intel_lrc.c 65.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
208

209 210 211
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

212 213
#define WA_TAIL_DWORDS 2

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221 222
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223
 * @dev_priv: i915 device private
224 225 226
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
227
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 229 230
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
231
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232
{
233 234 235
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
236
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 238
		return 1;

239
	if (INTEL_GEN(dev_priv) >= 9)
240 241
		return 1;

242 243 244
	if (enable_execlists == 0)
		return 0;

245 246 247
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
248 249 250 251
		return 1;

	return 0;
}
252

253
/**
254 255 256
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
257
 * @engine: Engine the descriptor will be used with
258
 *
259 260 261 262 263
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
264 265
 * This is what a descriptor looks like, from LSB to MSB::
 *
266
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
267 268 269 270
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
271
 */
272
static void
273
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274
				   struct intel_engine_cs *engine)
275
{
276
	struct intel_context *ce = &ctx->engine[engine->id];
277
	u64 desc;
278

279
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280

281
	desc = ctx->desc_template;				/* bits  0-11 */
282
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283
								/* bits 12-31 */
284
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
285

286
	ce->lrc_desc = desc;
287 288
}

289 290 291 292
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
{
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

	if (unlikely(engine->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	parent = &engine->execlist_queue.rb_node;
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
314
			return p;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
		p = &engine->default_priolist;
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			engine->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
340
	INIT_LIST_HEAD(&p->requests);
341 342 343 344 345 346
	rb_link_node(&p->node, rb, parent);
	rb_insert_color(&p->node, &engine->execlist_queue);

	if (first)
		engine->execlist_first = &p->node;

347
	return ptr_pack_bits(p, first, 1);
348 349
}

350 351 352
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
353
{
354 355 356 357 358 359
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
360

361 362
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
363 364
}

365 366 367 368 369 370 371 372 373
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

374
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
375
{
376
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
377 378
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
379
	u32 *reg_state = ce->lrc_reg_state;
380

381
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
382

383 384 385 386 387
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
388
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
389
		execlists_update_context_pdps(ppgtt, reg_state);
390 391

	return ce->lrc_desc;
392 393
}

394
static void execlists_submit_ports(struct intel_engine_cs *engine)
395
{
396
	struct execlist_port *port = engine->execlist_port;
397
	u32 __iomem *elsp =
398 399
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
418

419 420 421
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
422 423
}

424
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
425
{
426
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
427
		i915_gem_context_force_single_submission(ctx));
428
}
429

430 431 432 433 434
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
435

436 437
	if (ctx_single_port_submission(prev))
		return false;
438

439
	return true;
440 441
}

442 443 444 445 446 447 448 449 450 451 452
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

453
static void execlists_dequeue(struct intel_engine_cs *engine)
454
{
455
	struct drm_i915_gem_request *last;
456
	struct execlist_port *port = engine->execlist_port;
457
	struct rb_node *rb;
458 459
	bool submit = false;

460
	last = port_request(port);
461 462 463
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
464
		 * as we resubmit the request. See gen8_emit_breadcrumb()
465 466 467 468
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
469

470
	GEM_BUG_ON(port_isset(&port[1]));
471

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
491
	 */
492

493
	spin_lock_irq(&engine->timeline->lock);
494
	rb = engine->execlist_first;
495
	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
496
	while (rb) {
497 498 499 500 501 502 503 504 505 506 507 508 509 510
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
511
			 */
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
				if (port != engine->execlist_port) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
			}
544

545 546
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
547

548 549 550 551
			__i915_gem_request_submit(rq);
			trace_i915_gem_request_in(rq, port_index(port, engine));
			last = rq;
			submit = true;
552
		}
553

554
		rb = rb_next(rb);
555 556 557
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
558
			kmem_cache_free(engine->i915->priorities, p);
559
	}
560 561 562
done:
	engine->execlist_first = rb;
	if (submit)
563
		port_assign(port, last);
564
	spin_unlock_irq(&engine->timeline->lock);
565

566 567
	if (submit)
		execlists_submit_ports(engine);
568 569
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;
	unsigned long n;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
		i915_gem_request_put(port_request(&port[n]));
	memset(engine->execlist_port, 0, sizeof(engine->execlist_port));

