
Peter Zijlstra 已提交
152 153 154 155
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

156
/*
157
 * perf event paranoia level:
158 159
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
160
 *   1 - disallow cpu events for unpriv
161
 *   2 - disallow kernel profiling for unpriv
162
 */
163
int sysctl_perf_event_paranoid __read_mostly = 1;
164

165 166
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167 168

/*
169
 * max perf event sample rate
170
 */
171 172 173 174 175 176 177 178 179
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
180 181
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
182 183 184 185 186 187

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
188
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
189
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
190
}
P
Peter Zijlstra 已提交
191

192 193
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
194 195 196 197
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
198
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
199 200 201 202 203

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
222 223 224

	return 0;
}
225

226 227 228 229 230 231 232
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
233
static DEFINE_PER_CPU(u64, running_sample_length);
234

235
static void perf_duration_warn(struct irq_work *w)
236
{
237
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238
	u64 avg_local_sample_len;
239
	u64 local_samples_len;
240 241 242 243 244 245 246

	local_samples_len = __get_cpu_var(running_sample_length);
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
247
			avg_local_sample_len, allowed_ns >> 1,
248 249 250 251 252 253 254
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
255
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
256 257
	u64 avg_local_sample_len;
	u64 local_samples_len;
258

P
Peter Zijlstra 已提交
259
	if (allowed_ns == 0)
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
275
	if (avg_local_sample_len <= allowed_ns)
276 277 278 279 280 281 282 283 284 285
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
286

287 288 289 290 291 292
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
293 294
}

295
static atomic64_t perf_event_id;
296

297 298 299 300
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
301 302 303 304 305
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
306

307
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
308

309
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
310
{
311
	return "pmu";
T
Thomas Gleixner 已提交
312 313
}

314 315 316 317 318
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
319 320 321 322 323 324
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
341 342
#ifdef CONFIG_CGROUP_PERF

343 344 345 346 347 348 349 350 351 352 353
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
354
	struct perf_cgroup_info	__percpu *info;
355 356
};

357 358 359 360 361
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
362 363 364
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
365
	return container_of(task_css(task, perf_event_cgrp_id),
366
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
367 368 369 370 371 372 373 374
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
439 440
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
441
	/*
442 443
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
444
	 */
445
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
446 447
		return;

448 449 450 451 452 453
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
454 455 456
}

static inline void
457 458
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
459 460 461 462
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

463 464 465 466 467 468
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
469 470 471 472
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
473
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
506 507
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515 516

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
517 518
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
519 520 521 522 523 524 525 526 527 528 529

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
530
				WARN_ON_ONCE(cpuctx->cgrp);
531 532 533 534
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
535 536 537 538
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
539 540
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
541 542 543 544 545 546 547 548
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

549 550
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
551
{
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
574 575
}

576 577
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
578
{
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
597 598 599 600 601 602 603 604
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
605 606
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
607

608
	if (!f.file)
S
Stephane Eranian 已提交
609 610
		return -EBADF;

611
	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
612 613 614 615
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
629
out:
630
	fdput(f);
S
Stephane Eranian 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

704 705
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
706 707 708
{
}

709 710
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
711 712 713 714 715 716 717 718 719 720 721
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
722 723
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
817
	int timer;
818 819 820 821 822

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

823 824 825 826 827 828 829 830 831
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
854
void perf_pmu_disable(struct pmu *pmu)
855
{
P
Peter Zijlstra 已提交
856 857 858
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
859 860
}

P
Peter Zijlstra 已提交
861
void perf_pmu_enable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
866 867
}

868 869 870 871 872 873 874
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
875
static void perf_pmu_rotate_start(struct pmu *pmu)
876
{
P
Peter Zijlstra 已提交
877
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
878
	struct list_head *head = &__get_cpu_var(rotation_list);
879

880
	WARN_ON(!irqs_disabled());
881

882
	if (list_empty(&cpuctx->rotation_list))
883
		list_add(&cpuctx->rotation_list, head);
884 885
}

886
static void get_ctx(struct perf_event_context *ctx)
887
{
888
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
889 890
}

891
static void put_ctx(struct perf_event_context *ctx)
892
{
893 894 895
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
896 897
		if (ctx->task)
			put_task_struct(ctx->task);
898
		kfree_rcu(ctx, rcu_head);
899
	}
900 901
}

902
static void unclone_ctx(struct perf_event_context *ctx)
903 904 905 906 907
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
908
	ctx->generation++;
909 910
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

933
/*
934
 * If we inherit events we want to return the parent event id
935 936
 * to userspace.
 */
937
static u64 primary_event_id(struct perf_event *event)
938
{
939
	u64 id = event->id;
940

941 942
	if (event->parent)
		id = event->parent->id;
943 944 945 946

	return id;
}

947
/*
948
 * Get the perf_event_context for a task and lock it.
949 950 951
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
952
static struct perf_event_context *
P
Peter Zijlstra 已提交
953
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
954
{
955
	struct perf_event_context *ctx;
956

P
Peter Zijlstra 已提交
957
retry:
958 959 960 961 962 963 964 965 966 967 968
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
969
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
970 971 972 973
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
974
		 * perf_event_task_sched_out, though the
975 976 977 978 979 980
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
981
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
982
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
983
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 985
			rcu_read_unlock();
			preempt_enable();
986 987
			goto retry;
		}
988 989

		if (!atomic_inc_not_zero(&ctx->refcount)) {
990
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
991 992
			ctx = NULL;
		}
993 994
	}
	rcu_read_unlock();
995
	preempt_enable();
996 997 998 999 1000 1001 1002 1003
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1004 1005
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1006
{
1007
	struct perf_event_context *ctx;
1008 1009
	unsigned long flags;

P
Peter Zijlstra 已提交
1010
	ctx = perf_lock_task_context(task, ctxn, &flags);
1011 1012
	if (ctx) {
		++ctx->pin_count;
1013
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1014 1015 1016 1017
	}
	return ctx;
}

1018
static void perf_unpin_context(struct perf_event_context *ctx)
1019 1020 1021
{
	unsigned long flags;

1022
	raw_spin_lock_irqsave(&ctx->lock, flags);
1023
	--ctx->pin_count;
1024
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1038 1039 1040
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1041 1042 1043 1044

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1045 1046 1047
	return ctx ? ctx->time : 0;
}

1048 1049
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1050
 * The caller of this function needs to hold the ctx->lock.
1051 1052 1053 1054 1055 1056 1057 1058 1059
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1071
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1072 1073
	else if (ctx->is_active)
		run_end = ctx->time;
1074 1075 1076 1077
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1078 1079 1080 1081

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1082
		run_end = perf_event_time(event);
1083 1084

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1085

1086 1087
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1100 1101 1102 1103 1104 1105 1106 1107 1108
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1109
/*
1110
 * Add a event from the lists for its context.
1111 1112
 * Must be called with ctx->mutex and ctx->lock held.
 */
1113
static void
1114
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1115
{
1116 1117
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1118 1119

	/*
1120 1121 1122
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1123
	 */
1124
	if (event->group_leader == event) {
1125 1126
		struct list_head *list;

1127 1128 1129
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1130 1131
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1132
	}
P
Peter Zijlstra 已提交
1133

1134
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1135 1136
		ctx->nr_cgroups++;

1137 1138 1139
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1140
	list_add_rcu(&event->event_entry, &ctx->event_list);
1141
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1142
		perf_pmu_rotate_start(ctx->pmu);
1143 1144
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1145
		ctx->nr_stat++;
1146 1147

	ctx->generation++;
1148 1149
}

J
Jiri Olsa 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1198 1199 1200 1201 1202 1203
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1204 1205 1206
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1207 1208 1209
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1210 1211 1212
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1213 1214 1215
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1216 1217 1218 1219 1220 1221 1222 1223 1224
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1225 1226 1227 1228 1229 1230
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1231 1232 1233
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1243
	event->id_header_size = size;
1244 1245
}

1246 1247
static void perf_group_attach(struct perf_event *event)
{
1248
	struct perf_event *group_leader = event->group_leader, *pos;
1249

P
Peter Zijlstra 已提交
1250 1251 1252 1253 1254 1255
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1267 1268 1269 1270 1271

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1272 1273
}

1274
/*
1275
 * Remove a event from the lists for its context.
1276
 * Must be called with ctx->mutex and ctx->lock held.
1277
 */
1278
static void
1279
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1280
{
1281
	struct perf_cpu_context *cpuctx;
1282 1283 1284 1285
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1286
		return;
1287 1288 1289

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1290
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1291
		ctx->nr_cgroups--;
1292 1293 1294 1295 1296 1297 1298 1299 1300
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1301

1302 1303 1304
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1305 1306
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1307
		ctx->nr_stat--;
1308

1309
	list_del_rcu(&event->event_entry);
1310

1311 1312
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1313

1314
	update_group_times(event);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1325 1326

	ctx->generation++;
1327 1328
}

1329
static void perf_group_detach(struct perf_event *event)
1330 1331
{
	struct perf_event *sibling, *tmp;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1348
		goto out;
1349 1350 1351 1352
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1353

1354
	/*
1355 1356
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1357
	 * to whatever list we are on.
1358
	 */
1359
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1360 1361
		if (list)
			list_move_tail(&sibling->group_entry, list);
1362
		sibling->group_leader = sibling;
1363 1364 1365

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1366
	}
1367 1368 1369 1370 1371 1372

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1373 1374
}

1375 1376 1377
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1378 1379
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1380 1381
}

1382 1383
static void
event_sched_out(struct perf_event *event,
1384
		  struct perf_cpu_context *cpuctx,
1385
		  struct perf_event_context *ctx)
1386
{
1387
	u64 tstamp = perf_event_time(event);
1388 1389 1390 1391 1392 1393 1394 1395 1396
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1397
		delta = tstamp - event->tstamp_stopped;
1398
		event->tstamp_running += delta;
1399
		event->tstamp_stopped = tstamp;
1400 1401
	}

1402
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1403
		return;
1404

1405 1406
	perf_pmu_disable(event->pmu);

1407 1408 1409 1410
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1411
	}
1412
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1413
	event->pmu->del(event, 0);
1414
	event->oncpu = -1;
1415

1416
	if (!is_software_event(event))
1417 1418
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1419 1420
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1421
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1422
		cpuctx->exclusive = 0;
1423 1424

	perf_pmu_enable(event->pmu);
1425 1426
}

1427
static void
1428
group_sched_out(struct perf_event *group_event,
1429
		struct perf_cpu_context *cpuctx,
1430
		struct perf_event_context *ctx)
1431
{
1432
	struct perf_event *event;
1433
	int state = group_event->state;
1434

1435
	event_sched_out(group_event, cpuctx, ctx);
1436 1437 1438 1439

	/*
	 * Schedule out siblings (if any):
	 */
1440 1441
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1442

1443
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1444 1445 1446
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1447
/*
1448
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1449
 *
1450
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1451 1452
 * remove it from the context list.
 */
1453
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1454
{
1455 1456
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1457
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1458

1459
	raw_spin_lock(&ctx->lock);
1460 1461
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1462 1463 1464 1465
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1466
	raw_spin_unlock(&ctx->lock);
1467 1468

	return 0;
T
Thomas Gleixner 已提交
1469 1470 1471 1472
}


/*
1473
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1474
 *
1475
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1476
 * call when the task is on a CPU.
1477
 *
1478 1479
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1480 1481
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1482
 * When called from perf_event_exit_task, it's OK because the
1483
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1484
 */
1485
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1486
{
1487
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1488 1489
	struct task_struct *task = ctx->task;

1490 1491
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1492 1493
	if (!task) {
		/*
1494
		 * Per cpu events are removed via an smp call and
1495
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1496
		 */
1497
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1498 1499 1500 1501
		return;
	}

retry:
1502 1503
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1504

1505
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1506
	/*
1507 1508
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1509
	 */
1510
	if (ctx->is_active) {
1511
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1512 1513 1514 1515
		goto retry;
	}

	/*
1516 1517
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1518
	 */
1519
	list_del_event(event, ctx);
1520
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1521 1522
}

1523
/*
1524
 * Cross CPU call to disable a performance event
1525
 */
1526
int __perf_event_disable(void *info)
1527
{
1528 1529
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1530
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1531 1532

	/*
1533 1534
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1535 1536 1537
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1538
	 */
1539
	if (ctx->task && cpuctx->task_ctx != ctx)
1540
		return -EINVAL;
1541

1542
	raw_spin_lock(&ctx->lock);
1543 1544

	/*
1545
	 * If the event is on, turn it off.
1546 1547
	 * If it is in error state, leave it in error state.
	 */
1548
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1549
		update_context_time(ctx);
S
Stephane Eranian 已提交
1550
		update_cgrp_time_from_event(event);
1551 1552 1553
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1554
		else
1555 1556
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1557 1558
	}

1559
	raw_spin_unlock(&ctx->lock);
1560 1561

	return 0;
1562 1563 1564
}

/*
1565
 * Disable a event.
1566
 *
1567 1568
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1569
 * remains valid.  This condition is satisifed when called through
1570 1571 1572 1573
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1574
 * is the current context on this CPU and preemption is disabled,
1575
 * hence we can't get into perf_event_task_sched_out for this context.
1576
 */
1577
void perf_event_disable(struct perf_event *event)
1578
{
1579
	struct perf_event_context *ctx = event->ctx;
1580 1581 1582 1583
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1584
		 * Disable the event on the cpu that it's on
1585
		 */
1586
		cpu_function_call(event->cpu, __perf_event_disable, event);
1587 1588 1589
		return;
	}

P
Peter Zijlstra 已提交
1590
retry:
1591 1592
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1593

1594
	raw_spin_lock_irq(&ctx->lock);
1595
	/*
1596
	 * If the event is still active, we need to retry the cross-call.
1597
	 */
1598
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1599
		raw_spin_unlock_irq(&ctx->lock);
1600 1601 1602 1603 1604
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1605 1606 1607 1608 1609 1610 1611
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1612 1613 1614
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1615
	}
1616
	raw_spin_unlock_irq(&ctx->lock);
1617
}
1618
EXPORT_SYMBOL_GPL(perf_event_disable);
1619

