rcutree.c 68.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53

54
#include "rcutree.h"
55 56 57
#include <trace/events/rcu.h>

#include "rcu.h"
58

59 60
/* Data structures. */

61
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62

63
#define RCU_STATE_INITIALIZER(structname) { \
64
	.level = { &structname##_state.node[0] }, \
65 66 67 68
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
69 70
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71
	}, \
72
	.fqs_state = RCU_GP_IDLE, \
73 74
	.gpnum = -300, \
	.completed = -300, \
75 76
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 78
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
79
	.name = #structname, \
80 81
}

82
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88 89
static struct rcu_state *rcu_state;

90 91 92 93 94 95 96 97 98
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
99 100 101
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

116 117
#ifdef CONFIG_RCU_BOOST

118 119 120 121 122
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126
DEFINE_PER_CPU(char, rcu_cpu_has_work);
127

128 129
#endif /* #ifdef CONFIG_RCU_BOOST */

130
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 132
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133

134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

146 147 148 149 150 151 152 153 154 155
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

156
/*
157
 * Note a quiescent state.  Because we do not need to know
158
 * how many quiescent states passed, just if there was at least
159
 * one since the start of the grace period, this just sets a flag.
160
 * The caller must have disabled preemption.
161
 */
162
void rcu_sched_qs(int cpu)
163
{
164
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165

166
	rdp->passed_quiesce_gpnum = rdp->gpnum;
167
	barrier();
168
	if (rdp->passed_quiesce == 0)
169
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170
	rdp->passed_quiesce = 1;
171 172
}

173
void rcu_bh_qs(int cpu)
174
{
175
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176

177
	rdp->passed_quiesce_gpnum = rdp->gpnum;
178
	barrier();
179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182
}
183

184 185 186
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
187
 * The caller must have disabled preemption.
188 189 190
 */
void rcu_note_context_switch(int cpu)
{
191
	trace_rcu_utilization("Start context switch");
192 193
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
194
	trace_rcu_utilization("End context switch");
195
}
196
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197

198
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199
	.dynticks_nesting = LLONG_MAX / 2,
200
	.dynticks = ATOMIC_INIT(1),
201
};
202

203
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
204 205 206
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

207 208 209 210
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

211
int rcu_cpu_stall_suppress __read_mostly;
212
module_param(rcu_cpu_stall_suppress, int, 0644);
213

214
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215
static int rcu_pending(int cpu);
216 217

/*
218
 * Return the number of RCU-sched batches processed thus far for debug & stats.
219
 */
220
long rcu_batches_completed_sched(void)
221
{
222
	return rcu_sched_state.completed;
223
}
224
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225 226 227 228 229 230 231 232 233 234

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

235 236 237 238 239 240 241 242 243
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

269 270 271 272 273 274 275 276 277
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
293
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
324
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 326 327 328
		rdp->offline_fqs++;
		return 1;
	}

329 330 331 332 333
	/*
	 * The CPU is online, so send it a reschedule IPI.  This forces
	 * it through the scheduler, and (inefficiently) also handles cases
	 * where idle loops fail to inform RCU about the CPU being idle.
	 */
334 335 336 337 338 339 340 341 342 343
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp)
{
	if (rdtp->dynticks_nesting) {
		trace_rcu_dyntick("--=", rdtp->dynticks_nesting);
		return;
	}
	trace_rcu_dyntick("Start", rdtp->dynticks_nesting);
	if (!idle_cpu(smp_processor_id())) {
		WARN_ON_ONCE(1);	/* must be idle task! */
		trace_rcu_dyntick("Error on entry: not idle task",
				   rdtp->dynticks_nesting);
		ftrace_dump(DUMP_ALL);
	}
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
}
370 371