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	rb = engine->execlist_first;
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

	engine->execlist_queue = RB_ROOT;
	engine->execlist_first = NULL;
	GEM_BUG_ON(port_isset(&port[0]));

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

629
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
630
{
631
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
632

633
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
634 635
}

636
/*
637 638 639
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
640
static void intel_lrc_irq_handler(unsigned long data)
641
{
642
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
643
	struct execlist_port *port = engine->execlist_port;
644
	struct drm_i915_private *dev_priv = engine->i915;
645

646 647 648 649 650 651 652 653 654
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

655
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
656

657 658 659 660 661
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
662 663 664
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
665
		unsigned int head, tail;
666

667 668 669 670
		/* However GVT emulation depends upon intercepting CSB mmio */
		if (unlikely(engine->csb_use_mmio)) {
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
671
			engine->csb_head = -1; /* force mmio read of CSB ptrs */
672 673
		}

674 675 676 677 678 679 680 681 682 683 684
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
685 686 687 688 689 690 691 692 693 694 695 696 697
		if (unlikely(engine->csb_head == -1)) { /* following a reset */
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
			engine->csb_head = head;
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

			head = engine->csb_head;
			tail = READ_ONCE(buf[write_idx]);
		}
698
		while (head != tail) {
699
			struct drm_i915_gem_request *rq;
700
			unsigned int status;
701
			unsigned int count;
702 703 704

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

723
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
724 725 726
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

727
			/* Check the context/desc id for this event matches */
728
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
729

730 731 732
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
733
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
734 735 736 737 738
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
739 740 741

				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
742 743
			} else {
				port_set(port, port_pack(rq, count));
744
			}
745

746 747
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
748
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
749
		}
750

751 752 753 754 755
		if (head != engine->csb_head) {
			engine->csb_head = head;
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
756 757
	}

758 759
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
760

761
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
762 763
}

764 765 766 767 768 769 770 771 772 773 774
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
	if (ptr_unmask_bits(p, 1) && execlists_elsp_ready(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
}

775
static void execlists_submit_request(struct drm_i915_gem_request *request)
776
{
777
	struct intel_engine_cs *engine = request->engine;
778
	unsigned long flags;
779

780 781
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
782

783
	insert_request(engine, &request->priotree, request->priotree.priority);
784

785 786 787
	GEM_BUG_ON(!engine->execlist_first);
	GEM_BUG_ON(list_empty(&request->priotree.link));

788
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
789 790
}

791 792 793
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
794 795 796 797
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
798 799

	if (engine != locked) {
800 801
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
802 803 804 805 806 807 808
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
809
	struct intel_engine_cs *engine;
810 811 812 813 814 815 816
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

817 818
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

843 844 845 846 847 848 849
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
850 851
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
852
		}
853

854
		list_safe_reset_next(dep, p, dfs_link);
855 856
	}

857 858 859 860 861 862 863 864 865 866 867 868 869
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (request->priotree.priority == INT_MIN) {
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

870 871 872
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

873 874 875 876 877 878 879 880 881 882 883 884
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
885 886 887
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
888
		}
889 890
	}

891
	spin_unlock_irq(&engine->timeline->lock);
892 893 894 895

	/* XXX Do we need to preempt to make room for us and our deps? */
}

896 897 898
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
899
{
900
	struct intel_context *ce = &ctx->engine[engine->id];
901
	unsigned int flags;
902
	void *vaddr;
903
	int ret;
904

905
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
906

907 908
	if (likely(ce->pin_count++))
		goto out;
909
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
910

911 912 913 914 915
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
916
	GEM_BUG_ON(!ce->state);
917

918
	flags = PIN_GLOBAL | PIN_HIGH;
919 920
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
921 922

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
923
	if (ret)
924
		goto err;
925

926
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
927 928
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
929
		goto unpin_vma;
930 931
	}

932
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
933
	if (ret)
934
		goto unpin_map;
935

936
	intel_lr_context_descriptor_update(ctx, engine);
937

938 939
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
940
		i915_ggtt_offset(ce->ring->vma);
941

