rcutree.c 85.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64

65
#define RCU_STATE_INITIALIZER(structname) { \
66
	.level = { &structname##_state.node[0] }, \
67 68 69 70
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
71 72
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73
	}, \
74
	.fqs_state = RCU_GP_IDLE, \
75 76
	.gpnum = -300, \
	.completed = -300, \
77
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 79
	.orphan_nxttail = &structname##_state.orphan_nxtlist, \
	.orphan_donetail = &structname##_state.orphan_donelist, \
80
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
81 82
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
83
	.name = #structname, \
84 85
}

86
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
87
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
88

89
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
90
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
91

92 93
static struct rcu_state *rcu_state;

94 95 96 97 98 99 100 101 102
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
103 104 105
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

106 107 108 109 110 111 112 113 114 115 116 117 118 119
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

120 121
#ifdef CONFIG_RCU_BOOST

122 123 124 125 126
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
127
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
128
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
129
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
130
DEFINE_PER_CPU(char, rcu_cpu_has_work);
131

132 133
#endif /* #ifdef CONFIG_RCU_BOOST */

134
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
135 136
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
137

138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

150 151 152 153 154 155 156
/* State information for rcu_barrier() and friends. */

static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

157 158 159 160 161 162 163 164 165 166
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

167
/*
168
 * Note a quiescent state.  Because we do not need to know
169
 * how many quiescent states passed, just if there was at least
170
 * one since the start of the grace period, this just sets a flag.
171
 * The caller must have disabled preemption.
172
 */
173
void rcu_sched_qs(int cpu)
174
{
175
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
176

177
	rdp->passed_quiesce_gpnum = rdp->gpnum;
178
	barrier();
179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182 183
}

184
void rcu_bh_qs(int cpu)
185
{
186
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187

188
	rdp->passed_quiesce_gpnum = rdp->gpnum;
189
	barrier();
190
	if (rdp->passed_quiesce == 0)
191
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
192
	rdp->passed_quiesce = 1;
193
}
194

195 196 197
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
198
 * The caller must have disabled preemption.
199 200 201
 */
void rcu_note_context_switch(int cpu)
{
202
	trace_rcu_utilization("Start context switch");
203
	rcu_sched_qs(cpu);
204
	rcu_preempt_note_context_switch(cpu);
205
	trace_rcu_utilization("End context switch");
206
}
207
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
208

209
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
210
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
211
	.dynticks = ATOMIC_INIT(1),
212
};
213

214
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
215 216 217
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

218 219 220 221
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

222 223 224
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

225
module_param(rcu_cpu_stall_suppress, int, 0644);
226
module_param(rcu_cpu_stall_timeout, int, 0644);
227

228
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
229
static int rcu_pending(int cpu);
230 231

/*
232
 * Return the number of RCU-sched batches processed thus far for debug & stats.
233
 */
234
long rcu_batches_completed_sched(void)
235
{
236
	return rcu_sched_state.completed;
237
}
238
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
239 240 241 242 243 244 245 246 247 248

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

249 250 251 252 253 254 255 256 257
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

283 284 285 286 287 288 289 290 291
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
307
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
332 333 334 335 336
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
337
	 */
338 339
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
340
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
341 342 343 344 345 346
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

347 348 349 350 351 352 353
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
354
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
355
{
356
	trace_rcu_dyntick("Start", oldval, 0);
357
	if (!is_idle_task(current)) {
358 359
		struct task_struct *idle = idle_task(smp_processor_id());

360
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
361
		ftrace_dump(DUMP_ALL);
362 363 364
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
365
	}
366
	rcu_prepare_for_idle(smp_processor_id());
367 368 369 370 371
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
372 373 374 375 376 377 378 379 380 381 382

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
383
}
384 385

/**
386
 * rcu_idle_enter - inform RCU that current CPU is entering idle
387
 *
388
 * Enter idle mode, in other words, -leave- the mode in which RCU
389
 * read-side critical sections can occur.  (Though RCU read-side
390 391 392 393 394 395
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
396
 */
397
void rcu_idle_enter(void)
398 399
{
	unsigned long flags;
400
	long long oldval;
401 402 403 404
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
405
	oldval = rdtp->dynticks_nesting;
406 407 408 409 410
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
411
	rcu_idle_enter_common(rdtp, oldval);
412 413
	local_irq_restore(flags);
}
414
EXPORT_SYMBOL_GPL(rcu_idle_enter);
415