/**
372
 * rcu_idle_enter - inform RCU that current CPU is entering idle
373
 *
374
 * Enter idle mode, in other words, -leave- the mode in which RCU
375
 * read-side critical sections can occur.  (Though RCU read-side
376 377 378 379 380 381
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
382
 */
383
void rcu_idle_enter(void)
384 385 386 387 388 389
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
390 391
	rdtp->dynticks_nesting = 0;
	rcu_idle_enter_common(rdtp);
392 393 394
	local_irq_restore(flags);
}

395 396 397 398 399 400
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
401
 *
402 403 404 405 406 407 408 409
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
410
 */
411
void rcu_irq_exit(void)
412 413 414 415 416 417
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
	rcu_idle_enter_common(rdtp);
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
	if (oldval) {
		trace_rcu_dyntick("++=", rdtp->dynticks_nesting);
435 436 437 438 439 440 441
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	trace_rcu_dyntick("End", oldval);
	if (!idle_cpu(smp_processor_id())) {
		WARN_ON_ONCE(1);	/* must be idle task! */
		trace_rcu_dyntick("Error on exit: not idle task", oldval);
		ftrace_dump(DUMP_ALL);
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to LLONG_MAX/2 to allow for
 * the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	WARN_ON_ONCE(oldval != 0);
	rdtp->dynticks_nesting = LLONG_MAX / 2;
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
	rcu_idle_exit_common(rdtp, oldval);
507 508 509 510 511 512 513 514 515 516 517 518 519 520
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

521 522
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
523
		return;
524 525 526 527 528 529
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
530 531 532 533 534 535 536 537 538 539 540 541 542
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

543 544
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
545
		return;
546 547 548 549 550
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
551 552
}

553 554
#ifdef CONFIG_PROVE_RCU

555
/**
556
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
557
 *
558
 * If the current CPU is in its idle loop and is neither in an interrupt
559
 * or NMI handler, return true.
560
 */
561
int rcu_is_cpu_idle(void)
562
{
563 564 565 566 567 568
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
569 570
}

571 572
#endif /* #ifdef CONFIG_PROVE_RCU */

573
/**
574
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
575
 *
576 577 578
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
579
 */
580
int rcu_is_cpu_rrupt_from_idle(void)
581
{
582
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
583 584 585 586 587 588 589
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
590
 * is in dynticks idle mode, which is an extended quiescent state.
591 592 593
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
594 595
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
596 597 598 599 600 601 602 603 604 605
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
606 607
	unsigned int curr;
	unsigned int snap;
608

609 610
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
611 612 613 614 615 616 617 618 619

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
620
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
621
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
622 623 624 625 626 627 628 629 630 631
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

632
int rcu_cpu_stall_suppress __read_mostly;
633

634 635 636 637 638 639 640 641 642 643 644
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
645
	int ndetected;
646 647 648 649
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
650
	raw_spin_lock_irqsave(&rnp->lock, flags);
651
	delta = jiffies - rsp->jiffies_stall;
652
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
653
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
654 655 656
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
657 658 659 660 661

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
662
	ndetected = rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
663
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
664

665 666 667 668 669
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
670 671
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
672
	rcu_for_each_leaf_node(rsp, rnp) {
673
		raw_spin_lock_irqsave(&rnp->lock, flags);
674
		ndetected += rcu_print_task_stall(rnp);
675
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
676
		if (rnp->qsmask == 0)
677
			continue;
678
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
679
			if (rnp->qsmask & (1UL << cpu)) {
680
				printk(" %d", rnp->grplo + cpu);
681 682
				ndetected++;
			}
683
	}
684
	printk("} (detected by %d, t=%ld jiffies)\n",
685
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
686 687 688
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
689
		dump_stack();
690

691 692 693 694
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

695 696 697 698 699 700 701 702
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

703 704 705 706 707
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
708 709
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
710 711
	if (!trigger_all_cpu_backtrace())
		dump_stack();
712

P
Paul E. McKenney 已提交
713
	raw_spin_lock_irqsave(&rnp->lock, flags);
714
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
715 716
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
717
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
718