C
Chris Wilson 已提交
942
	ce->state->obj->mm.dirty = true;
943

944
	i915_gem_context_get(ctx);
945 946
out:
	return ce->ring;
947

948
unpin_map:
949 950 951
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
952
err:
953
	ce->pin_count = 0;
954
	return ERR_PTR(ret);
955 956
}

957 958
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
959
{
960
	struct intel_context *ce = &ctx->engine[engine->id];
961

962
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
963
	GEM_BUG_ON(ce->pin_count == 0);
964

965
	if (--ce->pin_count)
966
		return;
967

968
	intel_ring_unpin(ce->ring);
969

970 971
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
972

973
	i915_gem_context_put(ctx);
974 975
}

976
static int execlists_request_alloc(struct drm_i915_gem_request *request)
977 978 979
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
980
	u32 *cs;
981 982
	int ret;

983 984
	GEM_BUG_ON(!ce->pin_count);

985 986 987 988 989 990
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

991
	cs = intel_ring_begin(request, 0);
992 993
	if (IS_ERR(cs))
		return PTR_ERR(cs);
994 995 996 997

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
998
			return ret;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1030 1031
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1032
{
1033 1034 1035 1036 1037 1038 1039 1040 1041
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1042 1043 1044 1045
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1046 1047 1048 1049 1050 1051 1052

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1053 1054
}

1055 1056 1057 1058 1059 1060
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1061
 *
1062 1063
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1064
 *
1065 1066 1067 1068
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1069
 */
1070
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1071
{
1072
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1073
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1074

1075
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1076 1077
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1078

1079 1080
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1081 1082 1083 1084 1085 1086 1087
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1088

1089
	/* Pad to end of cacheline */
1090 1091
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1092 1093 1094 1095 1096 1097 1098

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1099
	return batch;
1100 1101
}

1102 1103 1104
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1105
 *
1106
 *  The number of DWORDS written are returned using this field.
1107 1108 1109 1110
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1111
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1112
{
1113
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1114 1115
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1116

1117
	return batch;
1118 1119
}

1120
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1121
{
1122
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1123
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1124

1125
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1126 1127 1128 1129 1130
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1131

1132 1133
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1134
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1135 1136 1137 1138 1139 1140 1141
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1142
	}
1143

1144
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1159 1160 1161 1162 1163 1164
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1165 1166
	}

1167
	/* Pad to end of cacheline */
1168 1169
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1170

1171
	return batch;
1172 1173
}

1174
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1175
{
1176
	*batch++ = MI_BATCH_BUFFER_END;
1177

1178
	return batch;
1179 1180
}

1181 1182 1183
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1184
{
1185 1186 1187
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1188

1189
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1190 1191
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1192

1193
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1194 1195 1196
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1197 1198
	}

1199 1200 1201 1202 1203
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1204
	return 0;
1205 1206 1207 1208

err:
	i915_gem_object_put(obj);
	return err;
1209 1210
}

1211
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1212
{
1213
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1214 1215
}

1216 1217
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1218
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1219
{
1220
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1221 1222 1223
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1224
	struct page *page;
1225 1226
	void *batch, *batch_ptr;
	unsigned int i;
1227
	int ret;
1228

1229 1230
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1231

1232
	switch (INTEL_GEN(engine->i915)) {
1233 1234
	case 10:
		return 0;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1245
		return 0;
1246
	}
1247

1248
	ret = lrc_setup_wa_ctx(engine);
1249 1250 1251 1252 1253
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1254
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1255
	batch = batch_ptr = kmap_atomic(page);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1270 1271
	}

1272 1273
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1274 1275
	kunmap_atomic(batch);
	if (ret)
1276
		lrc_destroy_wa_ctx(engine);
1277 1278 1279 1280

	return ret;
}

1281 1282 1283 1284 1285 1286 1287 1288
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1289
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1290
{
1291
	struct drm_i915_private *dev_priv = engine->i915;
1292 1293 1294 1295 1296
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1297

1298
	intel_engine_reset_breadcrumbs(engine);
1299
	intel_engine_init_hangcheck(engine);
1300

1301 1302
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1303
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1304 1305 1306
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1307