416 417 418 419 420 421
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
422
 *
423 424 425 426 427 428 429 430
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
431
 */
432
void rcu_irq_exit(void)
433 434
{
	unsigned long flags;
435
	long long oldval;
436 437 438 439
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
440
	oldval = rdtp->dynticks_nesting;
441 442
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
443 444 445 446
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
447 448 449 450 451 452 453 454 455 456 457 458
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
459 460 461 462 463
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
464
	rcu_cleanup_after_idle(smp_processor_id());
465
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
466
	if (!is_idle_task(current)) {
467 468
		struct task_struct *idle = idle_task(smp_processor_id());

469 470
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
471
		ftrace_dump(DUMP_ALL);
472 473 474
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
475 476 477 478 479 480 481 482 483
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
484
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
485
 * allow for the possibility of usermode upcalls messing up our count
486 487 488 489 490 491 492 493 494 495 496 497
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
498 499 500 501 502
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
503 504 505
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
506
EXPORT_SYMBOL_GPL(rcu_idle_exit);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
538 539 540 541
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
542 543 544 545 546 547 548 549 550 551 552 553 554 555
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

556 557
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
558
		return;
559 560 561 562 563 564
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
565 566 567 568 569 570 571 572 573 574 575 576 577
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

578 579
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
580
		return;
581 582 583 584 585
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
586 587 588
}

/**
589
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
590
 *
591
 * If the current CPU is in its idle loop and is neither in an interrupt
592
 * or NMI handler, return true.
593
 */
594
int rcu_is_cpu_idle(void)
595
{
596 597 598 599 600 601
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
602
}
603
EXPORT_SYMBOL(rcu_is_cpu_idle);
604

605
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
606 607 608 609 610 611 612

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
613 614 615 616 617 618 619 620 621 622 623
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
624 625 626 627 628 629
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
630 631
	struct rcu_data *rdp;
	struct rcu_node *rnp;
632 633 634 635 636
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
637 638 639
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
640 641 642 643 644 645
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

646
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
647

648
/**
649
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
650
 *
651 652 653
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
654
 */
655
int rcu_is_cpu_rrupt_from_idle(void)
656
{
657
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
658 659 660 661 662
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
663
 * is in dynticks idle mode, which is an extended quiescent state.
664 665 666
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
667
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
668
	return (rdp->dynticks_snap & 0x1) == 0;
669 670 671 672 673 674 675 676 677 678
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
679 680
	unsigned int curr;
	unsigned int snap;
681

682 683
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
684 685 686 687 688 689 690 691 692

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
693
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
694
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
695 696 697 698 699 700 701 702
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

721 722 723
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
724
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
725 726 727 728 729 730 731
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
732
	int ndetected = 0;
733 734 735 736
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
737
	raw_spin_lock_irqsave(&rnp->lock, flags);
738
	delta = jiffies - rsp->jiffies_stall;
739
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
740
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
741 742
		return;
	}
743
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
744
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
745

746 747 748 749 750
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
751
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
752
	       rsp->name);
753
	print_cpu_stall_info_begin();
754
	rcu_for_each_leaf_node(rsp, rnp) {
755
		raw_spin_lock_irqsave(&rnp->lock, flags);
756
		ndetected += rcu_print_task_stall(rnp);
757
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
758
		if (rnp->qsmask == 0)
759
			continue;
760
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
761
			if (rnp->qsmask & (1UL << cpu)) {
762
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
763 764
				ndetected++;
			}
765
	}
766 767 768 769 770 771 772

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
773
	ndetected += rcu_print_task_stall(rnp);
774 775 776 777
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
778
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
779 780 781
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
782
		dump_stack();
783

784 785 786 787
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

788 789 790 791 792 793 794 795
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

796 797 798 799 800
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
801 802 803 804 805
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
806 807
	if (!trigger_all_cpu_backtrace())
		dump_stack();
808

P
Paul E. McKenney 已提交
809
	raw_spin_lock_irqsave(&rnp->lock, flags);
810
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
811 812
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
813
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
814

815 816 817 818 819
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
820 821
	unsigned long j;
	unsigned long js;
822 823
	struct rcu_node *rnp;

824
	if (rcu_cpu_stall_suppress)
825
		return;
826 827
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
828
	rnp = rdp->mynode;
829
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
830 831 832 833

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

834 835
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
836

837
		/* They had a few time units to dump stack, so complain. */
838 839 840 841
		print_other_cpu_stall(rsp);
	}
}

