rcutree.c 70.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39 40 41 42 43 44 45 46 47 48
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52

53 54
#include "rcutree.h"

55 56
/* Data structures. */

57
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
58

59 60
#define RCU_STATE_INITIALIZER(structname) { \
	.level = { &structname.node[0] }, \
61 62 63 64
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
65 66
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67
	}, \
68
	.signaled = RCU_GP_IDLE, \
69 70
	.gpnum = -300, \
	.completed = -300, \
71 72
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 74
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
75
	.name = #structname, \
76 77
}

78 79
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80

81 82
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83

84 85
static struct rcu_state *rcu_state;

86 87 88
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

89 90 91 92 93
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
94
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
95
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
96
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
97
static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
98
DEFINE_PER_CPU(char, rcu_cpu_has_work);
99 100
static char rcu_kthreads_spawnable;

101
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
102
static void invoke_rcu_cpu_kthread(void);
103 104 105

#define RCU_KTHREAD_PRIO 1	/* RT priority for per-CPU kthreads. */

106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

118 119 120 121 122 123 124 125 126 127
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

128
/*
129
 * Note a quiescent state.  Because we do not need to know
130
 * how many quiescent states passed, just if there was at least
131
 * one since the start of the grace period, this just sets a flag.
132
 */
133
void rcu_sched_qs(int cpu)
134
{
135
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
136

137
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
138 139
	barrier();
	rdp->passed_quiesc = 1;
140 141
}

142
void rcu_bh_qs(int cpu)
143
{
144
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
145

146
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
147 148
	barrier();
	rdp->passed_quiesc = 1;
149
}
150

151 152 153 154 155 156 157 158 159 160
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
 */
void rcu_note_context_switch(int cpu)
{
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
}

161
#ifdef CONFIG_NO_HZ
162 163
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
164
	.dynticks = ATOMIC_INIT(1),
165
};
166 167 168 169 170 171
#endif /* #ifdef CONFIG_NO_HZ */

static int blimit = 10;		/* Maximum callbacks per softirq. */
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

172 173 174 175
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

176
int rcu_cpu_stall_suppress __read_mostly;
177
module_param(rcu_cpu_stall_suppress, int, 0644);
178

179
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
180
static int rcu_pending(int cpu);
181 182

/*
183
 * Return the number of RCU-sched batches processed thus far for debug & stats.
184
 */
185
long rcu_batches_completed_sched(void)
186
{
187
	return rcu_sched_state.completed;
188
}
189
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
190 191 192 193 194 195 196 197 198 199

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

200 201 202 203 204 205 206 207 208
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

234 235 236 237 238 239 240 241 242
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
258
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
		rdp->offline_fqs++;
		return 1;
	}

P
Paul E. McKenney 已提交
293 294
	/* If preemptible RCU, no point in sending reschedule IPI. */
	if (rdp->preemptible)
295 296
		return 0;

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
325 326 327 328 329 330 331 332 333
	if (--rdtp->dynticks_nesting) {
		local_irq_restore(flags);
		return;
	}
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
334
	local_irq_restore(flags);
335 336 337 338 339 340 341

	/* If the interrupt queued a callback, get out of dyntick mode. */
	if (in_irq() &&
	    (__get_cpu_var(rcu_sched_data).nxtlist ||
	     __get_cpu_var(rcu_bh_data).nxtlist ||
	     rcu_preempt_needs_cpu(smp_processor_id())))
		set_need_resched();
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
357 358 359 360 361 362 363 364 365
	if (rdtp->dynticks_nesting++) {
		local_irq_restore(flags);
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
366 367 368 369 370 371 372 373 374 375 376 377 378 379
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

380 381
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
382
		return;
383 384 385 386 387 388
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
389 390 391 392 393 394 395 396 397 398 399 400 401
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

402 403
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
404
		return;
405 406 407 408 409
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
410 411 412 413 414 415 416 417 418 419
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
420
	rcu_exit_nohz();
421 422 423 424 425 426 427 428 429 430 431
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
432
	rcu_enter_nohz();
433 434 435 436 437 438 439
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
440
 * is in dynticks idle mode, which is an extended quiescent state.
441 442 443
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
444 445
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
446 447 448 449 450 451 452 453 454 455
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
456 457
	unsigned long curr;
	unsigned long snap;
458