S
Stephane Eranian 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1655 1656 1657 1658
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1659
static int
1660
event_sched_in(struct perf_event *event,
1661
		 struct perf_cpu_context *cpuctx,
1662
		 struct perf_event_context *ctx)
1663
{
1664
	u64 tstamp = perf_event_time(event);
1665
	int ret = 0;
1666

1667
	if (event->state <= PERF_EVENT_STATE_OFF)
1668 1669
		return 0;

1670
	event->state = PERF_EVENT_STATE_ACTIVE;
1671
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1683 1684 1685 1686 1687
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1688 1689
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1690
	if (event->pmu->add(event, PERF_EF_START)) {
1691 1692
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1693 1694
		ret = -EAGAIN;
		goto out;
1695 1696
	}

1697
	event->tstamp_running += tstamp - event->tstamp_stopped;
1698

S
Stephane Eranian 已提交
1699
	perf_set_shadow_time(event, ctx, tstamp);
1700

1701
	if (!is_software_event(event))
1702
		cpuctx->active_oncpu++;
1703
	ctx->nr_active++;
1704 1705
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1706

1707
	if (event->attr.exclusive)
1708 1709
		cpuctx->exclusive = 1;

1710 1711 1712 1713
out:
	perf_pmu_enable(event->pmu);

	return ret;
1714 1715
}

1716
static int
1717
group_sched_in(struct perf_event *group_event,
1718
	       struct perf_cpu_context *cpuctx,
1719
	       struct perf_event_context *ctx)
1720
{
1721
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1722
	struct pmu *pmu = ctx->pmu;
1723 1724
	u64 now = ctx->time;
	bool simulate = false;
1725

1726
	if (group_event->state == PERF_EVENT_STATE_OFF)
1727 1728
		return 0;

P
Peter Zijlstra 已提交
1729
	pmu->start_txn(pmu);
1730

1731
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1732
		pmu->cancel_txn(pmu);
1733
		perf_cpu_hrtimer_restart(cpuctx);
1734
		return -EAGAIN;
1735
	}
1736 1737 1738 1739

	/*
	 * Schedule in siblings as one group (if any):
	 */
1740
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1741
		if (event_sched_in(event, cpuctx, ctx)) {
1742
			partial_group = event;
1743 1744 1745 1746
			goto group_error;
		}
	}

1747
	if (!pmu->commit_txn(pmu))
1748
		return 0;
1749

1750 1751 1752 1753
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1764
	 */
1765 1766
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1767 1768 1769 1770 1771 1772 1773 1774
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1775
	}
1776
	event_sched_out(group_event, cpuctx, ctx);
1777

P
Peter Zijlstra 已提交
1778
	pmu->cancel_txn(pmu);
1779

1780 1781
	perf_cpu_hrtimer_restart(cpuctx);

1782 1783 1784
	return -EAGAIN;
}

1785
/*
1786
 * Work out whether we can put this event group on the CPU now.
1787
 */
1788
static int group_can_go_on(struct perf_event *event,
1789 1790 1791 1792
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1793
	 * Groups consisting entirely of software events can always go on.
1794
	 */
1795
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1796 1797 1798
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1799
	 * events can go on.
1800 1801 1802 1803 1804
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1805
	 * events on the CPU, it can't go on.
1806
	 */
1807
	if (event->attr.exclusive && cpuctx->active_oncpu)
1808 1809 1810 1811 1812 1813 1814 1815
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1816 1817
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1818
{
1819 1820
	u64 tstamp = perf_event_time(event);

1821
	list_add_event(event, ctx);
1822
	perf_group_attach(event);
1823 1824 1825
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1826 1827
}

1828 1829 1830 1831 1832 1833
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1847
/*
1848
 * Cross CPU call to install and enable a performance event
1849 1850
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1851
 */
1852
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1853
{
1854 1855
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1856
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1857 1858 1859
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1860
	perf_ctx_lock(cpuctx, task_ctx);
1861
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1862 1863

	/*
1864
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1865
	 */
1866
	if (task_ctx)
1867
		task_ctx_sched_out(task_ctx);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1882 1883
		task = task_ctx->task;
	}
1884

1885
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1886

1887
	update_context_time(ctx);
S
Stephane Eranian 已提交
1888 1889 1890 1891 1892 1893
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1894

1895
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1896

1897
	/*
1898
	 * Schedule everything back in
1899
	 */
1900
	perf_event_sched_in(cpuctx, task_ctx, task);
1901 1902 1903

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1904 1905

	return 0;
T
Thomas Gleixner 已提交
1906 1907 1908
}

/*
1909
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1910
 *
1911 1912
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1913
 *
1914
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1915 1916 1917 1918
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1919 1920
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1921 1922 1923 1924
			int cpu)
{
	struct task_struct *task = ctx->task;

1925 1926
	lockdep_assert_held(&ctx->mutex);

1927
	event->ctx = ctx;
1928 1929
	if (event->cpu != -1)
		event->cpu = cpu;
1930

T
Thomas Gleixner 已提交
1931 1932
	if (!task) {
		/*
1933
		 * Per cpu events are installed via an smp call and
1934
		 * the install is always successful.
T
Thomas Gleixner 已提交
1935
		 */
1936
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1937 1938 1939 1940
		return;
	}

retry:
1941 1942
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1943

1944
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1945
	/*
1946 1947
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1948
	 */
1949
	if (ctx->is_active) {
1950
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1951 1952 1953 1954
		goto retry;
	}

	/*
1955 1956
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1957
	 */
1958
	add_event_to_ctx(event, ctx);
1959
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1960 1961
}

1962
/*
1963
 * Put a event into inactive state and update time fields.
1964 1965 1966 1967 1968 1969
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1970
static void __perf_event_mark_enabled(struct perf_event *event)
1971
{
1972
	struct perf_event *sub;
1973
	u64 tstamp = perf_event_time(event);
1974

1975
	event->state = PERF_EVENT_STATE_INACTIVE;
1976
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1977
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1978 1979
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1980
	}
1981 1982
}

1983
/*
1984
 * Cross CPU call to enable a performance event
1985
 */
1986
static int __perf_event_enable(void *info)
1987
{
1988 1989 1990
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1991
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1992
	int err;
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2004
		return -EINVAL;
2005

2006
	raw_spin_lock(&ctx->lock);
2007
	update_context_time(ctx);
2008

2009
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2010
		goto unlock;
S
Stephane Eranian 已提交
2011 2012 2013 2014

	/*
	 * set current task's cgroup time reference point
	 */
2015
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2016

2017
	__perf_event_mark_enabled(event);
2018

S
Stephane Eranian 已提交
2019 2020 2021
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2022
		goto unlock;
S
Stephane Eranian 已提交
2023
	}
2024

2025
	/*
2026
	 * If the event is in a group and isn't the group leader,
2027
	 * then don't put it on unless the group is on.
2028
	 */
2029
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2030
		goto unlock;
2031

2032
	if (!group_can_go_on(event, cpuctx, 1)) {
2033
		err = -EEXIST;
2034
	} else {
2035
		if (event == leader)
2036
			err = group_sched_in(event, cpuctx, ctx);
2037
		else
2038
			err = event_sched_in(event, cpuctx, ctx);
2039
	}
2040 2041 2042

	if (err) {
		/*
2043
		 * If this event can't go on and it's part of a
2044 2045
		 * group, then the whole group has to come off.
		 */
2046
		if (leader != event) {
2047
			group_sched_out(leader, cpuctx, ctx);
2048 2049
			perf_cpu_hrtimer_restart(cpuctx);
		}
2050
		if (leader->attr.pinned) {
2051
			update_group_times(leader);
2052
			leader->state = PERF_EVENT_STATE_ERROR;
2053
		}
2054 2055
	}

P
Peter Zijlstra 已提交
2056
unlock:
2057
	raw_spin_unlock(&ctx->lock);
2058 2059

	return 0;
2060 2061 2062
}

/*
2063
 * Enable a event.
2064
 *
2065 2066
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2067
 * remains valid.  This condition is satisfied when called through
2068 2069
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2070
 */
2071
void perf_event_enable(struct perf_event *event)
2072
{
2073
	struct perf_event_context *ctx = event->ctx;
2074 2075 2076 2077
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2078
		 * Enable the event on the cpu that it's on
2079
		 */
2080
		cpu_function_call(event->cpu, __perf_event_enable, event);
2081 2082 2083
		return;
	}

2084
	raw_spin_lock_irq(&ctx->lock);
2085
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2086 2087 2088
		goto out;

	/*
2089 2090
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2091 2092 2093 2094
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2095 2096
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2097

P
Peter Zijlstra 已提交
2098
retry:
2099
	if (!ctx->is_active) {
2100
		__perf_event_mark_enabled(event);
2101 2102 2103
		goto out;
	}

2104
	raw_spin_unlock_irq(&ctx->lock);
2105 2106 2107

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2108

2109
	raw_spin_lock_irq(&ctx->lock);
2110 2111

	/*
2112
	 * If the context is active and the event is still off,
2113 2114
	 * we need to retry the cross-call.
	 */
2115 2116 2117 2118 2119 2120
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2121
		goto retry;
2122
	}
2123

P
Peter Zijlstra 已提交
2124
out:
2125
	raw_spin_unlock_irq(&ctx->lock);
2126
}
2127
EXPORT_SYMBOL_GPL(perf_event_enable);
2128

2129
int perf_event_refresh(struct perf_event *event, int refresh)
2130
{
2131
	/*
2132
	 * not supported on inherited events
2133
	 */
2134
	if (event->attr.inherit || !is_sampling_event(event))
2135 2136
		return -EINVAL;

2137 2138
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2139 2140

	return 0;
2141
}
2142
EXPORT_SYMBOL_GPL(perf_event_refresh);
2143

2144 2145 2146
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2147
{
2148
	struct perf_event *event;
2149
	int is_active = ctx->is_active;
2150

2151
	ctx->is_active &= ~event_type;
2152
	if (likely(!ctx->nr_events))
2153 2154
		return;

2155
	update_context_time(ctx);
S
Stephane Eranian 已提交
2156
	update_cgrp_time_from_cpuctx(cpuctx);
2157
	if (!ctx->nr_active)
2158
		return;
2159

P
Peter Zijlstra 已提交
2160
	perf_pmu_disable(ctx->pmu);
2161
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2162 2163
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2164
	}
2165

2166
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2167
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2168
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2169
	}
P
Peter Zijlstra 已提交
2170
	perf_pmu_enable(ctx->pmu);
2171 2172
}

2173
/*
2174 2175 2176 2177 2178 2179
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2180
 */
2181 2182
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2183
{
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2206 2207
}

2208 2209
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2210 2211 2212
{
	u64 value;

2213
	if (!event->attr.inherit_stat)
2214 2215 2216
		return;

	/*
2217
	 * Update the event value, we cannot use perf_event_read()
2218 2219
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2220
	 * we know the event must be on the current CPU, therefore we
2221 2222
	 * don't need to use it.
	 */
2223 2224
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2225 2226
		event->pmu->read(event);
		/* fall-through */
2227

2228 2229
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2230 2231 2232 2233 2234 2235 2236
		break;

	default:
		break;
	}

	/*
2237
	 * In order to keep per-task stats reliable we need to flip the event
2238 2239
	 * values when we flip the contexts.
	 */
2240 2241 2242
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2243

2244 2245
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2246

2247
	/*
2248
	 * Since we swizzled the values, update the user visible data too.
2249
	 */
2250 2251
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2252 2253
}

2254 2255
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2256
{
2257
	struct perf_event *event, *next_event;
2258 2259 2260 2261

	if (!ctx->nr_stat)
		return;

2262 2263
	update_context_time(ctx);

2264 2265
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2266

2267 2268
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2269

2270 2271
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2272

2273
		__perf_event_sync_stat(event, next_event);
2274

2275 2276
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2277 2278 2279
	}
}

2280 2281
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2282
{
P
Peter Zijlstra 已提交
2283
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2284
	struct perf_event_context *next_ctx;
2285
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2286
	struct perf_cpu_context *cpuctx;
2287
	int do_switch = 1;
T
Thomas Gleixner 已提交
2288

P
Peter Zijlstra 已提交
2289 2290
	if (likely(!ctx))
		return;
2291

P
Peter Zijlstra 已提交
2292 2293
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2294 2295
		return;

2296
	rcu_read_lock();
P
Peter Zijlstra 已提交
2297
	next_ctx = next->perf_event_ctxp[ctxn];
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
	if (!parent && !next_parent)
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2309 2310 2311 2312 2313 2314 2315 2316 2317
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2318 2319
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2320
		if (context_equiv(ctx, next_ctx)) {
2321 2322
			/*
			 * XXX do we need a memory barrier of sorts
2323
			 * wrt to rcu_dereference() of perf_event_ctxp
2324
			 */
P
Peter Zijlstra 已提交
2325 2326
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2327 2328 2329
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2330

2331
			perf_event_sync_stat(ctx, next_ctx);
2332
		}
2333 2334
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2335
	}
2336
unlock:
2337
	rcu_read_unlock();
2338

2339
	if (do_switch) {
2340
		raw_spin_lock(&ctx->lock);
2341
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2342
		cpuctx->task_ctx = NULL;
2343
		raw_spin_unlock(&ctx->lock);
2344
	}
T
Thomas Gleixner 已提交
2345 2346
}

P
Peter Zijlstra 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2361 2362
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2363 2364 2365 2366 2367
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2368 2369 2370 2371 2372 2373 2374

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2375
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2376 2377
}

2378
static void task_ctx_sched_out(struct perf_event_context *ctx)
2379
{
P
Peter Zijlstra 已提交
2380
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2381