842 843
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
844
	rcu_cpu_stall_suppress = 1;
845 846 847
	return NOTIFY_DONE;
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

864 865 866 867 868 869 870 871 872
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

873 874 875
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
876 877 878
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
879
 */
880 881 882
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
883 884 885 886 887
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
888
		rdp->gpnum = rnp->gpnum;
889
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
890 891
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
892
			rdp->passed_quiesce = 0;
893 894
		} else
			rdp->qs_pending = 0;
895
		zero_cpu_stall_ticks(rdp);
896 897 898
	}
}

899 900
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
901 902 903 904 905 906
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
907
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
908 909 910 911
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
912
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

935 936 937 938 939 940 941 942 943 944 945 946
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
966
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
967

968 969
		/*
		 * If we were in an extended quiescent state, we may have
970
		 * missed some grace periods that others CPUs handled on
971
		 * our behalf. Catch up with this state to avoid noting
972 973 974
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
975
		 */
976
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
977 978
			rdp->gpnum = rdp->completed;

979
		/*
980 981
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
982
		 */
983
		if ((rnp->qsmask & rdp->grpmask) == 0)
984
			rdp->qs_pending = 0;
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1002
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1003 1004 1005 1006
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1007
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1034 1035 1036

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1037 1038
}

1039 1040 1041 1042 1043
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1044 1045 1046 1047
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1048 1049 1050 1051 1052
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1053
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1054 1055
	struct rcu_node *rnp = rcu_get_root(rsp);

1056
	if (!rcu_scheduler_fully_active ||
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1067

1068
	if (rsp->fqs_active) {
1069
		/*
1070 1071
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
1072
		 */
1073 1074
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1075 1076 1077 1078 1079
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
1080
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1081 1082
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1083 1084
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
1085
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1086 1087

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
1088
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1089 1090

	/*
1091 1092 1093 1094 1095 1096 1097 1098 1099
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1100 1101 1102 1103
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1104 1105
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1106
	 */
1107
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1108
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1109
		rcu_preempt_check_blocked_tasks(rnp);
1110
		rnp->qsmask = rnp->qsmaskinit;
1111
		rnp->gpnum = rsp->gpnum;
1112 1113 1114
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1115
		rcu_preempt_boost_start_gp(rnp);
1116 1117 1118
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1119
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1120 1121
	}

1122
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1123
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1124
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1125 1126
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1127 1128
}

1129
/*
P
Paul E. McKenney 已提交
1130 1131 1132 1133 1134
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1135
 */
P
Paul E. McKenney 已提交
1136
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1137
	__releases(rcu_get_root(rsp)->lock)
1138
{
1139
	unsigned long gp_duration;
1140 1141
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1142

1143
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1144 1145 1146 1147 1148 1149

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1150 1151 1152
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1187
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1188
	rsp->fqs_state = RCU_GP_IDLE;
1189 1190 1191
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1192
/*
P
Paul E. McKenney 已提交
1193 1194 1195 1196 1197 1198
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1199 1200
 */
static void
P
Paul E. McKenney 已提交
1201 1202
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1203 1204
	__releases(rnp->lock)
{
1205 1206
	struct rcu_node *rnp_c;

1207 1208 1209 1210 1211
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1212
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1213 1214 1215
			return;
		}
		rnp->qsmask &= ~mask;
1216 1217 1218 1219
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1220
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1221 1222

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1223
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1224 1225 1226 1227 1228 1229 1230 1231 1232
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1233
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1234
		rnp_c = rnp;
1235
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1236
		raw_spin_lock_irqsave(&rnp->lock, flags);
1237
		WARN_ON_ONCE(rnp_c->qsmask);
1238 1239 1240 1241
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1242
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1243
	 * to clean up and start the next grace period if one is needed.
1244
	 */
P
Paul E. McKenney 已提交
1245
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1246 1247 1248
}

/*
P
Paul E. McKenney 已提交
1249 1250 1251 1252 1253 1254 1255
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1256 1257
 */
static void
1258
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1259 1260 1261 1262 1263 1264
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1265
	raw_spin_lock_irqsave(&rnp->lock, flags);
1266
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1267 1268

		/*
1269 1270 1271 1272
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1273
		 */
1274
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1275
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1276 1277 1278 1279
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1280
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1281 1282 1283 1284 1285 1286 1287 1288 1289
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1290
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1318
	if (!rdp->passed_quiesce)
1319 1320
		return;

