rcutree.c 89.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56

57
#include "rcutree.h"
58 59 60
#include <trace/events/rcu.h>

#include "rcu.h"
61

62 63
/* Data structures. */

64
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66

67
#define RCU_STATE_INITIALIZER(sname, cr) { \
68
	.level = { &sname##_state.node[0] }, \
69
	.call = cr, \
70
	.fqs_state = RCU_GP_IDLE, \
71 72
	.gpnum = -300, \
	.completed = -300, \
73 74 75
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
76
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77
	.name = #sname, \
78 79
}

80 81
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
82
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
83

84
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
85
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
86

87
static struct rcu_state *rcu_state;
88
LIST_HEAD(rcu_struct_flavors);
89

90 91
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
92
module_param(rcu_fanout_leaf, int, 0444);
93 94 95 96 97 98 99 100 101 102
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

103 104 105 106 107 108 109 110 111
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
112 113 114
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

115 116 117 118 119 120 121 122 123 124 125 126 127 128
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

129 130
#ifdef CONFIG_RCU_BOOST

131 132 133 134 135
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
136
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
137
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
138
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139
DEFINE_PER_CPU(char, rcu_cpu_has_work);
140

141 142
#endif /* #ifdef CONFIG_RCU_BOOST */

143
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 145
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146

147 148 149 150 151 152 153 154 155 156 157 158
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

159 160 161 162 163 164 165 166 167 168
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

169
/*
170
 * Note a quiescent state.  Because we do not need to know
171
 * how many quiescent states passed, just if there was at least
172
 * one since the start of the grace period, this just sets a flag.
173
 * The caller must have disabled preemption.
174
 */
175
void rcu_sched_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178

179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182 183
}

184
void rcu_bh_qs(int cpu)
185
{
186
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187

188
	if (rdp->passed_quiesce == 0)
189
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190
	rdp->passed_quiesce = 1;
191
}
192

193 194 195
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
196
 * The caller must have disabled preemption.
197 198 199
 */
void rcu_note_context_switch(int cpu)
{
200
	trace_rcu_utilization("Start context switch");
201
	rcu_sched_qs(cpu);
202
	rcu_preempt_note_context_switch(cpu);
203
	trace_rcu_utilization("End context switch");
204
}
205
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206

207
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209
	.dynticks = ATOMIC_INIT(1),
210
};
211

212
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
213 214 215
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

216 217 218
module_param(blimit, int, 0444);
module_param(qhimark, int, 0444);
module_param(qlowmark, int, 0444);
219

220 221 222
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

223
module_param(rcu_cpu_stall_suppress, int, 0644);
224
module_param(rcu_cpu_stall_timeout, int, 0644);
225

226 227 228 229 230 231
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

232 233
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
static void force_quiescent_state(struct rcu_state *rsp);
234
static int rcu_pending(int cpu);
235 236

/*
237
 * Return the number of RCU-sched batches processed thus far for debug & stats.
238
 */
239
long rcu_batches_completed_sched(void)
240
{
241
	return rcu_sched_state.completed;
242
}
243
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
244 245 246 247 248 249 250 251 252 253

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

254 255 256 257 258
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
259
	force_quiescent_state(&rcu_bh_state);
260 261 262
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

288 289 290 291 292
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
293
	force_quiescent_state(&rcu_sched_state);
294 295 296
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
312 313 314
	return *rdp->nxttail[RCU_DONE_TAIL +
			     ACCESS_ONCE(rsp->completed) != rdp->completed] &&
	       !rcu_gp_in_progress(rsp);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
339 340 341 342 343
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
344
	 */
345 346
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
347
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
348 349 350 351 352 353
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

354 355 356 357 358 359 360
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
361
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
362
{
363
	trace_rcu_dyntick("Start", oldval, 0);
364
	if (!is_idle_task(current)) {
365 366
		struct task_struct *idle = idle_task(smp_processor_id());

367
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
368
		ftrace_dump(DUMP_ORIG);
369 370 371
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
372
	}
373
	rcu_prepare_for_idle(smp_processor_id());
374 375 376 377 378
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
379 380 381 382 383 384 385 386 387 388 389