2382 2383
	if (!cpuctx->task_ctx)
		return;
2384 2385 2386 2387

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2388
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2389 2390 2391
	cpuctx->task_ctx = NULL;
}

2392 2393 2394 2395 2396 2397 2398
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2399 2400
}

2401
static void
2402
ctx_pinned_sched_in(struct perf_event_context *ctx,
2403
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2404
{
2405
	struct perf_event *event;
T
Thomas Gleixner 已提交
2406

2407 2408
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2409
			continue;
2410
		if (!event_filter_match(event))
2411 2412
			continue;

S
Stephane Eranian 已提交
2413 2414 2415 2416
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2417
		if (group_can_go_on(event, cpuctx, 1))
2418
			group_sched_in(event, cpuctx, ctx);
2419 2420 2421 2422 2423

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2424 2425 2426
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2427
		}
2428
	}
2429 2430 2431 2432
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2433
		      struct perf_cpu_context *cpuctx)
2434 2435 2436
{
	struct perf_event *event;
	int can_add_hw = 1;
2437

2438 2439 2440
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2441
			continue;
2442 2443
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2444
		 * of events:
2445
		 */
2446
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2447 2448
			continue;

S
Stephane Eranian 已提交
2449 2450 2451 2452
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2453
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2454
			if (group_sched_in(event, cpuctx, ctx))
2455
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2456
		}
T
Thomas Gleixner 已提交
2457
	}
2458 2459 2460 2461 2462
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2463 2464
	     enum event_type_t event_type,
	     struct task_struct *task)
2465
{
S
Stephane Eranian 已提交
2466
	u64 now;
2467
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2468

2469
	ctx->is_active |= event_type;
2470
	if (likely(!ctx->nr_events))
2471
		return;
2472

S
Stephane Eranian 已提交
2473 2474
	now = perf_clock();
	ctx->timestamp = now;
2475
	perf_cgroup_set_timestamp(task, ctx);
2476 2477 2478 2479
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2480
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2481
		ctx_pinned_sched_in(ctx, cpuctx);
2482 2483

	/* Then walk through the lower prio flexible groups */
2484
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2485
		ctx_flexible_sched_in(ctx, cpuctx);
2486 2487
}

2488
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2489 2490
			     enum event_type_t event_type,
			     struct task_struct *task)
2491 2492 2493
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2494
	ctx_sched_in(ctx, cpuctx, event_type, task);
2495 2496
}

S
Stephane Eranian 已提交
2497 2498
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2499
{
P
Peter Zijlstra 已提交
2500
	struct perf_cpu_context *cpuctx;
2501

P
Peter Zijlstra 已提交
2502
	cpuctx = __get_cpu_context(ctx);
2503 2504 2505
	if (cpuctx->task_ctx == ctx)
		return;

2506
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2507
	perf_pmu_disable(ctx->pmu);
2508 2509 2510 2511 2512 2513 2514
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2515 2516
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2517

2518 2519
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2520 2521 2522
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2523 2524 2525 2526
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2527
	perf_pmu_rotate_start(ctx->pmu);
2528 2529
}

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2599 2600
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2601 2602 2603 2604 2605 2606 2607 2608 2609
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2610
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2611
	}
S
Stephane Eranian 已提交
2612 2613 2614 2615 2616 2617
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2618
		perf_cgroup_sched_in(prev, task);
2619 2620 2621 2622

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2623 2624
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2652
#define REDUCE_FLS(a, b)		\
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2692 2693 2694
	if (!divisor)
		return dividend;

2695 2696 2697
	return div64_u64(dividend, divisor);
}

2698 2699 2700
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2701
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2702
{
2703
	struct hw_perf_event *hwc = &event->hw;
2704
	s64 period, sample_period;
2705 2706
	s64 delta;

2707
	period = perf_calculate_period(event, nsec, count);
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2718

2719
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2720 2721 2722
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2723
		local64_set(&hwc->period_left, 0);
2724 2725 2726

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2727
	}
2728 2729
}

2730 2731 2732 2733 2734 2735 2736
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2737
{
2738 2739
	struct perf_event *event;
	struct hw_perf_event *hwc;
2740
	u64 now, period = TICK_NSEC;
2741
	s64 delta;
2742

2743 2744 2745 2746 2747 2748
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2749 2750
		return;

2751
	raw_spin_lock(&ctx->lock);
2752
	perf_pmu_disable(ctx->pmu);
2753

2754
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2755
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2756 2757
			continue;

2758
		if (!event_filter_match(event))
2759 2760
			continue;

2761 2762
		perf_pmu_disable(event->pmu);

2763
		hwc = &event->hw;
2764

2765
		if (hwc->interrupts == MAX_INTERRUPTS) {
2766
			hwc->interrupts = 0;
2767
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2768
			event->pmu->start(event, 0);
2769 2770
		}

2771
		if (!event->attr.freq || !event->attr.sample_freq)
2772
			goto next;
2773

2774 2775 2776 2777 2778
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2779
		now = local64_read(&event->count);
2780 2781
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2782

2783 2784 2785
		/*
		 * restart the event
		 * reload only if value has changed
2786 2787 2788
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2789
		 */
2790
		if (delta > 0)
2791
			perf_adjust_period(event, period, delta, false);
2792 2793

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2794 2795
	next:
		perf_pmu_enable(event->pmu);
2796
	}
2797

2798
	perf_pmu_enable(ctx->pmu);
2799
	raw_spin_unlock(&ctx->lock);
2800 2801
}

2802
/*
2803
 * Round-robin a context's events:
2804
 */
2805
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2806
{
2807 2808 2809 2810 2811 2812
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2813 2814
}

2815
/*
2816 2817 2818
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2819
 */
2820
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2821
{
P
Peter Zijlstra 已提交
2822
	struct perf_event_context *ctx = NULL;
2823
	int rotate = 0, remove = 1;
2824

2825
	if (cpuctx->ctx.nr_events) {
2826
		remove = 0;
2827 2828 2829
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2830

P
Peter Zijlstra 已提交
2831
	ctx = cpuctx->task_ctx;
2832
	if (ctx && ctx->nr_events) {
2833
		remove = 0;
2834 2835 2836
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2837

2838
	if (!rotate)
2839 2840
		goto done;

2841
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2842
	perf_pmu_disable(cpuctx->ctx.pmu);
2843

2844 2845 2846
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2847

2848 2849 2850
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2851

2852
	perf_event_sched_in(cpuctx, ctx, current);
2853

2854 2855
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2856
done:
2857 2858
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2859 2860

	return rotate;
2861 2862
}

2863 2864 2865
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
2866
	if (atomic_read(&nr_freq_events) ||
2867
	    __this_cpu_read(perf_throttled_count))
2868
		return false;
2869 2870
	else
		return true;
2871 2872 2873
}
#endif

2874 2875 2876 2877
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2878 2879
	struct perf_event_context *ctx;
	int throttled;
2880

2881 2882
	WARN_ON(!irqs_disabled());

2883 2884 2885
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2886
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2887 2888 2889 2890 2891 2892
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2893
	}
T
Thomas Gleixner 已提交
2894 2895
}

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2906
	__perf_event_mark_enabled(event);
2907 2908 2909 2910

	return 1;
}

2911
/*
2912
 * Enable all of a task's events that have been marked enable-on-exec.
2913 2914
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2915
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2916
{
2917
	struct perf_event *event;
2918 2919
	unsigned long flags;
	int enabled = 0;
2920
	int ret;
2921 2922

	local_irq_save(flags);
2923
	if (!ctx || !ctx->nr_events)
2924 2925
		goto out;

2926 2927 2928 2929 2930 2931 2932
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2933
	perf_cgroup_sched_out(current, NULL);
2934

2935
	raw_spin_lock(&ctx->lock);
2936
	task_ctx_sched_out(ctx);
2937

2938
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2939 2940 2941
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2942 2943 2944
	}

	/*
2945
	 * Unclone this context if we enabled any event.
2946
	 */
2947 2948
	if (enabled)
		unclone_ctx(ctx);
2949

2950
	raw_spin_unlock(&ctx->lock);
2951

2952 2953 2954
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2955
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2956
out:
2957 2958 2959
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2960
/*
2961
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2962
 */
2963
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2964
{
2965 2966
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2967
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2968

2969 2970 2971 2972
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2973 2974
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2975 2976 2977 2978
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2979
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2980
	if (ctx->is_active) {
2981
		update_context_time(ctx);
S
Stephane Eranian 已提交
2982 2983
		update_cgrp_time_from_event(event);
	}
2984
	update_event_times(event);
2985 2986
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2987
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2988 2989
}

P
Peter Zijlstra 已提交
2990 2991
static inline u64 perf_event_count(struct perf_event *event)
{
2992
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2993 2994
}

2995
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2996 2997
{
	/*
2998 2999
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3000
	 */
3001 3002 3003 3004
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3005 3006 3007
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3008
		raw_spin_lock_irqsave(&ctx->lock, flags);
3009 3010 3011 3012 3013
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3014
		if (ctx->is_active) {
3015
			update_context_time(ctx);
S
Stephane Eranian 已提交
3016 3017
			update_cgrp_time_from_event(event);
		}
3018
		update_event_times(event);
3019
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3020 3021
	}

P
Peter Zijlstra 已提交
3022
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3023 3024
}

3025
/*
3026
 * Initialize the perf_event context in a task_struct:
3027
 */
3028
static void __perf_event_init_context(struct perf_event_context *ctx)
3029
{
3030
	raw_spin_lock_init(&ctx->lock);
3031
	mutex_init(&ctx->mutex);
3032 3033
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3034 3035
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3051
	}
3052 3053 3054
	ctx->pmu = pmu;

	return ctx;
3055 3056
}

3057 3058 3059 3060 3061
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3062 3063

	rcu_read_lock();
3064
	if (!vpid)
T
Thomas Gleixner 已提交
3065 3066
		task = current;
	else
3067
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3068 3069 3070 3071 3072 3073 3074 3075
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3076 3077 3078 3079
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3080 3081 3082 3083 3084 3085 3086
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3087 3088 3089
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3090
static struct perf_event_context *
M
Matt Helsley 已提交
3091
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3092
{
3093
	struct perf_event_context *ctx;
3094
	struct perf_cpu_context *cpuctx;
3095
	unsigned long flags;
P
Peter Zijlstra 已提交
3096
	int ctxn, err;
T
Thomas Gleixner 已提交
3097

3098
	if (!task) {
3099
		/* Must be root to operate on a CPU event: */
3100
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3101 3102 3103
			return ERR_PTR(-EACCES);

		/*
3104
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3105 3106 3107
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3108
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3109 3110
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3111
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3112
		ctx = &cpuctx->ctx;
3113
		get_ctx(ctx);
3114
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3115 3116 3117 3118

		return ctx;
	}

P
Peter Zijlstra 已提交
3119 3120 3121 3122 3123
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3124
retry:
P
Peter Zijlstra 已提交
3125
	ctx = perf_lock_task_context(task, ctxn, &flags);
3126
	if (ctx) {
3127
		unclone_ctx(ctx);
3128
		++ctx->pin_count;
3129
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3130
	} else {
3131
		ctx = alloc_perf_context(pmu, task);
3132 3133 3134
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3135

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3146
		else {
3147
			get_ctx(ctx);
3148
			++ctx->pin_count;
3149
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3150
		}
3151 3152 3153
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3154
			put_ctx(ctx);
3155 3156 3157 3158

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3159 3160 3161
		}
	}

T
Thomas Gleixner 已提交
3162
	return ctx;
3163

P
Peter Zijlstra 已提交
3164
errout:
3165
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3166 3167
}

L
Li Zefan 已提交
3168 3169
static void perf_event_free_filter(struct perf_event *event);

3170
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3171
{
3172
	struct perf_event *event;
P
Peter Zijlstra 已提交
3173

3174 3175 3176
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3177
	perf_event_free_filter(event);
3178
	kfree(event);
P
Peter Zijlstra 已提交
3179 3180
}

3181
static void ring_buffer_put(struct ring_buffer *rb);
3182
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3183

3184
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3185
{
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3196

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3210 3211
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3212 3213 3214 3215 3216 3217 3218
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3219

3220 3221
static void __free_event(struct perf_event *event)
{
3222
	if (!event->parent) {
3223 3224
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3225
	}
3226

3227 3228 3229 3230 3231 3232
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3233 3234 3235
	if (event->pmu)
		module_put(event->pmu->module);

3236 3237
	call_rcu(&event->rcu_head, free_event_rcu);
}
3238
static void free_event(struct perf_event *event)
3239
{
3240
	irq_work_sync(&event->pending);
3241

3242
	unaccount_event(event);
3243

3244
	if (event->rb) {
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3261 3262
	}

S
Stephane Eranian 已提交
3263 3264 3265
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3266

3267
	__free_event(event);
3268 3269
}

3270
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3271
{
3272
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3273

3274
	WARN_ON_ONCE(ctx->parent_ctx);
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3288
	raw_spin_lock_irq(&ctx->lock);
3289
	perf_group_detach(event);
3290
	raw_spin_unlock_irq(&ctx->lock);
3291
	perf_remove_from_context(event);
3292
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3293

3294
	free_event(event);
T
Thomas Gleixner 已提交
3295 3296 3297

	return 0;
}
3298
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3299

3300 3301 3302
/*
 * Called when the last reference to the file is gone.
 */
3303
static void put_event(struct perf_event *event)
3304
{
P
Peter Zijlstra 已提交
3305
	struct task_struct *owner;
3306

3307 3308
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3309

P
Peter Zijlstra 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3343 3344 3345 3346 3347 3348 3349
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3350 3351
}

3352
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3353
{
3354
	struct perf_event *child;
3355 3356
	u64 total = 0;

3357 3358 3359
	*enabled = 0;
	*running = 0;