P
Paul E. McKenney 已提交
1321 1322 1323 1324
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1325
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1326 1327 1328 1329
}

#ifdef CONFIG_HOTPLUG_CPU

1330
/*
1331 1332 1333
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1334
 */
1335 1336 1337
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1338
{
1339 1340 1341 1342 1343
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1344
	if (rdp->nxtlist != NULL) {
1345 1346 1347
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1348
		rdp->qlen_lazy = 0;
1349
		ACCESS_ONCE(rdp->qlen) = 0;
1350 1351 1352
	}

	/*
1353 1354 1355 1356 1357 1358 1359
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1360
	 */
1361 1362 1363 1364
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1365 1366 1367
	}

	/*
1368 1369 1370
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1371
	 */
1372
	if (rdp->nxtlist != NULL) {
1373 1374
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1375
	}
1376

1377
	/* Finally, initialize the rcu_data structure's list to empty.  */
1378
	init_callback_list(rdp);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1390
	/*
1391 1392 1393 1394 1395
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1396
	 */
1397 1398 1399 1400 1401 1402 1403 1404
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1405 1406
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1446 1447 1448
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1449 1450 1451
}

/*
1452
 * The CPU has been completely removed, and some other CPU is reporting
1453 1454 1455
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1456 1457
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1458
 */
1459
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1460
{
1461 1462 1463
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1464
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1465
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1466

1467
	/* Adjust any no-longer-needed kthreads. */
1468 1469
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1470

1471
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1472 1473 1474 1475

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1476 1477 1478 1479
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1512 1513 1514 1515
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1516 1517 1518 1519
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1520
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1521 1522 1523
{
}

1524
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1525 1526 1527 1528 1529 1530 1531 1532 1533
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1534
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1535 1536 1537
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1538
	int bl, count, count_lazy, i;
1539 1540

	/* If no callbacks are ready, just return.*/
1541
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1542
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1543 1544 1545
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1546
		return;
1547
	}
1548 1549 1550 1551 1552 1553

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1554
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1555
	bl = rdp->blimit;
1556
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1557 1558 1559 1560
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1561 1562 1563
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1564 1565 1566
	local_irq_restore(flags);

	/* Invoke callbacks. */
1567
	count = count_lazy = 0;
1568 1569 1570
	while (list) {
		next = list->next;
		prefetch(next);
1571
		debug_rcu_head_unqueue(list);
1572 1573
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1574
		list = next;
1575 1576 1577 1578
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1579 1580 1581 1582
			break;
	}

	local_irq_save(flags);
1583 1584 1585
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1586 1587 1588 1589 1590

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1591 1592 1593
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1594 1595 1596
			else
				break;
	}
1597 1598
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1599
	ACCESS_ONCE(rdp->qlen) -= count;
1600
	rdp->n_cbs_invoked += count;
1601 1602 1603 1604 1605

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1606 1607 1608 1609 1610 1611 1612
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1613 1614
	local_irq_restore(flags);

1615
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1616
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1617
		invoke_rcu_core();
1618 1619 1620 1621 1622
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1623
 * Also schedule RCU core processing.
1624
 *
1625
 * This function must be called from hardirq context.  It is normally
1626 1627 1628 1629 1630
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1631
	trace_rcu_utilization("Start scheduler-tick");
1632
	increment_cpu_stall_ticks();
1633
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1634 1635 1636 1637 1638

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1639
		 * a quiescent state, so note it.
1640 1641
		 *
		 * No memory barrier is required here because both
1642 1643 1644
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1645 1646
		 */

1647 1648
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1649 1650 1651 1652 1653 1654 1655

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1656
		 * critical section, so note it.
1657 1658
		 */

1659
		rcu_bh_qs(cpu);
1660
	}
1661
	rcu_preempt_check_callbacks(cpu);
1662
	if (rcu_pending(cpu))
1663
		invoke_rcu_core();
1664
	trace_rcu_utilization("End scheduler-tick");
1665 1666 1667 1668 1669
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1670 1671
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1672
 * The caller must have suppressed start of new grace periods.
1673
 */
1674
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1675 1676 1677 1678 1679
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1680
	struct rcu_node *rnp;
1681