719 720 721 722 723
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
724 725
	unsigned long j;
	unsigned long js;
726 727
	struct rcu_node *rnp;

728
	if (rcu_cpu_stall_suppress)
729
		return;
730 731
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
732
	rnp = rdp->mynode;
733
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
734 735 736 737

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

738 739
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
740

741
		/* They had a few time units to dump stack, so complain. */
742 743 744 745
		print_other_cpu_stall(rsp);
	}
}

746 747
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
748
	rcu_cpu_stall_suppress = 1;
749 750 751
	return NOTIFY_DONE;
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

768 769 770 771 772 773 774 775 776
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

777 778 779
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
780 781 782
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
783
 */
784 785 786
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
787 788 789 790 791
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
792
		rdp->gpnum = rnp->gpnum;
793
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
794 795
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
796
			rdp->passed_quiesce = 0;
797 798
		} else
			rdp->qs_pending = 0;
799 800 801
	}
}

802 803
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
804 805 806 807 808 809
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
810
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
811 812 813 814
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
815
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
857
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
858

859 860
		/*
		 * If we were in an extended quiescent state, we may have
861
		 * missed some grace periods that others CPUs handled on
862
		 * our behalf. Catch up with this state to avoid noting
863 864 865
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
866
		 */
867
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
868 869
			rdp->gpnum = rdp->completed;

870
		/*
871 872
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
873
		 */
874
		if ((rnp->qsmask & rdp->grpmask) == 0)
875
			rdp->qs_pending = 0;
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
893
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
894 895 896 897
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
898
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
925 926 927

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
928 929
}

930 931 932 933 934 935 936 937 938 939
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
940
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
941 942
	struct rcu_node *rnp = rcu_get_root(rsp);

943
	if (!rcu_scheduler_fully_active ||
944 945 946 947 948 949 950 951 952 953
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
954

955
	if (rsp->fqs_active) {
956
		/*
957 958
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
959
		 */
960 961
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
962 963 964 965 966
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
967
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
968 969
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
970 971 972 973 974
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
975
		rcu_preempt_check_blocked_tasks(rnp);
976
		rnp->qsmask = rnp->qsmaskinit;
977
		rnp->gpnum = rsp->gpnum;
978
		rnp->completed = rsp->completed;
979
		rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
980
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
981
		rcu_preempt_boost_start_gp(rnp);
982 983 984
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
985
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
986 987 988
		return;
	}

P
Paul E. McKenney 已提交
989
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
990 991 992


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
993
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
994 995

	/*
996 997 998 999 1000 1001 1002 1003 1004
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1005 1006 1007 1008
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1009 1010
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1011
	 */
1012
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1013
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1014
		rcu_preempt_check_blocked_tasks(rnp);
1015
		rnp->qsmask = rnp->qsmaskinit;
1016
		rnp->gpnum = rsp->gpnum;
1017 1018 1019
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1020
		rcu_preempt_boost_start_gp(rnp);
1021 1022 1023
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1024
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1025 1026
	}

1027
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1028
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1029
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1030 1031
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1032 1033
}

1034
/*
P
Paul E. McKenney 已提交
1035 1036 1037 1038 1039
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1040
 */
P
Paul E. McKenney 已提交
1041
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1042
	__releases(rcu_get_root(rsp)->lock)
1043
{
1044
	unsigned long gp_duration;
1045 1046
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1047

1048
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1049 1050 1051 1052 1053 1054

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1055 1056 1057
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1092
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1093
	rsp->fqs_state = RCU_GP_IDLE;
1094 1095 1096
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1097
/*
P
Paul E. McKenney 已提交
1098 1099 1100 1101 1102 1103
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1104 1105
 */
static void
P
Paul E. McKenney 已提交
1106 1107
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1108 1109
	__releases(rnp->lock)
{
1110 1111
	struct rcu_node *rnp_c;