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
390
}
391 392

/**
393
 * rcu_idle_enter - inform RCU that current CPU is entering idle
394
 *
395
 * Enter idle mode, in other words, -leave- the mode in which RCU
396
 * read-side critical sections can occur.  (Though RCU read-side
397 398 399 400 401 402
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
403
 */
404
void rcu_idle_enter(void)
405 406
{
	unsigned long flags;
407
	long long oldval;
408 409 410 411
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
412
	oldval = rdtp->dynticks_nesting;
413 414 415 416 417
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
418
	rcu_idle_enter_common(rdtp, oldval);
419 420
	local_irq_restore(flags);
}
421
EXPORT_SYMBOL_GPL(rcu_idle_enter);
422

423 424 425 426 427 428
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
429
 *
430 431 432 433 434 435 436 437
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
438
 */
439
void rcu_irq_exit(void)
440 441
{
	unsigned long flags;
442
	long long oldval;
443 444 445 446
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
447
	oldval = rdtp->dynticks_nesting;
448 449
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
450 451 452 453
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
454 455 456 457 458 459 460 461 462 463 464 465
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
466 467 468 469 470
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
471
	rcu_cleanup_after_idle(smp_processor_id());
472
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
473
	if (!is_idle_task(current)) {
474 475
		struct task_struct *idle = idle_task(smp_processor_id());

476 477
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
478
		ftrace_dump(DUMP_ORIG);
479 480 481
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
482 483 484 485 486 487 488 489 490
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
491
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
492
 * allow for the possibility of usermode upcalls messing up our count
493 494 495 496 497 498 499 500 501 502 503 504
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
505 506 507 508 509
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
510 511 512
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
513
EXPORT_SYMBOL_GPL(rcu_idle_exit);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
545 546 547 548
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
549 550 551 552 553 554 555 556 557 558 559 560 561 562
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

563 564
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
565
		return;
566 567 568 569 570 571
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
572 573 574 575 576 577 578 579 580 581 582 583 584
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

585 586
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
587
		return;
588 589 590 591 592
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
593 594 595
}

/**
596
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
597
 *
598
 * If the current CPU is in its idle loop and is neither in an interrupt
599
 * or NMI handler, return true.
600
 */
601
int rcu_is_cpu_idle(void)
602
{
603 604 605 606 607 608
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
609
}
610
EXPORT_SYMBOL(rcu_is_cpu_idle);
611

612
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
613 614 615 616 617 618 619

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
620 621 622 623 624 625 626 627 628 629 630
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
631 632 633 634 635 636
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
637 638
	struct rcu_data *rdp;
	struct rcu_node *rnp;
639 640 641 642 643
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
644 645 646
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
647 648 649 650 651 652
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

653
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
654

655
/**
656
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
657
 *
658 659 660
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
661
 */
662
int rcu_is_cpu_rrupt_from_idle(void)
663
{
664
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
665 666 667 668 669
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
670
 * is in dynticks idle mode, which is an extended quiescent state.
671 672 673
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
674
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
675
	return (rdp->dynticks_snap & 0x1) == 0;
676 677 678 679 680 681 682 683 684 685
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
686 687
	unsigned int curr;
	unsigned int snap;
688

689 690
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
691 692 693 694 695 696 697 698 699

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
700
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
701
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
702 703 704 705 706 707 708 709
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

728 729 730
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
731
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
732 733 734 735 736 737 738
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
739
	int ndetected = 0;
740 741 742 743
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
744
	raw_spin_lock_irqsave(&rnp->lock, flags);
745
	delta = jiffies - rsp->jiffies_stall;
746
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
747
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
748 749
		return;
	}
750
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
751
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
752

753 754 755 756 757
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
758
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
759
	       rsp->name);
760
	print_cpu_stall_info_begin();
761
	rcu_for_each_leaf_node(rsp, rnp) {
762
		raw_spin_lock_irqsave(&rnp->lock, flags);
763
		ndetected += rcu_print_task_stall(rnp);
764
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
765
		if (rnp->qsmask == 0)
766
			continue;
767
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
768
			if (rnp->qsmask & (1UL << cpu)) {
769
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
770 771
				ndetected++;
			}
772
	}
773 774 775 776 777 778 779

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
780
	ndetected += rcu_print_task_stall(rnp);
781 782 783 784
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
785
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
786 787 788
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
789
		dump_stack();
790