1682
	rcu_for_each_leaf_node(rsp, rnp) {
1683
		mask = 0;
P
Paul E. McKenney 已提交
1684
		raw_spin_lock_irqsave(&rnp->lock, flags);
1685
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1686
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1687
			return;
1688
		}
1689
		if (rnp->qsmask == 0) {
1690
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1691 1692
			continue;
		}
1693
		cpu = rnp->grplo;
1694
		bit = 1;
1695
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1696 1697
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1698 1699
				mask |= bit;
		}
1700
		if (mask != 0) {
1701

P
Paul E. McKenney 已提交
1702 1703
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1704 1705
			continue;
		}
P
Paul E. McKenney 已提交
1706
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1707
	}
1708
	rnp = rcu_get_root(rsp);
1709 1710 1711 1712
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1724 1725 1726
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1727
		return;  /* No grace period in progress, nothing to force. */
1728
	}
P
Paul E. McKenney 已提交
1729
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1730
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1731
		trace_rcu_utilization("End fqs");
1732 1733
		return;	/* Someone else is already on the job. */
	}
1734
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1735
		goto unlock_fqs_ret; /* no emergency and done recently. */
1736
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1737
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1738
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1739
	if(!rcu_gp_in_progress(rsp)) {
1740
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1741
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1742
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1743
	}
1744
	rsp->fqs_active = 1;
1745
	switch (rsp->fqs_state) {
1746
	case RCU_GP_IDLE:
1747 1748
	case RCU_GP_INIT:

1749
		break; /* grace period idle or initializing, ignore. */
1750 1751 1752 1753 1754

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1755 1756
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1757
		/* Record dyntick-idle state. */
1758
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1759
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1760
		if (rcu_gp_in_progress(rsp))
1761
			rsp->fqs_state = RCU_FORCE_QS;
1762
		break;
1763 1764 1765 1766

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1767
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1768
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1769 1770 1771

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1772
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1773
		break;
1774
	}
1775
	rsp->fqs_active = 0;
1776
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1777
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1778 1779
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1780
		trace_rcu_utilization("End fqs");
1781 1782
		return;
	}
P
Paul E. McKenney 已提交
1783
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1784
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1785
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1786
	trace_rcu_utilization("End fqs");
1787 1788 1789
}

/*
1790 1791 1792
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1793 1794 1795 1796 1797 1798
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1799 1800
	WARN_ON_ONCE(rdp->beenonline == 0);

1801 1802 1803 1804
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1805
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1819
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1820 1821 1822 1823
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1824
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1825
		invoke_rcu_callbacks(rsp, rdp);
1826 1827
}

1828
/*
1829
 * Do RCU core processing for the current CPU.
1830
 */
1831
static void rcu_process_callbacks(struct softirq_action *unused)
1832
{
1833
	trace_rcu_utilization("Start RCU core");
1834 1835
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1836
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1837
	rcu_preempt_process_callbacks();
1838
	trace_rcu_utilization("End RCU core");
1839 1840
}

1841
/*
1842 1843 1844 1845 1846
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1847
 */
1848
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1849
{
1850 1851
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1852 1853
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1854 1855
		return;
	}
1856
	invoke_rcu_callbacks_kthread();
1857 1858
}

1859
static void invoke_rcu_core(void)
1860 1861 1862 1863
{
	raise_softirq(RCU_SOFTIRQ);
}

1864 1865
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1866
	   struct rcu_state *rsp, bool lazy)
1867 1868 1869 1870
{
	unsigned long flags;
	struct rcu_data *rdp;

1871
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1872
	debug_rcu_head_queue(head);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1885
	rdp = this_cpu_ptr(rsp->rda);
1886 1887

	/* Add the callback to our list. */
1888
	ACCESS_ONCE(rdp->qlen)++;
1889 1890
	if (lazy)
		rdp->qlen_lazy++;
1891 1892
	else
		rcu_idle_count_callbacks_posted();
1893 1894 1895
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1896

1897 1898
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1899
					 rdp->qlen_lazy, rdp->qlen);
1900
	else
1901
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1902

1903 1904 1905 1906
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
1907
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1908 1909
		invoke_rcu_core();

1910 1911
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) {
1912 1913 1914
		local_irq_restore(flags);
		return;
	}
1915

1916 1917 1918 1919 1920 1921 1922
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1923
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1945
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1946 1947 1948 1949 1950
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1951
 * Queue an RCU-sched callback for invocation after a grace period.
1952
 */
1953
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1954
{
1955
	__call_rcu(head, func, &rcu_sched_state, 0);
1956
}
1957
EXPORT_SYMBOL_GPL(call_rcu_sched);
1958 1959