1112 1113 1114 1115 1116
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1117
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1118 1119 1120
			return;
		}
		rnp->qsmask &= ~mask;
1121 1122 1123 1124
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1125
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1126 1127

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1128
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1129 1130 1131 1132 1133 1134 1135 1136 1137
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1138
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1139
		rnp_c = rnp;
1140
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1141
		raw_spin_lock_irqsave(&rnp->lock, flags);
1142
		WARN_ON_ONCE(rnp_c->qsmask);
1143 1144 1145 1146
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1147
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1148
	 * to clean up and start the next grace period if one is needed.
1149
	 */
P
Paul E. McKenney 已提交
1150
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1151 1152 1153
}

/*
P
Paul E. McKenney 已提交
1154 1155 1156 1157 1158 1159 1160
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1161 1162
 */
static void
1163
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1164 1165 1166 1167 1168 1169
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1170
	raw_spin_lock_irqsave(&rnp->lock, flags);
1171
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1172 1173

		/*
1174 1175 1176 1177
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1178
		 */
1179
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1180
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1181 1182 1183 1184
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1185
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1186 1187 1188 1189 1190 1191 1192 1193 1194
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1195
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1223
	if (!rdp->passed_quiesce)
1224 1225
		return;

P
Paul E. McKenney 已提交
1226 1227 1228 1229
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1230
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1231 1232 1233 1234
}

#ifdef CONFIG_HOTPLUG_CPU

1235
/*
1236 1237 1238
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1239
 */
1240
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1241 1242
{
	int i;
1243 1244
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1245
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1246
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1247 1248 1249

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1250 1251 1252 1253 1254 1255 1256

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1257 1258 1259 1260 1261 1262
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1263 1264 1265
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1266 1267
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1268 1269 1270 1271 1272
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1273
	int need_report = 0;
1274
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1275
	struct rcu_node *rnp;
1276

1277
	rcu_stop_cpu_kthread(cpu);
1278 1279

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1280
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1281 1282

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1283
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1284 1285
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1286
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1287 1288
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1289
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1290
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1291 1292 1293 1294 1295
			else
				trace_rcu_grace_period(rsp->name,
						       rnp->gpnum + 1 -
						       !!(rnp->qsmask & mask),
						       "cpuofl");
1296 1297
			break;
		}
1298 1299 1300 1301 1302
		if (rnp == rdp->mynode) {
			trace_rcu_grace_period(rsp->name,
					       rnp->gpnum + 1 -
					       !!(rnp->qsmask & mask),
					       "cpuofl");
1303
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1304
		} else
P
Paul E. McKenney 已提交
1305
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1306 1307 1308 1309
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1310 1311 1312
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1313 1314
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1315
	 */
P
Paul E. McKenney 已提交
1316
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1317
	rnp = rdp->mynode;
1318
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1319
		rcu_report_unblock_qs_rnp(rnp, flags);
1320
	else
P
Paul E. McKenney 已提交
1321
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1322
	if (need_report & RCU_OFL_TASKS_EXP_GP)
1323
		rcu_report_exp_rnp(rsp, rnp, true);
1324
	rcu_node_kthread_setaffinity(rnp, -1);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1335
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1336
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1337
	rcu_preempt_offline_cpu(cpu);
1338 1339 1340 1341
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1342
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1343 1344 1345
{
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1356
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1357 1358 1359
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1360
	int bl, count;
1361 1362

	/* If no callbacks are ready, just return.*/
1363
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1364 1365
		trace_rcu_batch_start(rsp->name, 0, 0);
		trace_rcu_batch_end(rsp->name, 0);
1366
		return;
1367
	}
1368 1369 1370 1371 1372 1373

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1374
	bl = rdp->blimit;
1375
	trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1390
		debug_rcu_head_unqueue(list);
1391
		__rcu_reclaim(rsp->name, list);
1392
		list = next;
1393
		if (++count >= bl)
1394 1395 1396 1397
			break;
	}

	local_irq_save(flags);
1398
	trace_rcu_batch_end(rsp->name, count);
1399 1400 1401