791
	/* Complain about tasks blocking the grace period. */
792 793 794

	rcu_print_detail_task_stall(rsp);

795
	force_quiescent_state(rsp);  /* Kick them all. */
796 797 798 799 800 801 802
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

803 804 805 806 807
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
808 809 810 811 812
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
813 814
	if (!trigger_all_cpu_backtrace())
		dump_stack();
815

P
Paul E. McKenney 已提交
816
	raw_spin_lock_irqsave(&rnp->lock, flags);
817
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
818 819
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
820
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
821

822 823 824 825 826
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
827 828
	unsigned long j;
	unsigned long js;
829 830
	struct rcu_node *rnp;

831
	if (rcu_cpu_stall_suppress)
832
		return;
833 834
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
835
	rnp = rdp->mynode;
836
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
837 838 839 840

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

841 842
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
843

844
		/* They had a few time units to dump stack, so complain. */
845 846 847 848
		print_other_cpu_stall(rsp);
	}
}

849 850
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
851
	rcu_cpu_stall_suppress = 1;
852 853 854
	return NOTIFY_DONE;
}

855 856 857 858 859 860 861 862 863 864 865
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
866 867 868 869
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
870 871
}

872 873 874 875 876 877 878 879 880
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

881 882 883
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
884 885 886
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
887
 */
888 889 890
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
891 892 893 894 895
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
896
		rdp->gpnum = rnp->gpnum;
897
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
898 899
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
900
		zero_cpu_stall_ticks(rdp);
901 902 903
	}
}

904 905
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
906 907 908 909 910 911
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
912
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
913 914 915 916
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
917
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

940 941 942 943 944 945 946 947 948 949 950 951
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
971
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
972

973 974
		/*
		 * If we were in an extended quiescent state, we may have
975
		 * missed some grace periods that others CPUs handled on
976
		 * our behalf. Catch up with this state to avoid noting
977 978
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
979 980
		 * we will detect this later on.  Of course, any quiescent
		 * states we found for the old GP are now invalid.
981
		 */
982
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
983
			rdp->gpnum = rdp->completed;
984 985
			rdp->passed_quiesce = 0;
		}
986

987
		/*
988 989
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
990
		 */
991
		if ((rnp->qsmask & rdp->grpmask) == 0)
992
			rdp->qs_pending = 0;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1010
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1011 1012 1013 1014
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1015
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

1029 1030
	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1031 1032
}

1033
/*
1034
 * Initialize a new grace period.
1035
 */
1036
static int rcu_gp_init(struct rcu_state *rsp)
1037 1038
{
	struct rcu_data *rdp;
1039
	struct rcu_node *rnp = rcu_get_root(rsp);
1040

1041
	raw_spin_lock_irq(&rnp->lock);
1042
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	if (rcu_gp_in_progress(rsp)) {
		/* Grace period already in progress, don't start another.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
	record_gp_stall_check_time(rsp);
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
	get_online_cpus();

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1073 1074
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1075 1076 1077
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
1078
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1079 1080 1081 1082 1083 1084 1085 1086
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1087 1088 1089 1090
#ifdef CONFIG_PROVE_RCU_DELAY
		if ((random32() % (rcu_num_nodes * 8)) == 0)
			schedule_timeout_uninterruptible(2);
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1091 1092
		cond_resched();
	}
1093

1094 1095 1096
	put_online_cpus();
	return 1;
}
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/*
 * Do one round of quiescent-state forcing.
 */
int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
{
	int fqs_state = fqs_state_in;
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(rsp, dyntick_save_progress_counter);
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1124 1125 1126
/*
 * Clean up after the old grace period.
 */
1127
static void rcu_gp_cleanup(struct rcu_state *rsp)
1128 1129 1130 1131
{
	unsigned long gp_duration;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1132

1133 1134 1135 1136
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1137

1138 1139 1140 1141 1142 1143 1144 1145
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1146
	raw_spin_unlock_irq(&rnp->lock);
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1158
		raw_spin_lock_irq(&rnp->lock);
1159 1160 1161
		rnp->completed = rsp->gpnum;
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1162
	}
1163 1164
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1165 1166 1167 1168