/*
1960
 * Queue an RCU callback for invocation after a quicker grace period.
1961 1962 1963
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1964
	__call_rcu(head, func, &rcu_bh_state, 0);
1965 1966 1967
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 *
 * Of course, sampling num_online_cpus() with preemption enabled can
 * give erroneous results if there are concurrent CPU-hotplug operations.
 * For example, given a demonic sequence of preemptions in num_online_cpus()
 * and CPU-hotplug operations, there could be two or more CPUs online at
 * all times, but num_online_cpus() might well return one (or even zero).
 *
 * However, all such demonic sequences require at least one CPU-offline
 * operation.  Furthermore, rcu_blocking_is_gp() giving the wrong answer
 * is only a problem if there is an RCU read-side critical section executing
 * throughout.  But RCU-sched and RCU-bh read-side critical sections
 * disable either preemption or bh, which prevents a CPU from going offline.
 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
 * that there is only one CPU when in fact there was more than one throughout
 * is when there were no RCU readers in the system.  If there are no
 * RCU readers, the grace period by definition can be of zero length,
 * regardless of the number of online CPUs.
 */
static inline int rcu_blocking_is_gp(void)
{
	might_sleep();  /* Check for RCU read-side critical section. */
	return num_online_cpus() <= 1;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2025 2026 2027 2028
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2029 2030
	if (rcu_blocking_is_gp())
		return;
2031
	wait_rcu_gp(call_rcu_sched);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2046 2047 2048 2049
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2050 2051
	if (rcu_blocking_is_gp())
		return;
2052
	wait_rcu_gp(call_rcu_bh);
2053 2054 2055
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2086
 *
2087 2088 2089 2090
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2120
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2177 2178 2179 2180 2181 2182 2183 2184 2185
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2186 2187
	struct rcu_node *rnp = rdp->mynode;

2188 2189 2190 2191 2192 2193
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2194 2195
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2196 2197 2198 2199 2200 2201

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
2202
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
2203
		if (!rdp->preemptible &&
2204 2205 2206
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2207
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2208
		rdp->n_rp_report_qs++;
2209
		return 1;
2210
	}
2211 2212

	/* Does this CPU have callbacks ready to invoke? */
2213 2214
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2215
		return 1;
2216
	}
2217 2218

	/* Has RCU gone idle with this CPU needing another grace period? */
2219 2220
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2221
		return 1;
2222
	}
2223 2224

	/* Has another RCU grace period completed?  */
2225
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2226
		rdp->n_rp_gp_completed++;
2227
		return 1;
2228
	}
2229 2230

	/* Has a new RCU grace period started? */
2231
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2232
		rdp->n_rp_gp_started++;
2233
		return 1;
2234
	}
2235 2236

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2237
	if (rcu_gp_in_progress(rsp) &&
2238
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2239
		rdp->n_rp_need_fqs++;
2240
		return 1;
2241
	}
2242 2243

	/* nothing to do */
2244
	rdp->n_rp_need_nothing++;
2245 2246 2247 2248 2249 2250 2251 2252
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2253
static int rcu_pending(int cpu)
2254
{
2255
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2256 2257
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2258 2259 2260 2261 2262
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2263
 * 1 if so.
2264
 */
2265
static int rcu_cpu_has_callbacks(int cpu)
2266 2267
{
	/* RCU callbacks either ready or pending? */
2268
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2269
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2270
	       rcu_preempt_cpu_has_callbacks(cpu);
2271 2272
}

2273 2274 2275 2276
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2302 2303
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2304 2305
					       void (*func)(struct rcu_head *head)))
{
2306 2307 2308 2309 2310 2311 2312
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_head rh;

	init_rcu_head_on_stack(&rh);

2313
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2314
	mutex_lock(&rcu_barrier_mutex);
2315 2316 2317

	smp_mb();  /* Prevent any prior operations from leaking in. */

2318
	/*
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2334
	 */
2335
	init_completion(&rcu_barrier_completion);
2336
	atomic_set(&rcu_barrier_cpu_count, 1);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
			smp_call_function_single(cpu, rcu_barrier_func,
						 (void *)call_rcu_func, 1);
			preempt_enable();
		} else {
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
	atomic_inc(&rcu_barrier_cpu_count);
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
	call_rcu_func(&rh, rcu_barrier_callback);