3360
	mutex_lock(&event->child_mutex);
3361
	total += perf_event_read(event);
3362 3363 3364 3365 3366 3367
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3368
		total += perf_event_read(child);
3369 3370 3371
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3372
	mutex_unlock(&event->child_mutex);
3373 3374 3375

	return total;
}
3376
EXPORT_SYMBOL_GPL(perf_event_read_value);
3377

3378
static int perf_event_read_group(struct perf_event *event,
3379 3380
				   u64 read_format, char __user *buf)
{
3381
	struct perf_event *leader = event->group_leader, *sub;
3382 3383
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3384
	u64 values[5];
3385
	u64 count, enabled, running;
3386

3387
	mutex_lock(&ctx->mutex);
3388
	count = perf_event_read_value(leader, &enabled, &running);
3389 3390

	values[n++] = 1 + leader->nr_siblings;
3391 3392 3393 3394
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3395 3396 3397
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3398 3399 3400 3401

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3402
		goto unlock;
3403

3404
	ret = size;
3405

3406
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3407
		n = 0;
3408

3409
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3410 3411 3412 3413 3414
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3415
		if (copy_to_user(buf + ret, values, size)) {
3416 3417 3418
			ret = -EFAULT;
			goto unlock;
		}
3419 3420

		ret += size;
3421
	}
3422 3423
unlock:
	mutex_unlock(&ctx->mutex);
3424

3425
	return ret;
3426 3427
}

3428
static int perf_event_read_one(struct perf_event *event,
3429 3430
				 u64 read_format, char __user *buf)
{
3431
	u64 enabled, running;
3432 3433 3434
	u64 values[4];
	int n = 0;

3435 3436 3437 3438 3439
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3440
	if (read_format & PERF_FORMAT_ID)
3441
		values[n++] = primary_event_id(event);
3442 3443 3444 3445 3446 3447 3448

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3449
/*
3450
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3451 3452
 */
static ssize_t
3453
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3454
{
3455
	u64 read_format = event->attr.read_format;
3456
	int ret;
T
Thomas Gleixner 已提交
3457

3458
	/*
3459
	 * Return end-of-file for a read on a event that is in
3460 3461 3462
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3463
	if (event->state == PERF_EVENT_STATE_ERROR)
3464 3465
		return 0;

3466
	if (count < event->read_size)
3467 3468
		return -ENOSPC;

3469
	WARN_ON_ONCE(event->ctx->parent_ctx);
3470
	if (read_format & PERF_FORMAT_GROUP)
3471
		ret = perf_event_read_group(event, read_format, buf);
3472
	else
3473
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3474

3475
	return ret;
T
Thomas Gleixner 已提交
3476 3477 3478 3479 3480
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3481
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3482

3483
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3484 3485 3486 3487
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3488
	struct perf_event *event = file->private_data;
3489
	struct ring_buffer *rb;
3490
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3491

3492
	/*
3493 3494
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3495 3496
	 */
	mutex_lock(&event->mmap_mutex);
3497 3498
	rb = event->rb;
	if (rb)
3499
		events = atomic_xchg(&rb->poll, 0);
3500 3501
	mutex_unlock(&event->mmap_mutex);

3502
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3503 3504 3505 3506

	return events;
}

3507
static void perf_event_reset(struct perf_event *event)
3508
{
3509
	(void)perf_event_read(event);
3510
	local64_set(&event->count, 0);
3511
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3512 3513
}

3514
/*
3515 3516 3517 3518
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3519
 */
3520 3521
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3522
{
3523
	struct perf_event *child;
P
Peter Zijlstra 已提交
3524

3525 3526 3527 3528
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3529
		func(child);
3530
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3531 3532
}

3533 3534
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3535
{
3536 3537
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3538

3539 3540
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3541
	event = event->group_leader;
3542

3543 3544
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3545
		perf_event_for_each_child(sibling, func);
3546
	mutex_unlock(&ctx->mutex);
3547 3548
}

3549
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3550
{
3551
	struct perf_event_context *ctx = event->ctx;
3552
	int ret = 0, active;
3553 3554
	u64 value;

3555
	if (!is_sampling_event(event))
3556 3557
		return -EINVAL;

3558
	if (copy_from_user(&value, arg, sizeof(value)))
3559 3560 3561 3562 3563
		return -EFAULT;

	if (!value)
		return -EINVAL;

3564
	raw_spin_lock_irq(&ctx->lock);
3565 3566
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3567 3568 3569 3570
			ret = -EINVAL;
			goto unlock;
		}

3571
		event->attr.sample_freq = value;
3572
	} else {
3573 3574
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3575
	}
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3590
unlock:
3591
	raw_spin_unlock_irq(&ctx->lock);
3592 3593 3594 3595

	return ret;
}

3596 3597
static const struct file_operations perf_fops;

3598
static inline int perf_fget_light(int fd, struct fd *p)
3599
{
3600 3601 3602
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3603

3604 3605 3606
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3607
	}
3608 3609
	*p = f;
	return 0;
3610 3611 3612 3613
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3614
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3615

3616 3617
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3618 3619
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3620
	u32 flags = arg;
3621 3622

	switch (cmd) {
3623 3624
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3625
		break;
3626 3627
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3628
		break;
3629 3630
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3631
		break;
P
Peter Zijlstra 已提交
3632

3633 3634
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3635

3636 3637
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3638

3639 3640 3641 3642 3643 3644 3645 3646 3647
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3648
	case PERF_EVENT_IOC_SET_OUTPUT:
3649 3650 3651
	{
		int ret;
		if (arg != -1) {
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3662 3663 3664
		}
		return ret;
	}
3665

L
Li Zefan 已提交
3666 3667 3668
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3669
	default:
P
Peter Zijlstra 已提交
3670
		return -ENOTTY;
3671
	}
P
Peter Zijlstra 已提交
3672 3673

	if (flags & PERF_IOC_FLAG_GROUP)
3674
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3675
	else
3676
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3677 3678

	return 0;
3679 3680
}

3681
int perf_event_task_enable(void)
3682
{
3683
	struct perf_event *event;
3684

3685 3686 3687 3688
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3689 3690 3691 3692

	return 0;
}

3693
int perf_event_task_disable(void)
3694
{
3695
	struct perf_event *event;
3696

3697 3698 3699 3700
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3701 3702 3703 3704

	return 0;
}

3705
static int perf_event_index(struct perf_event *event)
3706
{
P
Peter Zijlstra 已提交
3707 3708 3709
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3710
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3711 3712
		return 0;

3713
	return event->pmu->event_idx(event);
3714 3715
}

3716
static void calc_timer_values(struct perf_event *event,
3717
				u64 *now,
3718 3719
				u64 *enabled,
				u64 *running)
3720
{
3721
	u64 ctx_time;
3722

3723 3724
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3725 3726 3727 3728
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

3749
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3750 3751 3752
{
}

3753 3754 3755 3756 3757
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3758
void perf_event_update_userpage(struct perf_event *event)
3759
{
3760
	struct perf_event_mmap_page *userpg;
3761
	struct ring_buffer *rb;
3762
	u64 enabled, running, now;
3763 3764

	rcu_read_lock();
3765 3766 3767 3768
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

3769 3770 3771 3772 3773 3774 3775 3776 3777
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3778
	calc_timer_values(event, &now, &enabled, &running);
3779

3780
	userpg = rb->user_page;
3781 3782 3783 3784 3785
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3786
	++userpg->lock;
3787
	barrier();
3788
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3789
	userpg->offset = perf_event_count(event);
3790
	if (userpg->index)
3791
		userpg->offset -= local64_read(&event->hw.prev_count);
3792

3793
	userpg->time_enabled = enabled +
3794
			atomic64_read(&event->child_total_time_enabled);
3795

3796
	userpg->time_running = running +
3797
			atomic64_read(&event->child_total_time_running);
3798

3799
	arch_perf_update_userpage(userpg, now);
3800

3801
	barrier();
3802
	++userpg->lock;
3803
	preempt_enable();
3804
unlock:
3805
	rcu_read_unlock();
3806 3807
}

3808 3809 3810
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3811
	struct ring_buffer *rb;
3812 3813 3814 3815 3816 3817 3818 3819 3820
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3821 3822
	rb = rcu_dereference(event->rb);
	if (!rb)
3823 3824 3825 3826 3827
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3828
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3843 3844 3845 3846 3847 3848 3849 3850 3851
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3852 3853
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3854 3855 3856
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3857
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3876 3877 3878 3879
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3880 3881 3882
	rcu_read_unlock();
}

3883
static void rb_free_rcu(struct rcu_head *rcu_head)
3884
{
3885
	struct ring_buffer *rb;
3886

3887 3888
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3889 3890
}

3891
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3892
{
3893
	struct ring_buffer *rb;
3894

3895
	rcu_read_lock();
3896 3897 3898 3899
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3900 3901 3902
	}
	rcu_read_unlock();

3903
	return rb;
3904 3905
}

3906
static void ring_buffer_put(struct ring_buffer *rb)
3907
{
3908
	if (!atomic_dec_and_test(&rb->refcount))
3909
		return;
3910

3911
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3912

3913
	call_rcu(&rb->rcu_head, rb_free_rcu);
3914 3915 3916 3917
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3918
	struct perf_event *event = vma->vm_file->private_data;
3919

3920
	atomic_inc(&event->mmap_count);
3921
	atomic_inc(&event->rb->mmap_count);
3922 3923
}

3924 3925 3926 3927 3928 3929 3930 3931
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3932 3933
static void perf_mmap_close(struct vm_area_struct *vma)
{
3934
	struct perf_event *event = vma->vm_file->private_data;
3935

3936 3937 3938 3939
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3940

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3973

3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3989
		}
3990
		mutex_unlock(&event->mmap_mutex);
3991
		put_event(event);
3992

3993 3994 3995 3996 3997
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3998
	}
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
4015 4016
}

4017
static const struct vm_operations_struct perf_mmap_vmops = {
4018 4019 4020 4021
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4022 4023 4024 4025
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4026
	struct perf_event *event = file->private_data;
4027
	unsigned long user_locked, user_lock_limit;
4028
	struct user_struct *user = current_user();
4029
	unsigned long locked, lock_limit;
4030
	struct ring_buffer *rb;
4031 4032
	unsigned long vma_size;
	unsigned long nr_pages;
4033
	long user_extra, extra;
4034
	int ret = 0, flags = 0;
4035

4036 4037 4038
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4039
	 * same rb.
4040 4041 4042 4043
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4044
	if (!(vma->vm_flags & VM_SHARED))
4045
		return -EINVAL;
4046 4047 4048 4049

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4050
	/*
4051
	 * If we have rb pages ensure they're a power-of-two number, so we
4052 4053 4054
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4055 4056
		return -EINVAL;

4057
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4058 4059
		return -EINVAL;

4060 4061
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4062

4063
	WARN_ON_ONCE(event->ctx->parent_ctx);
4064
again:
4065
	mutex_lock(&event->mmap_mutex);
4066
	if (event->rb) {
4067
		if (event->rb->nr_pages != nr_pages) {
4068
			ret = -EINVAL;
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4082 4083 4084
		goto unlock;
	}

4085
	user_extra = nr_pages + 1;
4086
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4087 4088 4089 4090 4091 4092

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4093
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4094

4095 4096 4097
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4098

4099
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4100
	lock_limit >>= PAGE_SHIFT;
4101
	locked = vma->vm_mm->pinned_vm + extra;
4102

4103 4104
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4105 4106 4107
		ret = -EPERM;
		goto unlock;
	}
4108

4109
	WARN_ON(event->rb);
4110

4111
	if (vma->vm_flags & VM_WRITE)
4112
		flags |= RING_BUFFER_WRITABLE;
4113

4114 4115 4116 4117
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4118
	if (!rb) {
4119
		ret = -ENOMEM;
4120
		goto unlock;
4121
	}
P
Peter Zijlstra 已提交
4122

4123
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4124 4125
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4126

4127
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4128 4129
	vma->vm_mm->pinned_vm += extra;

4130
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4131
	rcu_assign_pointer(event->rb, rb);
4132

4133
	perf_event_init_userpage(event);
4134 4135
	perf_event_update_userpage(event);

4136
unlock:
4137 4138
	if (!ret)
		atomic_inc(&event->mmap_count);
4139
	mutex_unlock(&event->mmap_mutex);
4140

4141 4142 4143 4144
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4145
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4146
	vma->vm_ops = &perf_mmap_vmops;
4147 4148

	return ret;
4149 4150
}

P
Peter Zijlstra 已提交
4151 4152
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4153
	struct inode *inode = file_inode(filp);
4154
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4155 4156 4157
	int retval;

	mutex_lock(&inode->i_mutex);
4158
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4159 4160 4161 4162 4163 4164 4165 4166
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4167
static const struct file_operations perf_fops = {
4168
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4169 4170 4171
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4172 4173
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4174
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4175
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4176 4177
};

4178
/*
4179
 * Perf event wakeup
4180 4181 4182 4183 4184
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4185
void perf_event_wakeup(struct perf_event *event)
4186
{
4187
	ring_buffer_wakeup(event);
4188

4189 4190 4191
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4192
	}
4193 4194
}

4195
static void perf_pending_event(struct irq_work *entry)
4196
{
4197 4198
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4199

4200 4201 4202
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4203 4204
	}

4205 4206 4207
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4208 4209 4210
	}
}

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4358 4359 4360
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4376
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4388 4389 4390
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4415 4416 4417

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4418 4419
}

4420 4421 4422
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4423 4424 4425 4426 4427
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4428
static void perf_output_read_one(struct perf_output_handle *handle,
4429 4430
				 struct perf_event *event,
				 u64 enabled, u64 running)
4431
{
4432
	u64 read_format = event->attr.read_format;
4433 4434 4435
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4436
	values[n++] = perf_event_count(event);
4437
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4438
		values[n++] = enabled +
4439
			atomic64_read(&event->child_total_time_enabled);
4440 4441
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4442
		values[n++] = running +
4443
			atomic64_read(&event->child_total_time_running);
4444 4445
	}
	if (read_format & PERF_FORMAT_ID)
4446
		values[n++] = primary_event_id(event);
4447