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
	rsp->fqs_state = RCU_GP_IDLE;
1169
	rdp = this_cpu_ptr(rsp->rda);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	if (cpu_needs_another_gp(rsp, rdp))
		rsp->gp_flags = 1;
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1180
	int fqs_state;
1181
	unsigned long j;
1182
	int ret;
1183 1184 1185 1186 1187 1188 1189
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1190 1191 1192 1193 1194
			wait_event_interruptible(rsp->gp_wq,
						 rsp->gp_flags &
						 RCU_GP_FLAG_INIT);
			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
			    rcu_gp_init(rsp))
1195 1196 1197 1198
				break;
			cond_resched();
			flush_signals(current);
		}
1199

1200 1201
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1202 1203 1204 1205 1206
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1207
		for (;;) {
1208
			rsp->jiffies_force_qs = jiffies + j;
1209 1210 1211 1212
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1213
					j);
1214
			/* If grace period done, leave loop. */
1215
			if (!ACCESS_ONCE(rnp->qsmask) &&
1216
			    !rcu_preempt_blocked_readers_cgp(rnp))
1217
				break;
1218 1219 1220 1221 1222 1223 1224 1225 1226
			/* If time for quiescent-state forcing, do it. */
			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
			}
1227 1228 1229 1230 1231 1232 1233 1234
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1235
		}
1236 1237 1238

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1239 1240 1241
	}
}

1242 1243 1244 1245 1246
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1247 1248 1249 1250
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1251 1252 1253 1254 1255
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1256
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1257 1258
	struct rcu_node *rnp = rcu_get_root(rsp);

1259
	if (!rsp->gp_kthread ||
1260 1261
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
1262 1263 1264
		 * Either we have not yet spawned the grace-period
		 * task or this CPU does not need another grace period.
		 * Either way, don't start a new grace period.
1265 1266 1267 1268
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1269

1270
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1271 1272
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	wake_up(&rsp->gp_wq);
1273 1274
}

1275
/*
P
Paul E. McKenney 已提交
1276 1277 1278 1279 1280
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1281
 */
P
Paul E. McKenney 已提交
1282
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1283
	__releases(rcu_get_root(rsp)->lock)
1284
{
1285
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1286 1287
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1288 1289
}

1290
/*
P
Paul E. McKenney 已提交
1291 1292 1293 1294 1295 1296
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1297 1298
 */
static void
P
Paul E. McKenney 已提交
1299 1300
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1301 1302
	__releases(rnp->lock)
{
1303 1304
	struct rcu_node *rnp_c;

1305 1306 1307 1308 1309
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1310
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1311 1312 1313
			return;
		}
		rnp->qsmask &= ~mask;
1314 1315 1316 1317
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1318
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1319 1320

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1321
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1322 1323 1324 1325 1326 1327 1328 1329 1330
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1331
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1332
		rnp_c = rnp;
1333
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1334
		raw_spin_lock_irqsave(&rnp->lock, flags);
1335
		WARN_ON_ONCE(rnp_c->qsmask);
1336 1337 1338 1339
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1340
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1341
	 * to clean up and start the next grace period if one is needed.
1342
	 */
P
Paul E. McKenney 已提交
1343
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1344 1345 1346
}

/*
P
Paul E. McKenney 已提交
1347 1348 1349 1350 1351 1352 1353
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1354 1355
 */
static void
1356
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1357 1358 1359 1360 1361 1362
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1363
	raw_spin_lock_irqsave(&rnp->lock, flags);
1364 1365
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1366 1367

		/*
1368 1369 1370 1371
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1372
		 */
1373
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1374
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1375 1376 1377 1378
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1379
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1380 1381 1382 1383 1384 1385 1386 1387 1388
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1389
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1417
	if (!rdp->passed_quiesce)
1418 1419
		return;

P
Paul E. McKenney 已提交
1420 1421 1422 1423
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1424
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1425 1426 1427 1428
}

#ifdef CONFIG_HOTPLUG_CPU

1429
/*
1430 1431 1432
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1433
 */
1434 1435 1436
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1437
{
1438 1439 1440 1441 1442
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1443
	if (rdp->nxtlist != NULL) {
1444 1445 1446
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1447
		rdp->qlen_lazy = 0;
1448
		ACCESS_ONCE(rdp->qlen) = 0;
1449 1450 1451
	}