1308
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1323
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1324
	engine->csb_head = -1;
1325

1326
	/* After a GPU reset, we may have requests to replay */
1327 1328
	if (!i915.enable_guc_submission && engine->execlist_first)
		tasklet_schedule(&engine->irq_tasklet);
1329

1330
	return 0;
1331 1332
}

1333
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1334
{
1335
	struct drm_i915_private *dev_priv = engine->i915;
1336 1337
	int ret;

1338
	ret = gen8_init_common_ring(engine);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1352
	return init_workarounds_ring(engine);
1353 1354
}

1355
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1356 1357 1358
{
	int ret;

1359
	ret = gen8_init_common_ring(engine);
1360 1361 1362
	if (ret)
		return ret;

1363
	return init_workarounds_ring(engine);
1364 1365
}

1366 1367 1368 1369
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1370
	struct drm_i915_gem_request *rq, *rn;
1371
	struct intel_context *ce;
1372
	unsigned long flags;
1373 1374
	unsigned int n;

1375 1376
	spin_lock_irqsave(&engine->timeline->lock, flags);

1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1386 1387 1388
	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
		i915_gem_request_put(port_request(&port[n]));
	memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	/* Push back any incomplete requests for replay after the reset. */
	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests, link) {
		struct i915_priolist *p;

		if (i915_gem_request_completed(rq))
			break;

		__i915_gem_request_unsubmit(rq);

		p = lookup_priolist(engine,
				    &rq->priotree,
				    rq->priotree.priority);
		list_add(&rq->priotree.link,
			 &ptr_mask_bits(p, 1)->requests);
1405 1406
	}

1407
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1419
	if (!request || request->fence.error != -EIO)
1420
		return;
1421

1422 1423 1424 1425 1426 1427 1428
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1429
	ce = &request->ctx->engine[engine->id];
1430 1431 1432
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1433
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1434 1435
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1436
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1437

1438 1439 1440
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1441
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1442 1443 1444
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1445
	assert_ring_tail_valid(request->ring, request->tail);
1446 1447
}

1448 1449 1450
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1451
	struct intel_engine_cs *engine = req->engine;
1452
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1453 1454
	u32 *cs;
	int i;
1455

1456 1457 1458
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1459

1460
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1461
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1462 1463
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1464 1465 1466 1467
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1468 1469
	}

1470 1471
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1472 1473 1474 1475

	return 0;
}

1476
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1477
			      u64 offset, u32 len,
1478
			      const unsigned int flags)
1479
{
1480
	u32 *cs;
1481 1482
	int ret;

1483 1484 1485 1486
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1487 1488
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1489
	if (req->ctx->ppgtt &&
1490 1491 1492 1493 1494 1495
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1496

1497
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1498 1499
	}

1500 1501 1502
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1503 1504

	/* FIXME(BDW): Address space and security selectors. */
1505 1506 1507
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1508 1509 1510 1511
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1512 1513 1514 1515

	return 0;
}

1516
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1517
{
1518
	struct drm_i915_private *dev_priv = engine->i915;
1519 1520 1521
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1522 1523
}

1524
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1525
{
1526
	struct drm_i915_private *dev_priv = engine->i915;
1527
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1528 1529
}

1530
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1531
{
1532
	u32 cmd, *cs;
1533

1534 1535 1536
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1537 1538 1539

	cmd = MI_FLUSH_DW + 1;

1540 1541 1542 1543 1544 1545 1546
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1547
	if (mode & EMIT_INVALIDATE) {
1548
		cmd |= MI_INVALIDATE_TLB;
1549
		if (request->engine->id == VCS)
1550
			cmd |= MI_INVALIDATE_BSD;
1551 1552
	}

1553 1554 1555 1556 1557
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1558 1559 1560 1561

	return 0;
}

1562
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1563
				  u32 mode)
1564
{
1565
	struct intel_engine_cs *engine = request->engine;
1566 1567
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1568
	bool vf_flush_wa = false, dc_flush_wa = false;
1569
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1570
	int len;
1571 1572 1573

	flags |= PIPE_CONTROL_CS_STALL;

1574
	if (mode & EMIT_FLUSH) {
1575 1576
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1577
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1578
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1579 1580
	}