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1402
	rdp->n_cbs_invoked += count;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1417 1418 1419 1420 1421 1422 1423
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1424 1425
	local_irq_restore(flags);

1426
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1427
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1428
		invoke_rcu_core();
1429 1430 1431 1432 1433
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1434
 * Also schedule RCU core processing.
1435
 *
1436
 * This function must be called from hardirq context.  It is normally
1437 1438 1439 1440 1441
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1442
	trace_rcu_utilization("Start scheduler-tick");
1443
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1444 1445 1446 1447 1448

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1449
		 * a quiescent state, so note it.
1450 1451
		 *
		 * No memory barrier is required here because both
1452 1453 1454
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1455 1456
		 */

1457 1458
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1459 1460 1461 1462 1463 1464 1465

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1466
		 * critical section, so note it.
1467 1468
		 */

1469
		rcu_bh_qs(cpu);
1470
	}
1471
	rcu_preempt_check_callbacks(cpu);
1472
	if (rcu_pending(cpu))
1473
		invoke_rcu_core();
1474
	trace_rcu_utilization("End scheduler-tick");
1475 1476 1477 1478 1479 1480 1481
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1482 1483
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1484
 * The caller must have suppressed start of new grace periods.
1485
 */
1486
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1487 1488 1489 1490 1491
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1492
	struct rcu_node *rnp;
1493

1494
	rcu_for_each_leaf_node(rsp, rnp) {
1495
		mask = 0;
P
Paul E. McKenney 已提交
1496
		raw_spin_lock_irqsave(&rnp->lock, flags);
1497
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1498
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1499
			return;
1500
		}
1501
		if (rnp->qsmask == 0) {
1502
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1503 1504
			continue;
		}
1505
		cpu = rnp->grplo;
1506
		bit = 1;
1507
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1508 1509
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1510 1511
				mask |= bit;
		}
1512
		if (mask != 0) {
1513

P
Paul E. McKenney 已提交
1514 1515
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1516 1517
			continue;
		}
P
Paul E. McKenney 已提交
1518
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1519
	}
1520
	rnp = rcu_get_root(rsp);
1521 1522 1523 1524
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1536 1537 1538
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1539
		return;  /* No grace period in progress, nothing to force. */
1540
	}
P
Paul E. McKenney 已提交
1541
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1542
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1543
		trace_rcu_utilization("End fqs");
1544 1545
		return;	/* Someone else is already on the job. */
	}
1546
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1547
		goto unlock_fqs_ret; /* no emergency and done recently. */
1548
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1549
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1550
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1551
	if(!rcu_gp_in_progress(rsp)) {
1552
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1553
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1554
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1555
	}
1556
	rsp->fqs_active = 1;
1557
	switch (rsp->fqs_state) {
1558
	case RCU_GP_IDLE:
1559 1560
	case RCU_GP_INIT:

1561
		break; /* grace period idle or initializing, ignore. */
1562 1563 1564 1565 1566

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1567 1568
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1569
		/* Record dyntick-idle state. */
1570
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1571
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1572
		if (rcu_gp_in_progress(rsp))
1573
			rsp->fqs_state = RCU_FORCE_QS;
1574
		break;
1575 1576 1577 1578

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1579
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1580
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1581 1582 1583

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1584
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1585
		break;
1586
	}
1587
	rsp->fqs_active = 0;
1588
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1589
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1590 1591
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1592
		trace_rcu_utilization("End fqs");
1593 1594
		return;
	}
P
Paul E. McKenney 已提交
1595
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1596
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1597
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1598
	trace_rcu_utilization("End fqs");
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
1611 1612 1613
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1614 1615 1616 1617 1618 1619
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1620 1621
	WARN_ON_ONCE(rdp->beenonline == 0);