	/*
1452 1453 1454 1455 1456 1457 1458
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1459
	 */
1460 1461 1462 1463
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1464 1465 1466
	}

	/*
1467 1468 1469
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1470
	 */
1471
	if (rdp->nxtlist != NULL) {
1472 1473
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1474
	}
1475

1476
	/* Finally, initialize the rcu_data structure's list to empty.  */
1477
	init_callback_list(rdp);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1489
	/*
1490 1491 1492 1493 1494
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1495
	 */
1496 1497 1498 1499 1500 1501 1502 1503
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1504 1505
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1545 1546 1547
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1548 1549 1550
}

/*
1551
 * The CPU has been completely removed, and some other CPU is reporting
1552 1553 1554
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1555 1556
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1557
 */
1558
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1559
{
1560 1561 1562
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1563
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1564
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1565

1566
	/* Adjust any no-longer-needed kthreads. */
1567 1568
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1569

1570
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1571 1572 1573 1574

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1575 1576 1577 1578
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1611 1612 1613
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1614 1615 1616 1617
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1618 1619 1620 1621
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1622
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1623 1624 1625
{
}

1626
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1627 1628 1629 1630 1631 1632 1633 1634 1635
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1636
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1637 1638 1639
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1640
	int bl, count, count_lazy, i;
1641 1642

	/* If no callbacks are ready, just return.*/
1643
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1644
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1645 1646 1647
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1648
		return;
1649
	}
1650 1651 1652 1653 1654 1655

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1656
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1657
	bl = rdp->blimit;
1658
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1659 1660 1661 1662
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1663 1664 1665
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1666 1667 1668
	local_irq_restore(flags);

	/* Invoke callbacks. */
1669
	count = count_lazy = 0;
1670 1671 1672
	while (list) {
		next = list->next;
		prefetch(next);
1673
		debug_rcu_head_unqueue(list);
1674 1675
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1676
		list = next;
1677 1678 1679 1680
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1681 1682 1683 1684
			break;
	}

	local_irq_save(flags);
1685 1686 1687
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1688 1689 1690 1691 1692

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1693 1694 1695
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1696 1697 1698
			else
				break;
	}
1699 1700
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1701
	ACCESS_ONCE(rdp->qlen) -= count;
1702
	rdp->n_cbs_invoked += count;
1703 1704 1705 1706 1707

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1708 1709 1710 1711 1712 1713
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1714
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1715

1716 1717
	local_irq_restore(flags);

1718
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1719
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1720
		invoke_rcu_core();
1721 1722 1723 1724 1725
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1726
 * Also schedule RCU core processing.
1727
 *
1728
 * This function must be called from hardirq context.  It is normally
1729 1730 1731 1732 1733
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1734
	trace_rcu_utilization("Start scheduler-tick");
1735
	increment_cpu_stall_ticks();
1736
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1737 1738 1739 1740 1741

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1742
		 * a quiescent state, so note it.
1743 1744
		 *
		 * No memory barrier is required here because both
1745 1746 1747
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1748 1749
		 */

1750 1751
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1752 1753 1754 1755 1756 1757 1758

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1759
		 * critical section, so note it.
1760 1761
		 */

1762
		rcu_bh_qs(cpu);
1763
	}
1764
	rcu_preempt_check_callbacks(cpu);
1765
	if (rcu_pending(cpu))
1766
		invoke_rcu_core();
1767
	trace_rcu_utilization("End scheduler-tick");
1768 1769 1770 1771 1772
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1773 1774
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1775
 * The caller must have suppressed start of new grace periods.
1776
 */
1777
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1778 1779 1780 1781 1782
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1783
	struct rcu_node *rnp;
1784

1785
	rcu_for_each_leaf_node(rsp, rnp) {
1786
		cond_resched();
1787
		mask = 0;
P
Paul E. McKenney 已提交
1788
		raw_spin_lock_irqsave(&rnp->lock, flags);
1789
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1790
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1791
			return;
1792
		}
1793
		if (rnp->qsmask == 0) {
1794
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1795 1796
			continue;
		}
1797
		cpu = rnp->grplo;
1798
		bit = 1;
1799
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1800 1801
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1802 1803
				mask |= bit;
		}
1804
		if (mask != 0) {
1805