1581
	if (mode & EMIT_INVALIDATE) {
1582 1583 1584 1585 1586 1587 1588 1589 1590
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1591 1592 1593 1594
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1595
		if (IS_GEN9(request->i915))
1596
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1597 1598 1599 1600

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1601
	}
1602

M
Mika Kuoppala 已提交
1603 1604 1605 1606 1607 1608 1609 1610
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1611 1612 1613
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1614

1615 1616
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1617

1618 1619 1620
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1621

1622
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1623

1624 1625
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1626

1627
	intel_ring_advance(request, cs);
1628 1629 1630 1631

	return 0;
}

1632 1633 1634 1635 1636
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1637
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1638
{
1639 1640 1641
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1642
}
1643

1644
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1645
{
1646 1647
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1648

1649 1650 1651 1652 1653 1654 1655
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1656
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1657

1658
	gen8_emit_wa_tail(request, cs);
1659
}
1660

1661 1662
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1663
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1664
					u32 *cs)
1665
{
1666 1667 1668
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1669 1670 1671 1672
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1673 1674 1675 1676 1677 1678
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1679
	/* We're thrashing one dword of HWS. */
1680 1681 1682 1683
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1684
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1685

1686
	gen8_emit_wa_tail(request, cs);
1687 1688
}

1689 1690
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1691
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1692 1693 1694
{
	int ret;

1695
	ret = intel_ring_workarounds_emit(req);
1696 1697 1698
	if (ret)
		return ret;

1699 1700 1701 1702 1703 1704 1705 1706
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1707
	return i915_gem_render_state_emit(req);
1708 1709
}

1710 1711
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1712
 * @engine: Engine Command Streamer.
1713
 */
1714
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1715
{
1716
	struct drm_i915_private *dev_priv;
1717

1718 1719 1720 1721 1722 1723 1724
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1725
	dev_priv = engine->i915;
1726

1727 1728
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1729
	}
1730

1731 1732
	if (engine->cleanup)
		engine->cleanup(engine);
1733

1734
	intel_engine_cleanup_common(engine);
1735

1736
	lrc_destroy_wa_ctx(engine);
1737
	engine->i915 = NULL;
1738 1739
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1740 1741
}

1742
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1743
{
1744
	engine->submit_request = execlists_submit_request;
1745
	engine->cancel_requests = execlists_cancel_requests;
1746
	engine->schedule = execlists_schedule;
1747
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1748 1749
}

1750
static void
1751
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1752 1753
{
	/* Default vfuncs which can be overriden by each engine. */
1754
	engine->init_hw = gen8_init_common_ring;
1755
	engine->reset_hw = reset_common_ring;
1756 1757 1758 1759

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1760 1761
	engine->request_alloc = execlists_request_alloc;

1762
	engine->emit_flush = gen8_emit_flush;
1763
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1764
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1765 1766

	engine->set_default_submission = execlists_set_default_submission;
1767

1768 1769
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1770
	engine->emit_bb_start = gen8_emit_bb_start;
1771 1772
}

1773
static inline void
1774
logical_ring_default_irqs(struct intel_engine_cs *engine)
1775
{
1776
	unsigned shift = engine->irq_shift;
1777 1778
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1779 1780
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static bool irq_handler_force_mmio(struct drm_i915_private *i915)
{
	/* GVT emulation depends upon intercepting CSB mmio */
	if (intel_vgpu_active(i915))
		return true;

	/*
	 * IOMMU adds unpredictable latency causing the CSB write (from the
	 * GPU into the HWSP) to only be visible some time after the interrupt
	 * (missed breadcrumb syndrome).
	 */
	if (intel_vtd_active())
		return true;

	return false;
}

1798 1799 1800 1801 1802 1803
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1804 1805
	intel_engine_setup_common(engine);

1806 1807 1808
	/* Intentionally left blank. */
	engine->buffer = NULL;

1809 1810
	engine->csb_use_mmio = irq_handler_force_mmio(dev_priv);

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1832
static int logical_ring_init(struct intel_engine_cs *engine)
1833 1834 1835
{
	int ret;