4448
	__output_copy(handle, values, n * sizeof(u64));
4449 4450 4451
}

/*
4452
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4453 4454
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4455 4456
			    struct perf_event *event,
			    u64 enabled, u64 running)
4457
{
4458 4459
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4460 4461 4462 4463 4464 4465
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4466
		values[n++] = enabled;
4467 4468

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4469
		values[n++] = running;
4470

4471
	if (leader != event)
4472 4473
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4474
	values[n++] = perf_event_count(leader);
4475
	if (read_format & PERF_FORMAT_ID)
4476
		values[n++] = primary_event_id(leader);
4477

4478
	__output_copy(handle, values, n * sizeof(u64));
4479

4480
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4481 4482
		n = 0;

4483 4484
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4485 4486
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4487
		values[n++] = perf_event_count(sub);
4488
		if (read_format & PERF_FORMAT_ID)
4489
			values[n++] = primary_event_id(sub);
4490

4491
		__output_copy(handle, values, n * sizeof(u64));
4492 4493 4494
	}
}

4495 4496 4497
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4498
static void perf_output_read(struct perf_output_handle *handle,
4499
			     struct perf_event *event)
4500
{
4501
	u64 enabled = 0, running = 0, now;
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4513
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4514
		calc_timer_values(event, &now, &enabled, &running);
4515

4516
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4517
		perf_output_read_group(handle, event, enabled, running);
4518
	else
4519
		perf_output_read_one(handle, event, enabled, running);
4520 4521
}

4522 4523 4524
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4525
			struct perf_event *event)
4526 4527 4528 4529 4530
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4531 4532 4533
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4559
		perf_output_read(handle, event);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4570
			__output_copy(handle, data->callchain, size);
4571 4572 4573 4574 4575 4576 4577 4578 4579
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4580 4581
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4593

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4628

4629
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4630 4631 4632
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4633
	}
A
Andi Kleen 已提交
4634 4635 4636

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4637 4638 4639

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4640

A
Andi Kleen 已提交
4641 4642 4643
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4657 4658 4659 4660
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4661
			 struct perf_event *event,
4662
			 struct pt_regs *regs)
4663
{
4664
	u64 sample_type = event->attr.sample_type;
4665

4666
	header->type = PERF_RECORD_SAMPLE;
4667
	header->size = sizeof(*header) + event->header_size;
4668 4669 4670

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4671

4672
	__perf_event_header__init_id(header, data, event);
4673

4674
	if (sample_type & PERF_SAMPLE_IP)
4675 4676
		data->ip = perf_instruction_pointer(regs);

4677
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4678
		int size = 1;
4679

4680
		data->callchain = perf_callchain(event, regs);
4681 4682 4683 4684 4685

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4686 4687
	}

4688
	if (sample_type & PERF_SAMPLE_RAW) {
4689 4690 4691 4692 4693 4694 4695 4696
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4697
		header->size += size;
4698
	}
4699 4700 4701 4702 4703 4704 4705 4706 4707

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4751
}
4752

4753
static void perf_event_output(struct perf_event *event,
4754 4755 4756 4757 4758
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4759

4760 4761 4762
	/* protect the callchain buffers */
	rcu_read_lock();

4763
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4764

4765
	if (perf_output_begin(&handle, event, header.size))
4766
		goto exit;
4767

4768
	perf_output_sample(&handle, &header, data, event);
4769

4770
	perf_output_end(&handle);
4771 4772 4773

exit:
	rcu_read_unlock();
4774 4775
}

4776
/*
4777
 * read event_id
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4788
perf_event_read_event(struct perf_event *event,
4789 4790 4791
			struct task_struct *task)
{
	struct perf_output_handle handle;
4792
	struct perf_sample_data sample;
4793
	struct perf_read_event read_event = {
4794
		.header = {
4795
			.type = PERF_RECORD_READ,
4796
			.misc = 0,
4797
			.size = sizeof(read_event) + event->read_size,
4798
		},
4799 4800
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4801
	};
4802
	int ret;
4803

4804
	perf_event_header__init_id(&read_event.header, &sample, event);
4805
	ret = perf_output_begin(&handle, event, read_event.header.size);
4806 4807 4808
	if (ret)
		return;

4809
	perf_output_put(&handle, read_event);
4810
	perf_output_read(&handle, event);
4811
	perf_event__output_id_sample(event, &handle, &sample);
4812

4813 4814 4815
	perf_output_end(&handle);
}

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
4830
		output(event, data);
4831 4832 4833 4834
	}
}

static void
4835
perf_event_aux(perf_event_aux_output_cb output, void *data,
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
4848
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4849 4850 4851 4852 4853 4854 4855
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
4856
			perf_event_aux_ctx(ctx, output, data);
4857 4858 4859 4860 4861 4862
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
4863
		perf_event_aux_ctx(task_ctx, output, data);
4864 4865 4866 4867 4868
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4869
/*
P
Peter Zijlstra 已提交
4870 4871
 * task tracking -- fork/exit
 *
4872
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4873 4874
 */

P
Peter Zijlstra 已提交
4875
struct perf_task_event {
4876
	struct task_struct		*task;
4877
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4878 4879 4880 4881 4882 4883

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4884 4885
		u32				tid;
		u32				ptid;
4886
		u64				time;
4887
	} event_id;
P
Peter Zijlstra 已提交
4888 4889
};

4890 4891
static int perf_event_task_match(struct perf_event *event)
{
4892 4893 4894
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
4895 4896
}

4897
static void perf_event_task_output(struct perf_event *event,
4898
				   void *data)
P
Peter Zijlstra 已提交
4899
{
4900
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4901
	struct perf_output_handle handle;
4902
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4903
	struct task_struct *task = task_event->task;
4904
	int ret, size = task_event->event_id.header.size;
4905

4906 4907 4908
	if (!perf_event_task_match(event))
		return;

4909
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4910

4911
	ret = perf_output_begin(&handle, event,
4912
				task_event->event_id.header.size);
4913
	if (ret)
4914
		goto out;
P
Peter Zijlstra 已提交
4915

4916 4917
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4918

4919 4920
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4921

4922
	perf_output_put(&handle, task_event->event_id);
4923

4924 4925
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4926
	perf_output_end(&handle);
4927 4928
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4929 4930
}

4931 4932
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4933
			      int new)
P
Peter Zijlstra 已提交
4934
{
P
Peter Zijlstra 已提交
4935
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4936

4937 4938 4939
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4940 4941
		return;

P
Peter Zijlstra 已提交
4942
	task_event = (struct perf_task_event){
4943 4944
		.task	  = task,
		.task_ctx = task_ctx,
4945
		.event_id    = {
P
Peter Zijlstra 已提交
4946
			.header = {
4947
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4948
				.misc = 0,
4949
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4950
			},
4951 4952
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4953 4954
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4955
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4956 4957 4958
		},
	};

4959
	perf_event_aux(perf_event_task_output,
4960 4961
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4962 4963
}

4964
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4965
{
4966
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4967 4968
}

4969 4970 4971 4972 4973
/*
 * comm tracking
 */

struct perf_comm_event {
4974 4975
	struct task_struct	*task;
	char			*comm;
4976 4977 4978 4979 4980 4981 4982
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4983
	} event_id;
4984 4985
};

4986 4987 4988 4989 4990
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

4991
static void perf_event_comm_output(struct perf_event *event,
4992
				   void *data)
4993
{
4994
	struct perf_comm_event *comm_event = data;
4995
	struct perf_output_handle handle;
4996
	struct perf_sample_data sample;
4997
	int size = comm_event->event_id.header.size;
4998 4999
	int ret;

5000 5001 5002
	if (!perf_event_comm_match(event))
		return;

5003 5004
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5005
				comm_event->event_id.header.size);
5006 5007

	if (ret)
5008
		goto out;
5009

5010 5011
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5012

5013
	perf_output_put(&handle, comm_event->event_id);
5014
	__output_copy(&handle, comm_event->comm,
5015
				   comm_event->comm_size);
5016 5017 5018

	perf_event__output_id_sample(event, &handle, &sample);

5019
	perf_output_end(&handle);
5020 5021
out:
	comm_event->event_id.header.size = size;
5022 5023
}

5024
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5025
{
5026
	char comm[TASK_COMM_LEN];
5027 5028
	unsigned int size;

5029
	memset(comm, 0, sizeof(comm));
5030
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5031
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5032 5033 5034 5035

	comm_event->comm = comm;
	comm_event->comm_size = size;

5036
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5037

5038
	perf_event_aux(perf_event_comm_output,
5039 5040
		       comm_event,
		       NULL);
5041 5042
}

5043
void perf_event_comm(struct task_struct *task)
5044
{
5045
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
5046 5047
	struct perf_event_context *ctx;
	int ctxn;
5048

5049
	rcu_read_lock();
P
Peter Zijlstra 已提交
5050 5051 5052 5053
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5054

P
Peter Zijlstra 已提交
5055 5056
		perf_event_enable_on_exec(ctx);
	}
5057
	rcu_read_unlock();
5058

5059
	if (!atomic_read(&nr_comm_events))
5060
		return;
5061

5062
	comm_event = (struct perf_comm_event){
5063
		.task	= task,
5064 5065
		/* .comm      */
		/* .comm_size */
5066
		.event_id  = {
5067
			.header = {
5068
				.type = PERF_RECORD_COMM,
5069 5070 5071 5072 5073
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
5074 5075 5076
		},
	};

5077
	perf_event_comm_event(&comm_event);
5078 5079
}

5080 5081 5082 5083 5084
/*
 * mmap tracking
 */

struct perf_mmap_event {
5085 5086 5087 5088
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5089 5090 5091
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5092 5093 5094 5095 5096 5097 5098 5099 5100

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5101
	} event_id;
5102 5103
};

5104 5105 5106 5107 5108 5109 5110 5111
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5112
	       (executable && (event->attr.mmap || event->attr.mmap2));
5113 5114
}

5115
static void perf_event_mmap_output(struct perf_event *event,
5116
				   void *data)
5117
{
5118
	struct perf_mmap_event *mmap_event = data;
5119
	struct perf_output_handle handle;
5120
	struct perf_sample_data sample;
5121
	int size = mmap_event->event_id.header.size;
5122
	int ret;
5123

5124 5125 5126
	if (!perf_event_mmap_match(event, data))
		return;

5127 5128 5129 5130 5131
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5132
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5133 5134
	}

5135 5136
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5137
				mmap_event->event_id.header.size);
5138
	if (ret)
5139
		goto out;
5140

5141 5142
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5143

5144
	perf_output_put(&handle, mmap_event->event_id);
5145 5146 5147 5148 5149 5150 5151 5152

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
	}

5153
	__output_copy(&handle, mmap_event->file_name,
5154
				   mmap_event->file_size);
5155 5156 5157

	perf_event__output_id_sample(event, &handle, &sample);

5158
	perf_output_end(&handle);
5159 5160
out:
	mmap_event->event_id.header.size = size;
5161 5162
}

5163
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5164
{
5165 5166
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5167 5168
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5169 5170 5171
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5172
	char *name;
5173

5174
	if (file) {
5175 5176
		struct inode *inode;
		dev_t dev;
5177

5178
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5179
		if (!buf) {
5180 5181
			name = "//enomem";
			goto cpy_name;
5182
		}
5183
		/*
5184
		 * d_path() works from the end of the rb backwards, so we
5185 5186 5187
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5188
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5189
		if (IS_ERR(name)) {
5190 5191
			name = "//toolong";
			goto cpy_name;
5192
		}
5193 5194 5195 5196 5197 5198
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5199
		goto got_name;
5200
	} else {
5201
		name = (char *)arch_vma_name(vma);
5202 5203
		if (name)
			goto cpy_name;
5204

5205
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5206
				vma->vm_end >= vma->vm_mm->brk) {
5207 5208
			name = "[heap]";
			goto cpy_name;
5209 5210
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5211
				vma->vm_end >= vma->vm_mm->start_stack) {
5212 5213
			name = "[stack]";
			goto cpy_name;
5214 5215
		}

5216 5217
		name = "//anon";
		goto cpy_name;
5218 5219
	}

5220 5221 5222
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5223
got_name:
5224 5225 5226 5227 5228 5229 5230 5231
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5232 5233 5234

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5235 5236 5237 5238
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5239

5240 5241 5242
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5243
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5244

5245
	perf_event_aux(perf_event_mmap_output,
5246 5247
		       mmap_event,
		       NULL);
5248

5249 5250 5251
	kfree(buf);
}

5252
void perf_event_mmap(struct vm_area_struct *vma)
5253
{
5254 5255
	struct perf_mmap_event mmap_event;

5256
	if (!atomic_read(&nr_mmap_events))
5257 5258 5259
		return;

	mmap_event = (struct perf_mmap_event){
5260
		.vma	= vma,
5261 5262
		/* .file_name */
		/* .file_size */
5263
		.event_id  = {
5264
			.header = {
5265
				.type = PERF_RECORD_MMAP,
5266
				.misc = PERF_RECORD_MISC_USER,
5267 5268 5269 5270
				/* .size */
			},
			/* .pid */
			/* .tid */
5271 5272
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5273
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5274
		},
5275 5276 5277 5278
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5279 5280
	};

5281
	perf_event_mmap_event(&mmap_event);
5282 5283
}

5284 5285 5286 5287
/*
 * IRQ throttle logging
 */

5288
static void perf_log_throttle(struct perf_event *event, int enable)
5289 5290
{
	struct perf_output_handle handle;
5291
	struct perf_sample_data sample;
5292 5293 5294 5295 5296
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5297
		u64				id;
5298
		u64				stream_id;
5299 5300
	} throttle_event = {
		.header = {
5301
			.type = PERF_RECORD_THROTTLE,
5302 5303 5304
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5305
		.time		= perf_clock(),
5306 5307
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5308 5309
	};