P
Paul E. McKenney 已提交
1806 1807
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1808 1809
			continue;
		}
P
Paul E. McKenney 已提交
1810
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1811
	}
1812
	rnp = rcu_get_root(rsp);
1813 1814 1815 1816
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1817 1818 1819 1820 1821 1822
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
1823
static void force_quiescent_state(struct rcu_state *rsp)
1824 1825
{
	unsigned long flags;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1844

1845 1846 1847 1848 1849 1850
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1851
		return;  /* Someone beat us to it. */
1852
	}
1853
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
1854
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1855
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1856 1857 1858
}

/*
1859 1860 1861
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1862 1863
 */
static void
1864
__rcu_process_callbacks(struct rcu_state *rsp)
1865 1866
{
	unsigned long flags;
1867
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1868

1869 1870
	WARN_ON_ONCE(rdp->beenonline == 0);

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1882
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1883 1884 1885 1886
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1887
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1888
		invoke_rcu_callbacks(rsp, rdp);
1889 1890
}

1891
/*
1892
 * Do RCU core processing for the current CPU.
1893
 */
1894
static void rcu_process_callbacks(struct softirq_action *unused)
1895
{
1896 1897
	struct rcu_state *rsp;

1898 1899
	if (cpu_is_offline(smp_processor_id()))
		return;
1900
	trace_rcu_utilization("Start RCU core");
1901 1902
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
1903
	trace_rcu_utilization("End RCU core");
1904 1905
}

1906
/*
1907 1908 1909 1910 1911
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1912
 */
1913
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1914
{
1915 1916
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1917 1918
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1919 1920
		return;
	}
1921
	invoke_rcu_callbacks_kthread();
1922 1923
}

1924
static void invoke_rcu_core(void)
1925 1926 1927 1928
{
	raise_softirq(RCU_SOFTIRQ);
}

1929 1930 1931 1932 1933
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
1934
{
1935 1936 1937 1938
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
1939
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1940 1941
		invoke_rcu_core();

1942
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1943
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1944
		return;
1945

1946 1947 1948 1949 1950 1951 1952
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1953
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
1971
				force_quiescent_state(rsp);
1972 1973 1974
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1975
	}
1976 1977
}

1978 1979
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1980
	   struct rcu_state *rsp, bool lazy)
1981 1982 1983 1984
{
	unsigned long flags;
	struct rcu_data *rdp;

1985
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1986
	debug_rcu_head_queue(head);
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1999
	rdp = this_cpu_ptr(rsp->rda);
2000 2001

	/* Add the callback to our list. */
2002
	ACCESS_ONCE(rdp->qlen)++;
2003 2004
	if (lazy)
		rdp->qlen_lazy++;
2005 2006
	else
		rcu_idle_count_callbacks_posted();
2007 2008 2009
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2010

2011 2012
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2013
					 rdp->qlen_lazy, rdp->qlen);
2014
	else
2015
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2016

2017 2018
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2019 2020 2021 2022
	local_irq_restore(flags);
}

/*
2023
 * Queue an RCU-sched callback for invocation after a grace period.
2024
 */
2025
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2026
{
2027
	__call_rcu(head, func, &rcu_sched_state, 0);
2028
}
2029
EXPORT_SYMBOL_GPL(call_rcu_sched);
2030 2031

/*
2032
 * Queue an RCU callback for invocation after a quicker grace period.
2033 2034 2035
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
2036
	__call_rcu(head, func, &rcu_bh_state, 0);
2037 2038 2039
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2051 2052
	int ret;

2053
	might_sleep();  /* Check for RCU read-side critical section. */
2054 2055 2056 2057
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2058 2059
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2085 2086 2087 2088
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2089 2090
	if (rcu_blocking_is_gp())
		return;
2091
	wait_rcu_gp(call_rcu_sched);
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2106 2107 2108 2109
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2110 2111
	if (rcu_blocking_is_gp())
		return;
2112
	wait_rcu_gp(call_rcu_bh);
2113 2114 2115
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2146
 *
2147 2148 2149 2150
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2180
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
2192
		if (trycount++ < 10) {
2193
			udelay(trycount * num_online_cpus());
2194
		} else {
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2237 2238 2239 2240 2241 2242 2243 2244 2245
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2246 2247
	struct rcu_node *rnp = rdp->mynode;