1836
	ret = intel_engine_init_common(engine);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1847
int logical_render_ring_init(struct intel_engine_cs *engine)
1848 1849 1850 1851
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1852 1853
	logical_ring_setup(engine);

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1864
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1865
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1866

1867
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1882
	return logical_ring_init(engine);
1883 1884
}

1885
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1886 1887 1888 1889
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1890 1891
}

1892
static u32
1893
make_rpcs(struct drm_i915_private *dev_priv)
1894 1895 1896 1897 1898 1899 1900
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1901
	if (INTEL_GEN(dev_priv) < 9)
1902 1903 1904 1905 1906 1907 1908 1909
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1910
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1911
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1912
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1913 1914 1915 1916
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1917
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1918
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1919
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1920 1921 1922 1923
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1924 1925
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1926
			GEN8_RPCS_EU_MIN_SHIFT;
1927
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1928 1929 1930 1931 1932 1933 1934
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1935
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1936 1937 1938
{
	u32 indirect_ctx_offset;

1939
	switch (INTEL_GEN(engine->i915)) {
1940
	default:
1941
		MISSING_CASE(INTEL_GEN(engine->i915));
1942
		/* fall through */
1943 1944 1945 1946
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1960
static void execlists_init_reg_state(u32 *regs,
1961 1962 1963
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1964
{
1965 1966
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2001

2002
		if (engine->wa_ctx.vma) {
2003
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2004
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2005

2006
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2007 2008
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2009

2010
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2011
				intel_lr_indirect_ctx_offset(engine) << 6;
2012

2013
			regs[CTX_BB_PER_CTX_PTR + 1] =
2014
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2015
		}
2016
	}
2017 2018 2019 2020

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2021
	/* PDP values well be assigned later if needed */
2022 2023 2024 2025 2026 2027 2028 2029
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2030

2031
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2032 2033 2034 2035
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2036
		ASSIGN_CTX_PML4(ppgtt, regs);
2037 2038
	}

2039 2040 2041 2042
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2043 2044

		i915_oa_init_reg_state(engine, ctx, regs);
2045
	}
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2069
	ctx_obj->mm.dirty = true;
2070 2071 2072 2073 2074 2075

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2076

2077
	i915_gem_object_unpin_map(ctx_obj);
2078 2079 2080 2081

	return 0;
}

2082
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2083
					    struct intel_engine_cs *engine)
2084
{
2085
	struct drm_i915_gem_object *ctx_obj;
2086
	struct intel_context *ce = &ctx->engine[engine->id];
2087
	struct i915_vma *vma;
2088
	uint32_t context_size;
2089
	struct intel_ring *ring;
2090 2091
	int ret;

2092
	WARN_ON(ce->state);
2093

2094
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2095

2096 2097 2098 2099 2100
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2101

2102
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2103
	if (IS_ERR(ctx_obj)) {
2104
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2105
		return PTR_ERR(ctx_obj);
2106 2107
	}

2108
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2109 2110 2111 2112 2113
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2114
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2115 2116
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2117
		goto error_deref_obj;
2118 2119
	}

2120
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2121 2122
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2123
		goto error_ring_free;
2124 2125
	}

2126
	ce->ring = ring;
2127
	ce->state = vma;
2128
	ce->initialised |= engine->init_context == NULL;
2129 2130

	return 0;
2131

2132
error_ring_free:
2133
	intel_ring_free(ring);
2134
error_deref_obj:
2135
	i915_gem_object_put(ctx_obj);
2136
	return ret;
2137
}
2138

2139
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2140
{
2141
	struct intel_engine_cs *engine;
2142
	struct i915_gem_context *ctx;
2143
	enum intel_engine_id id;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2155
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2156
		for_each_engine(engine, dev_priv, id) {
2157 2158
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2159

2160 2161
			if (!ce->state)
				continue;
2162

2163 2164 2165 2166
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2167

2168 2169 2170
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2171

C
Chris Wilson 已提交
2172
			ce->state->obj->mm.dirty = true;
2173
			i915_gem_object_unpin_map(ce->state->obj);
2174

2175
			intel_ring_reset(ce->ring, 0);
2176
		}
2177 2178
	}
}