5310
	if (enable)
5311
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5312

5313 5314 5315
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5316
				throttle_event.header.size);
5317 5318 5319 5320
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5321
	perf_event__output_id_sample(event, &handle, &sample);
5322 5323 5324
	perf_output_end(&handle);
}

5325
/*
5326
 * Generic event overflow handling, sampling.
5327 5328
 */

5329
static int __perf_event_overflow(struct perf_event *event,
5330 5331
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5332
{
5333 5334
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5335
	u64 seq;
5336 5337
	int ret = 0;

5338 5339 5340 5341 5342 5343 5344
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5345 5346 5347 5348 5349 5350 5351 5352 5353
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5354 5355
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5356
			tick_nohz_full_kick();
5357 5358
			ret = 1;
		}
5359
	}
5360

5361
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5362
		u64 now = perf_clock();
5363
		s64 delta = now - hwc->freq_time_stamp;
5364

5365
		hwc->freq_time_stamp = now;
5366

5367
		if (delta > 0 && delta < 2*TICK_NSEC)
5368
			perf_adjust_period(event, delta, hwc->last_period, true);
5369 5370
	}

5371 5372
	/*
	 * XXX event_limit might not quite work as expected on inherited
5373
	 * events
5374 5375
	 */

5376 5377
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5378
		ret = 1;
5379
		event->pending_kill = POLL_HUP;
5380 5381
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5382 5383
	}

5384
	if (event->overflow_handler)
5385
		event->overflow_handler(event, data, regs);
5386
	else
5387
		perf_event_output(event, data, regs);
5388

P
Peter Zijlstra 已提交
5389
	if (event->fasync && event->pending_kill) {
5390 5391
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5392 5393
	}

5394
	return ret;
5395 5396
}

5397
int perf_event_overflow(struct perf_event *event,
5398 5399
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5400
{
5401
	return __perf_event_overflow(event, 1, data, regs);
5402 5403
}

5404
/*
5405
 * Generic software event infrastructure
5406 5407
 */

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5419
/*
5420 5421
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5422 5423 5424 5425
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5426
u64 perf_swevent_set_period(struct perf_event *event)
5427
{
5428
	struct hw_perf_event *hwc = &event->hw;
5429 5430 5431 5432 5433
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5434 5435

again:
5436
	old = val = local64_read(&hwc->period_left);
5437 5438
	if (val < 0)
		return 0;
5439

5440 5441 5442
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5443
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5444
		goto again;
5445

5446
	return nr;
5447 5448
}

5449
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5450
				    struct perf_sample_data *data,
5451
				    struct pt_regs *regs)
5452
{
5453
	struct hw_perf_event *hwc = &event->hw;
5454
	int throttle = 0;
5455

5456 5457
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5458

5459 5460
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5461

5462
	for (; overflow; overflow--) {
5463
		if (__perf_event_overflow(event, throttle,
5464
					    data, regs)) {
5465 5466 5467 5468 5469 5470
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5471
		throttle = 1;
5472
	}
5473 5474
}

P
Peter Zijlstra 已提交
5475
static void perf_swevent_event(struct perf_event *event, u64 nr,
5476
			       struct perf_sample_data *data,
5477
			       struct pt_regs *regs)
5478
{
5479
	struct hw_perf_event *hwc = &event->hw;
5480

5481
	local64_add(nr, &event->count);
5482

5483 5484 5485
	if (!regs)
		return;

5486
	if (!is_sampling_event(event))
5487
		return;
5488

5489 5490 5491 5492 5493 5494
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5495
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5496
		return perf_swevent_overflow(event, 1, data, regs);
5497

5498
	if (local64_add_negative(nr, &hwc->period_left))
5499
		return;
5500

5501
	perf_swevent_overflow(event, 0, data, regs);
5502 5503
}

5504 5505 5506
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5507
	if (event->hw.state & PERF_HES_STOPPED)
5508
		return 1;
P
Peter Zijlstra 已提交
5509

5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5521
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5522
				enum perf_type_id type,
L
Li Zefan 已提交
5523 5524 5525
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5526
{
5527
	if (event->attr.type != type)
5528
		return 0;
5529

5530
	if (event->attr.config != event_id)
5531 5532
		return 0;

5533 5534
	if (perf_exclude_event(event, regs))
		return 0;
5535 5536 5537 5538

	return 1;
}

5539 5540 5541 5542 5543 5544 5545
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5546 5547
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5548
{
5549 5550 5551 5552
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5553

5554 5555
/* For the read side: events when they trigger */
static inline struct hlist_head *
5556
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5557 5558
{
	struct swevent_hlist *hlist;
5559

5560
	hlist = rcu_dereference(swhash->swevent_hlist);
5561 5562 5563
	if (!hlist)
		return NULL;

5564 5565 5566 5567 5568
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5569
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5580
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5581 5582 5583 5584 5585
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5586 5587 5588
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5589
				    u64 nr,
5590 5591
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5592
{
5593
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5594
	struct perf_event *event;
5595
	struct hlist_head *head;
5596

5597
	rcu_read_lock();
5598
	head = find_swevent_head_rcu(swhash, type, event_id);
5599 5600 5601
	if (!head)
		goto end;

5602
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5603
		if (perf_swevent_match(event, type, event_id, data, regs))
5604
			perf_swevent_event(event, nr, data, regs);
5605
	}
5606 5607
end:
	rcu_read_unlock();
5608 5609
}

5610
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5611
{
5612
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5613

5614
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5615
}
I
Ingo Molnar 已提交
5616
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5617

5618
inline void perf_swevent_put_recursion_context(int rctx)
5619
{
5620
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5621

5622
	put_recursion_context(swhash->recursion, rctx);
5623
}
5624

5625
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5626
{
5627
	struct perf_sample_data data;
5628 5629
	int rctx;

5630
	preempt_disable_notrace();
5631 5632 5633
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5634

5635
	perf_sample_data_init(&data, addr, 0);
5636

5637
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5638 5639

	perf_swevent_put_recursion_context(rctx);
5640
	preempt_enable_notrace();
5641 5642
}

5643
static void perf_swevent_read(struct perf_event *event)
5644 5645 5646
{
}

P
Peter Zijlstra 已提交
5647
static int perf_swevent_add(struct perf_event *event, int flags)
5648
{
5649
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5650
	struct hw_perf_event *hwc = &event->hw;
5651 5652
	struct hlist_head *head;

5653
	if (is_sampling_event(event)) {
5654
		hwc->last_period = hwc->sample_period;
5655
		perf_swevent_set_period(event);
5656
	}
5657

P
Peter Zijlstra 已提交
5658 5659
	hwc->state = !(flags & PERF_EF_START);

5660
	head = find_swevent_head(swhash, event);
5661 5662 5663 5664 5665
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5666 5667 5668
	return 0;
}

P
Peter Zijlstra 已提交
5669
static void perf_swevent_del(struct perf_event *event, int flags)
5670
{
5671
	hlist_del_rcu(&event->hlist_entry);
5672 5673
}

P
Peter Zijlstra 已提交
5674
static void perf_swevent_start(struct perf_event *event, int flags)
5675
{
P
Peter Zijlstra 已提交
5676
	event->hw.state = 0;
5677
}
I
Ingo Molnar 已提交
5678

P
Peter Zijlstra 已提交
5679
static void perf_swevent_stop(struct perf_event *event, int flags)
5680
{
P
Peter Zijlstra 已提交
5681
	event->hw.state = PERF_HES_STOPPED;
5682 5683
}

5684 5685
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5686
swevent_hlist_deref(struct swevent_htable *swhash)
5687
{
5688 5689
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5690 5691
}

5692
static void swevent_hlist_release(struct swevent_htable *swhash)
5693
{
5694
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5695

5696
	if (!hlist)
5697 5698
		return;

5699
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5700
	kfree_rcu(hlist, rcu_head);
5701 5702 5703 5704
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5705
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5706

5707
	mutex_lock(&swhash->hlist_mutex);
5708

5709 5710
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5711

5712
	mutex_unlock(&swhash->hlist_mutex);
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5725
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5726 5727
	int err = 0;

5728
	mutex_lock(&swhash->hlist_mutex);
5729

5730
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5731 5732 5733 5734 5735 5736 5737
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5738
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5739
	}
5740
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5741
exit:
5742
	mutex_unlock(&swhash->hlist_mutex);
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5763
fail:
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5774
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5775

5776 5777 5778
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5779

5780 5781
	WARN_ON(event->parent);

5782
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5783 5784 5785 5786 5787
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5788
	u64 event_id = event->attr.config;
5789 5790 5791 5792

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5793 5794 5795 5796 5797 5798
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5799 5800 5801 5802 5803 5804 5805 5806 5807
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5808
	if (event_id >= PERF_COUNT_SW_MAX)
5809 5810 5811 5812 5813 5814 5815 5816 5817
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5818
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5819 5820 5821 5822 5823 5824
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5825 5826 5827 5828 5829
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5830
static struct pmu perf_swevent = {
5831
	.task_ctx_nr	= perf_sw_context,
5832

5833
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5834 5835 5836 5837
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5838
	.read		= perf_swevent_read,
5839 5840

	.event_idx	= perf_swevent_event_idx,
5841 5842
};

5843 5844
#ifdef CONFIG_EVENT_TRACING

5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5859 5860
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5861 5862 5863 5864
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5865 5866 5867 5868 5869 5870 5871 5872 5873
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5874 5875
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5876 5877
{
	struct perf_sample_data data;
5878 5879
	struct perf_event *event;

5880 5881 5882 5883 5884
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5885
	perf_sample_data_init(&data, addr, 0);
5886 5887
	data.raw = &raw;

5888
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5889
		if (perf_tp_event_match(event, &data, regs))
5890
			perf_swevent_event(event, count, &data, regs);
5891
	}
5892

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5918
	perf_swevent_put_recursion_context(rctx);
5919 5920 5921
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5922
static void tp_perf_event_destroy(struct perf_event *event)
5923
{
5924
	perf_trace_destroy(event);
5925 5926
}

5927
static int perf_tp_event_init(struct perf_event *event)
5928
{
5929 5930
	int err;

5931 5932 5933
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5934 5935 5936 5937 5938 5939
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5940 5941
	err = perf_trace_init(event);
	if (err)
5942
		return err;
5943

5944
	event->destroy = tp_perf_event_destroy;
5945

5946 5947 5948 5949
	return 0;
}

static struct pmu perf_tracepoint = {
5950 5951
	.task_ctx_nr	= perf_sw_context,

5952
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5953 5954 5955 5956
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5957
	.read		= perf_swevent_read,
5958 5959

	.event_idx	= perf_swevent_event_idx,
5960 5961 5962 5963
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5964
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5965
}
L
Li Zefan 已提交
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5990
#else
L
Li Zefan 已提交
5991

5992
static inline void perf_tp_register(void)
5993 5994
{
}
L
Li Zefan 已提交
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6005
#endif /* CONFIG_EVENT_TRACING */
6006

6007
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6008
void perf_bp_event(struct perf_event *bp, void *data)
6009
{
6010 6011 6012
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6013
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6014

P
Peter Zijlstra 已提交
6015
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6016
		perf_swevent_event(bp, 1, &sample, regs);
6017 6018 6019
}
#endif

6020 6021 6022
/*
 * hrtimer based swevent callback
 */
6023

6024
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6025
{
6026 6027 6028 6029 6030
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6031

6032
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6033 6034 6035 6036

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6037
	event->pmu->read(event);
6038

6039
	perf_sample_data_init(&data, 0, event->hw.last_period);
6040 6041 6042
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6043
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6044
			if (__perf_event_overflow(event, 1, &data, regs))
6045 6046
				ret = HRTIMER_NORESTART;
	}
6047

6048 6049
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6050

6051
	return ret;
6052 6053
}

6054
static void perf_swevent_start_hrtimer(struct perf_event *event)
6055
{
6056
	struct hw_perf_event *hwc = &event->hw;
6057 6058 6059 6060
	s64 period;

	if (!is_sampling_event(event))
		return;
6061

6062 6063 6064 6065
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6066

6067 6068 6069 6070 6071
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6072
				ns_to_ktime(period), 0,
6073
				HRTIMER_MODE_REL_PINNED, 0);
6074
}
6075 6076

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6077
{
6078 6079
	struct hw_perf_event *hwc = &event->hw;

6080
	if (is_sampling_event(event)) {
6081
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6082
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6083 6084 6085

		hrtimer_cancel(&hwc->hrtimer);
	}
6086 6087
}

P
Peter Zijlstra 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6108
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6109 6110 6111 6112
		event->attr.freq = 0;
	}
}

6113 6114 6115 6116 6117
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6118
{
6119 6120 6121
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6122
	now = local_clock();
6123 6124
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6125 6126
}

P
Peter Zijlstra 已提交
6127
static void cpu_clock_event_start(struct perf_event *event, int flags)
6128
{
P
Peter Zijlstra 已提交
6129
	local64_set(&event->hw.prev_count, local_clock());
6130 6131 6132
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6133
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6134
{
6135 6136 6137
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6138

P
Peter Zijlstra 已提交
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6152 6153 6154 6155
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6156

6157 6158 6159 6160 6161 6162 6163 6164
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6165 6166 6167 6168 6169 6170
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6171 6172
	perf_swevent_init_hrtimer(event);

6173
	return 0;
6174 6175
}

6176
static struct pmu perf_cpu_clock = {
6177 6178
	.task_ctx_nr	= perf_sw_context,

6179
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6180 6181 6182 6183
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6184
	.read		= cpu_clock_event_read,
6185 6186

	.event_idx	= perf_swevent_event_idx,
6187 6188 6189 6190 6191 6192 6193
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6194
{
6195 6196
	u64 prev;
	s64 delta;
6197

6198 6199 6200 6201
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6202

P
Peter Zijlstra 已提交
6203
static void task_clock_event_start(struct perf_event *event, int flags)
6204
{
P
Peter Zijlstra 已提交
6205
	local64_set(&event->hw.prev_count, event->ctx->time);
6206 6207 6208
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6209
static void task_clock_event_stop(struct perf_event *event, int flags)
6210 6211 6212
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6213 6214 6215 6216 6217 6218
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6219