1622 1623 1624 1625
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1626
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1640
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1641 1642 1643 1644
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1645
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1646
		invoke_rcu_callbacks(rsp, rdp);
1647 1648
}

1649
/*
1650
 * Do RCU core processing for the current CPU.
1651
 */
1652
static void rcu_process_callbacks(struct softirq_action *unused)
1653
{
1654
	trace_rcu_utilization("Start RCU core");
1655 1656
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1657
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1658
	rcu_preempt_process_callbacks();
1659
	trace_rcu_utilization("End RCU core");
1660 1661
}

1662
/*
1663 1664 1665 1666 1667
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1668
 */
1669
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1670
{
1671 1672
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1673 1674
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1675 1676
		return;
	}
1677
	invoke_rcu_callbacks_kthread();
1678 1679
}

1680
static void invoke_rcu_core(void)
1681 1682 1683 1684
{
	raise_softirq(RCU_SOFTIRQ);
}

1685 1686 1687 1688 1689 1690 1691
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1692
	debug_rcu_head_queue(head);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1705
	rdp = this_cpu_ptr(rsp->rda);
1706 1707 1708 1709

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1710 1711
	rdp->qlen++;

1712 1713 1714 1715 1716 1717
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
					 rdp->qlen);
	else
		trace_rcu_callback(rsp->name, head, rdp->qlen);

1718 1719 1720 1721 1722
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1723

1724 1725 1726 1727 1728 1729 1730
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1731
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1753
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1754 1755 1756 1757 1758
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1759
 * Queue an RCU-sched callback for invocation after a grace period.
1760
 */
1761
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1762
{
1763
	__call_rcu(head, func, &rcu_sched_state);
1764
}
1765
EXPORT_SYMBOL_GPL(call_rcu_sched);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	if (rcu_blocking_is_gp())
		return;
1803
	wait_rcu_gp(call_rcu_sched);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	if (rcu_blocking_is_gp())
		return;
1820
	wait_rcu_gp(call_rcu_bh);
1821 1822 1823
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1824 1825 1826 1827 1828 1829 1830 1831 1832
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1833 1834
	struct rcu_node *rnp = rdp->mynode;

1835 1836 1837 1838 1839 1840
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1841 1842
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
1843 1844 1845 1846 1847 1848

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1849
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1850
		if (!rdp->preemptible &&
1851 1852 1853
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1854
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
1855
		rdp->n_rp_report_qs++;
1856
		return 1;
1857
	}
1858 1859

	/* Does this CPU have callbacks ready to invoke? */
1860 1861
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1862
		return 1;
1863
	}
1864 1865

	/* Has RCU gone idle with this CPU needing another grace period? */
1866 1867
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1868
		return 1;
1869
	}
1870 1871

	/* Has another RCU grace period completed?  */
1872
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1873
		rdp->n_rp_gp_completed++;
1874
		return 1;
1875
	}
1876 1877

	/* Has a new RCU grace period started? */
1878
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1879
		rdp->n_rp_gp_started++;
1880
		return 1;
1881
	}
1882 1883

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1884
	if (rcu_gp_in_progress(rsp) &&
1885
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1886
		rdp->n_rp_need_fqs++;
1887
		return 1;
1888
	}
1889 1890

	/* nothing to do */
1891
	rdp->n_rp_need_nothing++;
1892 1893 1894 1895 1896 1897 1898 1899
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1900
static int rcu_pending(int cpu)
1901
{
1902
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1903 1904
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1905 1906 1907 1908 1909
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
1910
 * 1 if so.
1911
 */
1912
static int rcu_needs_cpu_quick_check(int cpu)
1913 1914
{
	/* RCU callbacks either ready or pending? */
1915
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1916 1917
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
1918 1919
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
1950 1951
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
1952 1953 1954
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
1955
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
1956 1957 1958 1959 1960 1961 1962 1963 1964
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
1965 1966 1967
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
1982
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
1983 1984 1985 1986 1987 1988 1989 1990
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
1991
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
1992 1993 1994
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