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2384 2385
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
2386 2387

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2388
	wait_for_completion(&rcu_barrier_completion);
2389 2390

	/* Other rcu_barrier() invocations can now safely proceed. */
2391
	mutex_unlock(&rcu_barrier_mutex);
2392 2393

	destroy_rcu_head_on_stack(&rh);
2394 2395 2396 2397 2398 2399 2400
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2401
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2402 2403 2404 2405 2406 2407 2408 2409
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2410
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2411 2412 2413
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2414
/*
2415
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2416
 */
2417 2418
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2419 2420
{
	unsigned long flags;
2421
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2422 2423 2424
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2425
	raw_spin_lock_irqsave(&rnp->lock, flags);
2426
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2427
	init_callback_list(rdp);
2428
	rdp->qlen_lazy = 0;
2429
	ACCESS_ONCE(rdp->qlen) = 0;
2430
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2431
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2432
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2433
	rdp->cpu = cpu;
2434
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2435
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2436 2437 2438 2439 2440 2441 2442
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2443
 */
2444
static void __cpuinit
P
Paul E. McKenney 已提交
2445
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2446 2447 2448
{
	unsigned long flags;
	unsigned long mask;
2449
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2450 2451 2452
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2453
	raw_spin_lock_irqsave(&rnp->lock, flags);
2454
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2455
	rdp->preemptible = preemptible;
2456 2457
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2458
	rdp->blimit = blimit;
2459
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2460 2461
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2462
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2463
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2464 2465 2466 2467 2468 2469 2470

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2471
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2472 2473 2474 2475 2476 2477

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2478
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2479 2480
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2481
		if (rnp == rdp->mynode) {
2482 2483 2484 2485 2486 2487
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2488
			rdp->completed = rnp->completed;
2489 2490
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2491
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2492
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2493
		}
P
Paul E. McKenney 已提交
2494
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2495 2496 2497
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2498
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2499 2500
}

P
Peter Zijlstra 已提交
2501
static void __cpuinit rcu_prepare_cpu(int cpu)
2502
{
2503 2504 2505
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2506 2507 2508
}

/*
2509
 * Handle CPU online/offline notification events.
2510
 */
2511 2512
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2513 2514
{
	long cpu = (long)hcpu;
2515
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2516
	struct rcu_node *rnp = rdp->mynode;
2517

2518
	trace_rcu_utilization("Start CPU hotplug");
2519 2520 2521
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2522 2523
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2524 2525
		break;
	case CPU_ONLINE:
2526 2527
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2528
		rcu_cpu_kthread_setrt(cpu, 1);
2529 2530 2531
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2532
		rcu_cpu_kthread_setrt(cpu, 0);
2533
		break;
2534 2535 2536
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2537 2538 2539
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2540
		 */
2541 2542 2543
		rcu_cleanup_dying_cpu(&rcu_bh_state);
		rcu_cleanup_dying_cpu(&rcu_sched_state);
		rcu_preempt_cleanup_dying_cpu();
2544
		rcu_cleanup_after_idle(cpu);
2545
		break;
2546 2547 2548 2549
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2550 2551 2552
		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
		rcu_preempt_cleanup_dead_cpu(cpu);
2553 2554 2555 2556
		break;
	default:
		break;
	}
2557
	trace_rcu_utilization("End CPU hotplug");
2558 2559 2560
	return NOTIFY_OK;
}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2576 2577 2578 2579 2580 2581 2582 2583 2584
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2585
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2586
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2587
	rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2608 2609
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2610
{
2611 2612 2613 2614
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2615 2616 2617 2618 2619
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2620 2621
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2634
			raw_spin_lock_init(&rnp->lock);
2635 2636
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2637
			rnp->gpnum = 0;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2655
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2656 2657
		}
	}
2658

2659
	rsp->rda = rda;
2660 2661
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2662
		while (i > rnp->grphi)
2663
			rnp++;
2664
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2665 2666
		rcu_boot_init_percpu_data(i, rsp);
	}
2667 2668
}

2669
void __init rcu_init(void)
2670
{
P
Paul E. McKenney 已提交
2671
	int cpu;
2672

2673
	rcu_bootup_announce();
2674 2675
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2676
	__rcu_init_preempt();
2677
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2678 2679 2680 2681 2682 2683 2684

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2685 2686
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2687
	check_cpu_stall_init();
2688 2689
}

2690
#include "rcutree_plugin.h"