2248 2249 2250 2251 2252 2253
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2254 2255
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2256
		rdp->n_rp_qs_pending++;
2257
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2258
		rdp->n_rp_report_qs++;
2259
		return 1;
2260
	}
2261 2262

	/* Does this CPU have callbacks ready to invoke? */
2263 2264
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2265
		return 1;
2266
	}
2267 2268

	/* Has RCU gone idle with this CPU needing another grace period? */
2269 2270
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2271
		return 1;
2272
	}
2273 2274

	/* Has another RCU grace period completed?  */
2275
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2276
		rdp->n_rp_gp_completed++;
2277
		return 1;
2278
	}
2279 2280

	/* Has a new RCU grace period started? */
2281
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2282
		rdp->n_rp_gp_started++;
2283
		return 1;
2284
	}
2285 2286

	/* nothing to do */
2287
	rdp->n_rp_need_nothing++;
2288 2289 2290 2291 2292 2293 2294 2295
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2296
static int rcu_pending(int cpu)
2297
{
2298 2299 2300 2301 2302 2303
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2304 2305 2306 2307 2308
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2309
 * 1 if so.
2310
 */
2311
static int rcu_cpu_has_callbacks(int cpu)
2312
{
2313 2314
	struct rcu_state *rsp;

2315
	/* RCU callbacks either ready or pending? */
2316 2317 2318 2319
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2320 2321
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2333 2334 2335 2336
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2337
static void rcu_barrier_callback(struct rcu_head *rhp)
2338
{
2339 2340 2341
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2342 2343
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2344
		complete(&rsp->barrier_completion);
2345 2346 2347
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2348 2349 2350 2351 2352 2353 2354
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2355
	struct rcu_state *rsp = type;
2356
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2357

2358
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2359
	atomic_inc(&rsp->barrier_cpu_count);
2360
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2361 2362 2363 2364 2365 2366
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2367
static void _rcu_barrier(struct rcu_state *rsp)
2368
{
2369 2370 2371
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
2372
	struct rcu_data rd;
2373 2374
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2375

2376
	init_rcu_head_on_stack(&rd.barrier_head);
2377
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2378

2379
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2380
	mutex_lock(&rsp->barrier_mutex);
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2395
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2396
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2397
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2410
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2411
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2412

2413
	/*
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2429
	 */
2430
	init_completion(&rsp->barrier_completion);
2431
	atomic_set(&rsp->barrier_cpu_count, 1);
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
2447 2448
			_rcu_barrier_trace(rsp, "Offline", cpu,
					   rsp->n_barrier_done);
2449 2450 2451 2452
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2453 2454
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2455
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2456 2457
			preempt_enable();
		} else {
2458 2459
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2476
	atomic_inc(&rsp->barrier_cpu_count);
2477
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2478 2479
	rd.rsp = rsp;
	rsp->call(&rd.barrier_head, rcu_barrier_callback);
2480 2481 2482 2483 2484

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2485
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2486
		complete(&rsp->barrier_completion);
2487

2488 2489 2490 2491
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2492
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2493 2494
	smp_mb(); /* Keep increment before caller's subsequent code. */

2495
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2496
	wait_for_completion(&rsp->barrier_completion);
2497 2498

	/* Other rcu_barrier() invocations can now safely proceed. */
2499
	mutex_unlock(&rsp->barrier_mutex);
2500