1995
/*
1996
 * Do boot-time initialization of a CPU's per-CPU RCU data.
1997
 */
1998 1999
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2000 2001 2002
{
	unsigned long flags;
	int i;
2003
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2004 2005 2006
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2007
	raw_spin_lock_irqsave(&rnp->lock, flags);
2008 2009 2010 2011 2012 2013
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2014 2015
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != LLONG_MAX / 2);
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2016
	rdp->cpu = cpu;
2017
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2018
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2019 2020 2021 2022 2023 2024 2025
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2026
 */
2027
static void __cpuinit
P
Paul E. McKenney 已提交
2028
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2029 2030 2031
{
	unsigned long flags;
	unsigned long mask;
2032
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2033 2034 2035
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2036
	raw_spin_lock_irqsave(&rnp->lock, flags);
2037
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2038
	rdp->preemptible = preemptible;
2039 2040
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2041
	rdp->blimit = blimit;
2042 2043
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != LLONG_MAX / 2);
	WARN_ON_ONCE((atomic_read(&rdp->dynticks->dynticks) & 0x1) != 1);
P
Paul E. McKenney 已提交
2044
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2045 2046 2047 2048 2049 2050 2051

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2052
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2053 2054 2055 2056 2057 2058

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2059
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2060 2061
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2062
		if (rnp == rdp->mynode) {
2063 2064 2065 2066 2067 2068
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2069
			rdp->completed = rnp->completed;
2070 2071
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2072
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2073
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2074
		}
P
Paul E. McKenney 已提交
2075
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2076 2077 2078
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2079
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2080 2081
}

P
Peter Zijlstra 已提交
2082
static void __cpuinit rcu_prepare_cpu(int cpu)
2083
{
2084 2085 2086
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2087 2088 2089
}

/*
2090
 * Handle CPU online/offline notification events.
2091
 */
2092 2093
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2094 2095
{
	long cpu = (long)hcpu;
2096
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2097
	struct rcu_node *rnp = rdp->mynode;
2098

2099
	trace_rcu_utilization("Start CPU hotplug");
2100 2101 2102
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2103 2104
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2105 2106
		break;
	case CPU_ONLINE:
2107 2108
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2109
		rcu_cpu_kthread_setrt(cpu, 1);
2110 2111 2112
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2113
		rcu_cpu_kthread_setrt(cpu, 0);
2114
		break;
2115 2116 2117
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2118 2119 2120
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2121
		 */
2122 2123 2124
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
2125
		break;
2126 2127 2128 2129 2130 2131 2132 2133 2134
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
2135
	trace_rcu_utilization("End CPU hotplug");
2136 2137 2138
	return NOTIFY_OK;
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2154 2155 2156 2157 2158 2159 2160 2161 2162
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2163
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2164
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2165
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2186 2187
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2188
{
2189 2190 2191 2192
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2193 2194 2195 2196 2197
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2198 2199
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2212
			raw_spin_lock_init(&rnp->lock);
2213 2214
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2215
			rnp->gpnum = 0;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2233
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2234 2235
		}
	}
2236

2237
	rsp->rda = rda;
2238 2239
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2240
		while (i > rnp->grphi)
2241
			rnp++;
2242
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2243 2244
		rcu_boot_init_percpu_data(i, rsp);
	}
2245 2246
}

2247
void __init rcu_init(void)
2248
{
P
Paul E. McKenney 已提交
2249
	int cpu;
2250

2251
	rcu_bootup_announce();
2252 2253
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2254
	__rcu_init_preempt();
2255
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2256 2257 2258 2259 2260 2261 2262

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2263 2264
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2265
	check_cpu_stall_init();
2266 2267
}

2268
#include "rcutree_plugin.h"