P
Peter Zijlstra 已提交
6220 6221 6222 6223 6224 6225
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6226 6227 6228 6229
}

static void task_clock_event_read(struct perf_event *event)
{
6230 6231 6232
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6233 6234 6235 6236 6237

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6238
{
6239 6240 6241 6242 6243 6244
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6245 6246 6247 6248 6249 6250
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6251 6252
	perf_swevent_init_hrtimer(event);

6253
	return 0;
L
Li Zefan 已提交
6254 6255
}

6256
static struct pmu perf_task_clock = {
6257 6258
	.task_ctx_nr	= perf_sw_context,

6259
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6260 6261 6262 6263
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6264
	.read		= task_clock_event_read,
6265 6266

	.event_idx	= perf_swevent_event_idx,
6267
};
L
Li Zefan 已提交
6268

P
Peter Zijlstra 已提交
6269
static void perf_pmu_nop_void(struct pmu *pmu)
6270 6271
{
}
L
Li Zefan 已提交
6272

P
Peter Zijlstra 已提交
6273
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6274
{
P
Peter Zijlstra 已提交
6275
	return 0;
L
Li Zefan 已提交
6276 6277
}

P
Peter Zijlstra 已提交
6278
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6279
{
P
Peter Zijlstra 已提交
6280
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6281 6282
}

P
Peter Zijlstra 已提交
6283 6284 6285 6286 6287
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6288

P
Peter Zijlstra 已提交
6289
static void perf_pmu_cancel_txn(struct pmu *pmu)
6290
{
P
Peter Zijlstra 已提交
6291
	perf_pmu_enable(pmu);
6292 6293
}

6294 6295 6296 6297 6298
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6299 6300 6301 6302
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6303
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6304
{
P
Peter Zijlstra 已提交
6305
	struct pmu *pmu;
6306

P
Peter Zijlstra 已提交
6307 6308
	if (ctxn < 0)
		return NULL;
6309

P
Peter Zijlstra 已提交
6310 6311 6312 6313
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6314

P
Peter Zijlstra 已提交
6315
	return NULL;
6316 6317
}

6318
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6319
{
6320 6321 6322 6323 6324 6325 6326
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6327 6328
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6329 6330 6331 6332 6333 6334
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6335

P
Peter Zijlstra 已提交
6336
	mutex_lock(&pmus_lock);
6337
	/*
P
Peter Zijlstra 已提交
6338
	 * Like a real lame refcount.
6339
	 */
6340 6341 6342
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6343
			goto out;
6344
		}
P
Peter Zijlstra 已提交
6345
	}
6346

6347
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6348 6349
out:
	mutex_unlock(&pmus_lock);
6350
}
P
Peter Zijlstra 已提交
6351
static struct idr pmu_idr;
6352

P
Peter Zijlstra 已提交
6353 6354 6355 6356 6357 6358 6359
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6360
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6361

6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6405
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6406

6407 6408 6409 6410
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6411
};
6412
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6413 6414 6415 6416

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6417
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6433
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6454
static struct lock_class_key cpuctx_mutex;
6455
static struct lock_class_key cpuctx_lock;
6456

6457
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6458
{
P
Peter Zijlstra 已提交
6459
	int cpu, ret;
6460

6461
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6462 6463 6464 6465
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6466

P
Peter Zijlstra 已提交
6467 6468 6469 6470 6471 6472
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6473 6474 6475
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6476 6477 6478 6479 6480
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6481 6482 6483 6484 6485 6486
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6487
skip_type:
P
Peter Zijlstra 已提交
6488 6489 6490
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6491

W
Wei Yongjun 已提交
6492
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6493 6494
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6495
		goto free_dev;
6496

P
Peter Zijlstra 已提交
6497 6498 6499 6500
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6501
		__perf_event_init_context(&cpuctx->ctx);
6502
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6503
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6504
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6505
		cpuctx->ctx.pmu = pmu;
6506 6507 6508

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6509
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6510
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6511
	}
6512

P
Peter Zijlstra 已提交
6513
got_cpu_context:
P
Peter Zijlstra 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6528
		}
6529
	}
6530

P
Peter Zijlstra 已提交
6531 6532 6533 6534 6535
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6536 6537 6538
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6539
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6540 6541
	ret = 0;
unlock:
6542 6543
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6544
	return ret;
P
Peter Zijlstra 已提交
6545

P
Peter Zijlstra 已提交
6546 6547 6548 6549
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6550 6551 6552 6553
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6554 6555 6556
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6557
}
6558
EXPORT_SYMBOL_GPL(perf_pmu_register);
6559

6560
void perf_pmu_unregister(struct pmu *pmu)
6561
{
6562 6563 6564
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6565

6566
	/*
P
Peter Zijlstra 已提交
6567 6568
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6569
	 */
6570
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6571
	synchronize_rcu();
6572

P
Peter Zijlstra 已提交
6573
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6574 6575
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6576 6577
	device_del(pmu->dev);
	put_device(pmu->dev);
6578
	free_pmu_context(pmu);
6579
}
6580
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6581

6582 6583 6584 6585
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6586
	int ret;
6587 6588

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6589 6590 6591 6592

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6593
	if (pmu) {
6594 6595 6596 6597
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6598
		event->pmu = pmu;
6599 6600 6601
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6602
		goto unlock;
6603
	}
P
Peter Zijlstra 已提交
6604

6605
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6606 6607 6608 6609
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
6610
		event->pmu = pmu;
6611
		ret = pmu->event_init(event);
6612
		if (!ret)
P
Peter Zijlstra 已提交
6613
			goto unlock;
6614

6615 6616
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6617
			goto unlock;
6618
		}
6619
	}
P
Peter Zijlstra 已提交
6620 6621
	pmu = ERR_PTR(-ENOENT);
unlock:
6622
	srcu_read_unlock(&pmus_srcu, idx);
6623

6624
	return pmu;
6625 6626
}

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

6640 6641
static void account_event(struct perf_event *event)
{
6642 6643 6644
	if (event->parent)
		return;

6645 6646 6647 6648 6649 6650 6651 6652
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
6653 6654 6655 6656
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
6657
	if (has_branch_stack(event))
6658
		static_key_slow_inc(&perf_sched_events.key);
6659
	if (is_cgroup_event(event))
6660
		static_key_slow_inc(&perf_sched_events.key);
6661 6662

	account_event_cpu(event, event->cpu);
6663 6664
}

T
Thomas Gleixner 已提交
6665
/*
6666
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6667
 */
6668
static struct perf_event *
6669
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6670 6671 6672
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6673 6674
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6675
{
P
Peter Zijlstra 已提交
6676
	struct pmu *pmu;
6677 6678
	struct perf_event *event;
	struct hw_perf_event *hwc;
6679
	long err = -EINVAL;
T
Thomas Gleixner 已提交
6680

6681 6682 6683 6684 6685
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6686
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6687
	if (!event)
6688
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6689

6690
	/*
6691
	 * Single events are their own group leaders, with an
6692 6693 6694
	 * empty sibling list:
	 */
	if (!group_leader)
6695
		group_leader = event;
6696

6697 6698
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6699

6700 6701 6702
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6703
	INIT_LIST_HEAD(&event->rb_entry);
6704
	INIT_LIST_HEAD(&event->active_entry);
6705 6706
	INIT_HLIST_NODE(&event->hlist_entry);

6707

6708
	init_waitqueue_head(&event->waitq);
6709
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6710

6711
	mutex_init(&event->mmap_mutex);
6712

6713
	atomic_long_set(&event->refcount, 1);
6714 6715 6716 6717 6718
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6719

6720
	event->parent		= parent_event;
6721

6722
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6723
	event->id		= atomic64_inc_return(&perf_event_id);
6724

6725
	event->state		= PERF_EVENT_STATE_INACTIVE;
6726

6727 6728
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6729 6730 6731

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6732 6733 6734 6735
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6736
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6737 6738 6739 6740
			event->hw.bp_target = task;
#endif
	}

6741
	if (!overflow_handler && parent_event) {
6742
		overflow_handler = parent_event->overflow_handler;
6743 6744
		context = parent_event->overflow_handler_context;
	}
6745

6746
	event->overflow_handler	= overflow_handler;
6747
	event->overflow_handler_context = context;
6748

J
Jiri Olsa 已提交
6749
	perf_event__state_init(event);
6750

6751
	pmu = NULL;
6752

6753
	hwc = &event->hw;
6754
	hwc->sample_period = attr->sample_period;
6755
	if (attr->freq && attr->sample_freq)
6756
		hwc->sample_period = 1;
6757
	hwc->last_period = hwc->sample_period;
6758

6759
	local64_set(&hwc->period_left, hwc->sample_period);
6760

6761
	/*
6762
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6763
	 */
6764
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6765
		goto err_ns;
6766

6767
	pmu = perf_init_event(event);
6768
	if (!pmu)
6769 6770
		goto err_ns;
	else if (IS_ERR(pmu)) {
6771
		err = PTR_ERR(pmu);
6772
		goto err_ns;
I
Ingo Molnar 已提交
6773
	}
6774

6775
	if (!event->parent) {
6776 6777
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
6778 6779
			if (err)
				goto err_pmu;
6780
		}
6781
	}
6782

6783
	return event;
6784 6785 6786 6787

err_pmu:
	if (event->destroy)
		event->destroy(event);
6788
	module_put(pmu->module);
6789 6790 6791 6792 6793 6794
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
6795 6796
}

6797 6798
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6799 6800
{
	u32 size;
6801
	int ret;
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6826 6827 6828
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6829 6830
	 */
	if (size > sizeof(*attr)) {
6831 6832 6833
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6834

6835 6836
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6837

6838
		for (; addr < end; addr++) {
6839 6840 6841 6842 6843 6844
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6845
		size = sizeof(*attr);
6846 6847 6848 6849 6850 6851
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6852 6853 6854 6855
	/* disabled for now */
	if (attr->mmap2)
		return -EINVAL;

6856
	if (attr->__reserved_1)
6857 6858 6859 6860 6861 6862 6863 6864
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6893 6894
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6895 6896
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6897
	}
6898

6899
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6900
		ret = perf_reg_validate(attr->sample_regs_user);
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6919

6920 6921 6922 6923 6924 6925 6926 6927 6928
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6929 6930
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6931
{
6932
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6933 6934
	int ret = -EINVAL;

6935
	if (!output_event)
6936 6937
		goto set;

6938 6939
	/* don't allow circular references */
	if (event == output_event)
6940 6941
		goto out;

6942 6943 6944 6945 6946 6947 6948
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6949
	 * If its not a per-cpu rb, it must be the same task.
6950 6951 6952 6953
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6954
set:
6955
	mutex_lock(&event->mmap_mutex);
6956 6957 6958
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6959

6960 6961
	old_rb = event->rb;

6962
	if (output_event) {
6963 6964 6965
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6966
			goto unlock;
6967 6968
	}

6969 6970
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6987
	ret = 0;
6988 6989 6990
unlock:
	mutex_unlock(&event->mmap_mutex);

6991 6992 6993 6994
out:
	return ret;
}

T
Thomas Gleixner 已提交
6995
/**
6996
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6997
 *
6998
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6999
 * @pid:		target pid
I
Ingo Molnar 已提交
7000
 * @cpu:		target cpu
7001
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7002
 */
7003 7004
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7005
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7006
{
7007 7008
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7009 7010 7011
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
7012
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7013
	struct task_struct *task = NULL;
7014
	struct pmu *pmu;
7015
	int event_fd;
7016
	int move_group = 0;
7017
	int err;
7018
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7019

7020
	/* for future expandability... */
S
Stephane Eranian 已提交
7021
	if (flags & ~PERF_FLAG_ALL)
7022 7023
		return -EINVAL;

7024 7025 7026
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7027

7028 7029 7030 7031 7032
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7033
	if (attr.freq) {
7034
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7035 7036 7037
			return -EINVAL;
	}

S
Stephane Eranian 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7047 7048 7049 7050
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7051 7052 7053
	if (event_fd < 0)
		return event_fd;

7054
	if (group_fd != -1) {
7055 7056
		err = perf_fget_light(group_fd, &group);
		if (err)
7057
			goto err_fd;
7058
		group_leader = group.file->private_data;
7059 7060 7061 7062 7063 7064
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7065
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7066 7067 7068 7069 7070 7071 7072
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7073 7074
	get_online_cpus();

7075 7076
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7077 7078
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7079
		goto err_task;
7080 7081
	}

S
Stephane Eranian 已提交
7082 7083
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7084 7085 7086 7087
		if (err) {
			__free_event(event);
			goto err_task;
		}
S
Stephane Eranian 已提交
7088 7089
	}

7090 7091
	account_event(event);

7092 7093 7094 7095 7096
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7120 7121 7122 7123

	/*
	 * Get the target context (task or percpu):
	 */
7124
	ctx = find_get_context(pmu, task, event->cpu);
7125 7126
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7127
		goto err_alloc;
7128 7129
	}

7130 7131 7132 7133 7134
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7135
	/*
7136
	 * Look up the group leader (we will attach this event to it):
7137
	 */
7138
	if (group_leader) {
7139
		err = -EINVAL;
7140 7141

		/*
I
Ingo Molnar 已提交
7142 7143 7144 7145
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7146
			goto err_context;
I
Ingo Molnar 已提交
7147 7148 7149
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7150
		 */
7151 7152 7153 7154 7155 7156 7157 7158
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7159 7160 7161
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7162
		if (attr.exclusive || attr.pinned)
7163
			goto err_context;
7164 7165 7166 7167 7168
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7169
			goto err_context;
7170
	}
T
Thomas Gleixner 已提交
7171

7172 7173
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7174 7175
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7176
		goto err_context;
7177
	}
7178

7179 7180 7181 7182
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
7183
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
7184 7185 7186 7187 7188 7189 7190