2501
	destroy_rcu_head_on_stack(&rd.barrier_head);
2502 2503 2504 2505 2506 2507 2508
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2509
	_rcu_barrier(&rcu_bh_state);
2510 2511 2512 2513 2514 2515 2516 2517
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2518
	_rcu_barrier(&rcu_sched_state);
2519 2520 2521
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2522
/*
2523
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2524
 */
2525 2526
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2527 2528
{
	unsigned long flags;
2529
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2530 2531 2532
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2533
	raw_spin_lock_irqsave(&rnp->lock, flags);
2534
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2535
	init_callback_list(rdp);
2536
	rdp->qlen_lazy = 0;
2537
	ACCESS_ONCE(rdp->qlen) = 0;
2538
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2539
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2540
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2541
	rdp->cpu = cpu;
2542
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2543
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2544 2545 2546 2547 2548 2549 2550
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2551
 */
2552
static void __cpuinit
P
Paul E. McKenney 已提交
2553
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2554 2555 2556
{
	unsigned long flags;
	unsigned long mask;
2557
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2558 2559 2560
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2561
	raw_spin_lock_irqsave(&rnp->lock, flags);
2562
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2563
	rdp->preemptible = preemptible;
2564 2565
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2566
	rdp->blimit = blimit;
2567
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2568 2569
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2570
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2571
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2572 2573 2574 2575 2576 2577 2578

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2579
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2580 2581 2582 2583 2584 2585

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2586
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2587 2588
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2589
		if (rnp == rdp->mynode) {
2590 2591 2592 2593 2594 2595
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2596
			rdp->completed = rnp->completed;
2597 2598
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2599
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2600
		}
P
Paul E. McKenney 已提交
2601
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2602 2603 2604
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2605
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2606 2607
}

P
Peter Zijlstra 已提交
2608
static void __cpuinit rcu_prepare_cpu(int cpu)
2609
{
2610 2611 2612 2613 2614
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2615 2616 2617
}

/*
2618
 * Handle CPU online/offline notification events.
2619
 */
2620 2621
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2622 2623
{
	long cpu = (long)hcpu;
2624
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2625
	struct rcu_node *rnp = rdp->mynode;
2626
	struct rcu_state *rsp;
2627

2628
	trace_rcu_utilization("Start CPU hotplug");
2629 2630 2631
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2632 2633
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2634 2635
		break;
	case CPU_ONLINE:
2636 2637
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2638
		rcu_cpu_kthread_setrt(cpu, 1);
2639 2640 2641
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2642
		rcu_cpu_kthread_setrt(cpu, 0);
2643
		break;
2644 2645 2646
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2647 2648 2649
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2650
		 */
2651 2652
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2653
		rcu_cleanup_after_idle(cpu);
2654
		break;
2655 2656 2657 2658
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2659 2660
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2661 2662 2663 2664
		break;
	default:
		break;
	}
2665
	trace_rcu_utilization("End CPU hotplug");
2666 2667 2668
	return NOTIFY_OK;
}

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2706 2707 2708 2709 2710 2711 2712 2713 2714
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2715
	for (i = rcu_num_lvls - 1; i > 0; i--)
2716
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2717
	rsp->levelspread[0] = rcu_fanout_leaf;
2718 2719 2720 2721 2722 2723 2724 2725
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

2726
	cprv = nr_cpu_ids;
2727
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2738 2739
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2740
{
2741 2742 2743 2744 2745 2746 2747 2748
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
2749 2750 2751 2752 2753
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2754 2755
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2756 2757
	/* Initialize the level-tracking arrays. */

2758 2759 2760
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2761 2762 2763 2764 2765
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2766
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2767 2768 2769
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2770
			raw_spin_lock_init(&rnp->lock);
2771 2772
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2773 2774 2775
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
2776 2777
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2795
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2796 2797
		}
	}
2798

2799
	rsp->rda = rda;
2800
	init_waitqueue_head(&rsp->gp_wq);
2801
	rnp = rsp->level[rcu_num_lvls - 1];
2802
	for_each_possible_cpu(i) {
2803
		while (i > rnp->grphi)
2804
			rnp++;
2805
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2806 2807
		rcu_boot_init_percpu_data(i, rsp);
	}
2808
	list_add(&rsp->flavors, &rcu_struct_flavors);
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
2820
	int n = nr_cpu_ids;
2821 2822 2823
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
2824 2825
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2872
void __init rcu_init(void)
2873
{
P
Paul E. McKenney 已提交
2874
	int cpu;
2875

2876
	rcu_bootup_announce();
2877
	rcu_init_geometry();
2878 2879
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2880
	__rcu_init_preempt();
2881
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2882 2883 2884 2885 2886 2887 2888

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2889 2890
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2891
	check_cpu_stall_init();
2892 2893
}

2894
#include "rcutree_plugin.h"