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7191 7192
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7193
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
7194
			perf_event__state_init(sibling);
7195 7196 7197 7198
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
7199
	}
7200

7201
	WARN_ON_ONCE(ctx->parent_ctx);
7202
	mutex_lock(&ctx->mutex);
7203 7204

	if (move_group) {
7205
		synchronize_rcu();
7206
		perf_install_in_context(ctx, group_leader, event->cpu);
7207 7208 7209
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7210
			perf_install_in_context(ctx, sibling, event->cpu);
7211 7212 7213 7214
			get_ctx(ctx);
		}
	}

7215
	perf_install_in_context(ctx, event, event->cpu);
7216
	perf_unpin_context(ctx);
7217
	mutex_unlock(&ctx->mutex);
7218

7219 7220
	put_online_cpus();

7221
	event->owner = current;
P
Peter Zijlstra 已提交
7222

7223 7224 7225
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7226

7227 7228 7229 7230
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7231
	perf_event__id_header_size(event);
7232

7233 7234 7235 7236 7237 7238
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7239
	fdput(group);
7240 7241
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7242

7243
err_context:
7244
	perf_unpin_context(ctx);
7245
	put_ctx(ctx);
7246
err_alloc:
7247
	free_event(event);
P
Peter Zijlstra 已提交
7248
err_task:
7249
	put_online_cpus();
P
Peter Zijlstra 已提交
7250 7251
	if (task)
		put_task_struct(task);
7252
err_group_fd:
7253
	fdput(group);
7254 7255
err_fd:
	put_unused_fd(event_fd);
7256
	return err;
T
Thomas Gleixner 已提交
7257 7258
}

7259 7260 7261 7262 7263
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7264
 * @task: task to profile (NULL for percpu)
7265 7266 7267
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7268
				 struct task_struct *task,
7269 7270
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7271 7272
{
	struct perf_event_context *ctx;
7273
	struct perf_event *event;
7274
	int err;
7275

7276 7277 7278
	/*
	 * Get the target context (task or percpu):
	 */
7279

7280 7281
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7282 7283 7284 7285
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7286

7287 7288
	account_event(event);

M
Matt Helsley 已提交
7289
	ctx = find_get_context(event->pmu, task, cpu);
7290 7291
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7292
		goto err_free;
7293
	}
7294 7295 7296 7297

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7298
	perf_unpin_context(ctx);
7299 7300 7301 7302
	mutex_unlock(&ctx->mutex);

	return event;

7303 7304 7305
err_free:
	free_event(event);
err:
7306
	return ERR_PTR(err);
7307
}
7308
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7309

7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
7324
		unaccount_event_cpu(event, src_cpu);
7325
		put_ctx(src_ctx);
7326
		list_add(&event->migrate_entry, &events);
7327 7328 7329 7330 7331 7332
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
7333 7334
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7335 7336
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7337
		account_event_cpu(event, dst_cpu);
7338 7339 7340 7341 7342 7343 7344
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7345
static void sync_child_event(struct perf_event *child_event,
7346
			       struct task_struct *child)
7347
{
7348
	struct perf_event *parent_event = child_event->parent;
7349
	u64 child_val;
7350

7351 7352
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7353

P
Peter Zijlstra 已提交
7354
	child_val = perf_event_count(child_event);
7355 7356 7357 7358

	/*
	 * Add back the child's count to the parent's count:
	 */
7359
	atomic64_add(child_val, &parent_event->child_count);
7360 7361 7362 7363
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7364 7365

	/*
7366
	 * Remove this event from the parent's list
7367
	 */
7368 7369 7370 7371
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7372 7373

	/*
7374
	 * Release the parent event, if this was the last
7375 7376
	 * reference to it.
	 */
7377
	put_event(parent_event);
7378 7379
}

7380
static void
7381 7382
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7383
			 struct task_struct *child)
7384
{
7385 7386 7387 7388 7389
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7390

7391
	perf_remove_from_context(child_event);
7392

7393
	/*
7394
	 * It can happen that the parent exits first, and has events
7395
	 * that are still around due to the child reference. These
7396
	 * events need to be zapped.
7397
	 */
7398
	if (child_event->parent) {
7399 7400
		sync_child_event(child_event, child);
		free_event(child_event);
7401
	}
7402 7403
}

P
Peter Zijlstra 已提交
7404
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7405
{
7406 7407
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7408
	unsigned long flags;
7409

P
Peter Zijlstra 已提交
7410
	if (likely(!child->perf_event_ctxp[ctxn])) {
7411
		perf_event_task(child, NULL, 0);
7412
		return;
P
Peter Zijlstra 已提交
7413
	}
7414

7415
	local_irq_save(flags);
7416 7417 7418 7419 7420 7421
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7422
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7423 7424 7425

	/*
	 * Take the context lock here so that if find_get_context is
7426
	 * reading child->perf_event_ctxp, we wait until it has
7427 7428
	 * incremented the context's refcount before we do put_ctx below.
	 */
7429
	raw_spin_lock(&child_ctx->lock);
7430
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7431
	child->perf_event_ctxp[ctxn] = NULL;
7432 7433 7434
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7435
	 * the events from it.
7436 7437
	 */
	unclone_ctx(child_ctx);
7438
	update_context_time(child_ctx);
7439
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7440 7441

	/*
7442 7443 7444
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7445
	 */
7446
	perf_event_task(child, child_ctx, 0);
7447

7448 7449 7450
	/*
	 * We can recurse on the same lock type through:
	 *
7451 7452
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7453 7454
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7455 7456 7457
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7458
	mutex_lock(&child_ctx->mutex);
7459

7460
again:
7461 7462 7463 7464 7465
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7466
				 group_entry)
7467
		__perf_event_exit_task(child_event, child_ctx, child);
7468 7469

	/*
7470
	 * If the last event was a group event, it will have appended all
7471 7472 7473
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7474 7475
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7476
		goto again;
7477 7478 7479 7480

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7481 7482
}

P
Peter Zijlstra 已提交
7483 7484 7485 7486 7487
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7488
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7489 7490
	int ctxn;

P
Peter Zijlstra 已提交
7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7506 7507 7508 7509
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7522
	put_event(parent);
7523

7524
	perf_group_detach(event);
7525 7526 7527 7528
	list_del_event(event, ctx);
	free_event(event);
}

7529 7530
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7531
 * perf_event_init_task below, used by fork() in case of fail.
7532
 */
7533
void perf_event_free_task(struct task_struct *task)
7534
{
P
Peter Zijlstra 已提交
7535
	struct perf_event_context *ctx;
7536
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7537
	int ctxn;
7538

P
Peter Zijlstra 已提交
7539 7540 7541 7542
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7543

P
Peter Zijlstra 已提交
7544
		mutex_lock(&ctx->mutex);
7545
again:
P
Peter Zijlstra 已提交
7546 7547 7548
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7549

P
Peter Zijlstra 已提交
7550 7551 7552
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7553

P
Peter Zijlstra 已提交
7554 7555 7556
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7557

P
Peter Zijlstra 已提交
7558
		mutex_unlock(&ctx->mutex);
7559

P
Peter Zijlstra 已提交
7560 7561
		put_ctx(ctx);
	}
7562 7563
}

7564 7565 7566 7567 7568 7569 7570 7571
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7584
	unsigned long flags;
P
Peter Zijlstra 已提交
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7597
					   child,
P
Peter Zijlstra 已提交
7598
					   group_leader, parent_event,
7599
				           NULL, NULL);
P
Peter Zijlstra 已提交
7600 7601
	if (IS_ERR(child_event))
		return child_event;
7602 7603 7604 7605 7606 7607

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7632 7633
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7634

7635 7636 7637 7638
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7639
	perf_event__id_header_size(child_event);
7640

P
Peter Zijlstra 已提交
7641 7642 7643
	/*
	 * Link it up in the child's context:
	 */
7644
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7645
	add_event_to_ctx(child_event, child_ctx);
7646
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7680 7681 7682 7683 7684
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7685
		   struct task_struct *child, int ctxn,
7686 7687 7688
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7689
	struct perf_event_context *child_ctx;
7690 7691 7692 7693

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7694 7695
	}

7696
	child_ctx = child->perf_event_ctxp[ctxn];
7697 7698 7699 7700 7701 7702 7703
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7704

7705
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7706 7707
		if (!child_ctx)
			return -ENOMEM;
7708

P
Peter Zijlstra 已提交
7709
		child->perf_event_ctxp[ctxn] = child_ctx;
7710 7711 7712 7713 7714 7715 7716 7717 7718
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7719 7720
}

7721
/*
7722
 * Initialize the perf_event context in task_struct
7723
 */
P
Peter Zijlstra 已提交
7724
int perf_event_init_context(struct task_struct *child, int ctxn)
7725
{
7726
	struct perf_event_context *child_ctx, *parent_ctx;
7727 7728
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7729
	struct task_struct *parent = current;
7730
	int inherited_all = 1;
7731
	unsigned long flags;
7732
	int ret = 0;
7733

P
Peter Zijlstra 已提交
7734
	if (likely(!parent->perf_event_ctxp[ctxn]))
7735 7736
		return 0;

7737
	/*
7738 7739
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7740
	 */
P
Peter Zijlstra 已提交
7741
	parent_ctx = perf_pin_task_context(parent, ctxn);
7742

7743 7744 7745 7746 7747 7748 7749
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7750 7751 7752 7753
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7754
	mutex_lock(&parent_ctx->mutex);
7755 7756 7757 7758 7759

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7760
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7761 7762
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7763 7764 7765
		if (ret)
			break;
	}
7766

7767 7768 7769 7770 7771 7772 7773 7774 7775
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7776
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7777 7778
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7779
		if (ret)
7780
			break;
7781 7782
	}

7783 7784 7785
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7786
	child_ctx = child->perf_event_ctxp[ctxn];
7787

7788
	if (child_ctx && inherited_all) {
7789 7790 7791
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7792 7793 7794
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7795
		 */
P
Peter Zijlstra 已提交
7796
		cloned_ctx = parent_ctx->parent_ctx;
7797 7798
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7799
			child_ctx->parent_gen = parent_ctx->parent_gen;
7800 7801 7802 7803 7804
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7805 7806
	}

P
Peter Zijlstra 已提交
7807
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7808
	mutex_unlock(&parent_ctx->mutex);
7809

7810
	perf_unpin_context(parent_ctx);
7811
	put_ctx(parent_ctx);
7812

7813
	return ret;
7814 7815
}

P
Peter Zijlstra 已提交
7816 7817 7818 7819 7820 7821 7822
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7823 7824 7825 7826
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7827 7828 7829 7830 7831 7832 7833 7834 7835
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7836 7837
static void __init perf_event_init_all_cpus(void)
{
7838
	struct swevent_htable *swhash;
7839 7840 7841
	int cpu;

	for_each_possible_cpu(cpu) {
7842 7843
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7844
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7845 7846 7847
	}
}

7848
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7849
{
P
Peter Zijlstra 已提交
7850
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7851

7852
	mutex_lock(&swhash->hlist_mutex);
7853
	if (swhash->hlist_refcount > 0) {
7854 7855
		struct swevent_hlist *hlist;

7856 7857 7858
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7859
	}
7860
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7861 7862
}

P
Peter Zijlstra 已提交
7863
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7864
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7865
{
7866 7867 7868 7869 7870 7871 7872
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7873
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7874
{
P
Peter Zijlstra 已提交
7875
	struct perf_event_context *ctx = __info;
P
Peter Zijlstra 已提交
7876
	struct perf_event *event;
T
Thomas Gleixner 已提交
7877

P
Peter Zijlstra 已提交
7878
	perf_pmu_rotate_stop(ctx->pmu);
7879

P
Peter Zijlstra 已提交
7880 7881
	rcu_read_lock();
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
7882
		__perf_remove_from_context(event);
P
Peter Zijlstra 已提交
7883
	rcu_read_unlock();
T
Thomas Gleixner 已提交
7884
}
P
Peter Zijlstra 已提交
7885 7886 7887 7888 7889 7890 7891 7892 7893

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7894
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7895 7896 7897 7898 7899 7900 7901 7902

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7903
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7904
{
7905
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7906

P
Peter Zijlstra 已提交
7907 7908
	perf_event_exit_cpu_context(cpu);

7909 7910 7911
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7912 7913
}
#else
7914
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7915 7916
#endif

P
Peter Zijlstra 已提交
7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

7937
static int
T
Thomas Gleixner 已提交
7938 7939 7940 7941
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7942
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7943 7944

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7945
	case CPU_DOWN_FAILED:
7946
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7947 7948
		break;

P
Peter Zijlstra 已提交
7949
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7950
	case CPU_DOWN_PREPARE:
7951
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7952 7953 7954 7955 7956 7957 7958 7959
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7960
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7961
{
7962 7963
	int ret;

P
Peter Zijlstra 已提交
7964 7965
	idr_init(&pmu_idr);

7966
	perf_event_init_all_cpus();
7967
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7968 7969 7970
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7971 7972
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7973
	register_reboot_notifier(&perf_reboot_notifier);
7974 7975 7976

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7977 7978 7979

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7980 7981 7982 7983 7984 7985 7986

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7987
}
P
Peter Zijlstra 已提交
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8016 8017

#ifdef CONFIG_CGROUP_PERF
8018 8019
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8020 8021 8022
{
	struct perf_cgroup *jc;

8023
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8036
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8037
{
8038 8039
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8051 8052
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8053
{
8054 8055
	struct task_struct *task;

8056
	cgroup_taskset_for_each(task, tset)
8057
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8058 8059
}

8060 8061
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8062
			     struct task_struct *task)
S
Stephane Eranian 已提交
8063 8064 8065 8066 8067 8068 8069 8070 8071
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8072
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8073 8074
}

8075
struct cgroup_subsys perf_event_cgrp_subsys = {
8076 8077
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8078
	.exit		= perf_cgroup_exit,
8079
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8080 8081
};
#endif /* CONFIG_CGROUP_PERF */