459 460
	curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned long)rdp->dynticks_snap;
461 462 463 464 465 466 467 468 469

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
470
	if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

499
int rcu_cpu_stall_suppress __read_mostly;
500

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
516
	raw_spin_lock_irqsave(&rnp->lock, flags);
517
	delta = jiffies - rsp->jiffies_stall;
518
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
519
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
520 521 522
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
523 524 525 526 527 528

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
529
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
530

531 532 533 534 535
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
536 537
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
538
	rcu_for_each_leaf_node(rsp, rnp) {
539
		raw_spin_lock_irqsave(&rnp->lock, flags);
540
		rcu_print_task_stall(rnp);
541
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
542
		if (rnp->qsmask == 0)
543
			continue;
544 545 546
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
547
	}
548
	printk("} (detected by %d, t=%ld jiffies)\n",
549
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
550 551
	trigger_all_cpu_backtrace();

552 553 554 555
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

556 557 558 559 560 561 562 563
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

564 565 566 567 568
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
569 570
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
571 572
	trigger_all_cpu_backtrace();

P
Paul E. McKenney 已提交
573
	raw_spin_lock_irqsave(&rnp->lock, flags);
574
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
575 576
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
577
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
578

579 580 581 582 583
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
584 585
	unsigned long j;
	unsigned long js;
586 587
	struct rcu_node *rnp;

588
	if (rcu_cpu_stall_suppress)
589
		return;
590 591
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
592
	rnp = rdp->mynode;
593
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
594 595 596 597

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

598 599
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
600

601
		/* They had a few time units to dump stack, so complain. */
602 603 604 605
		print_other_cpu_stall(rsp);
	}
}

606 607
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
608
	rcu_cpu_stall_suppress = 1;
609 610 611
	return NOTIFY_DONE;
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

628 629 630 631 632 633 634 635 636
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

637 638 639
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
640 641 642
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
643
 */
644 645 646
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
647 648 649 650 651
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
652
		rdp->gpnum = rnp->gpnum;
653 654 655 656 657
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
			rdp->passed_quiesc = 0;
		} else
			rdp->qs_pending = 0;
658 659 660
	}
}

661 662
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
663 664 665 666 667 668
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
669
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
670 671 672 673
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
674
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
716

717 718
		/*
		 * If we were in an extended quiescent state, we may have
719
		 * missed some grace periods that others CPUs handled on
720
		 * our behalf. Catch up with this state to avoid noting
721 722 723
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
724
		 */
725
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
726 727
			rdp->gpnum = rdp->completed;

728
		/*
729 730
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
731
		 */
732
		if ((rnp->qsmask & rdp->grpmask) == 0)
733
			rdp->qs_pending = 0;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
751
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
752 753 754 755
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
756
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
783 784 785

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
786 787
}

788 789 790 791 792 793 794 795 796 797
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
798
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
799 800
	struct rcu_node *rnp = rcu_get_root(rsp);

801
	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
802 803
		if (cpu_needs_another_gp(rsp, rdp))
			rsp->fqs_need_gp = 1;
804
		if (rnp->completed == rsp->completed) {
P
Paul E. McKenney 已提交
805
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
806 807
			return;
		}
P
Paul E. McKenney 已提交
808
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
809 810 811 812 813 814 815

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
816
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
817
			rnp->completed = rsp->completed;
P
Paul E. McKenney 已提交
818
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
819 820
		}
		local_irq_restore(flags);
821 822 823 824 825
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
826
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
827 828 829 830 831 832
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
833
		rcu_preempt_check_blocked_tasks(rnp);
834
		rnp->qsmask = rnp->qsmaskinit;
835
		rnp->gpnum = rsp->gpnum;
836
		rnp->completed = rsp->completed;
837
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
838
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
839
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
840
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
841 842 843
		return;
	}

P
Paul E. McKenney 已提交
844
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
845 846 847


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
848
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
849 850

	/*
851 852 853 854 855 856 857 858 859
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
860 861 862 863
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
864 865
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
866
	 */
867
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
868
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
869
		rcu_preempt_check_blocked_tasks(rnp);
870
		rnp->qsmask = rnp->qsmaskinit;
871
		rnp->gpnum = rsp->gpnum;
872 873 874
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
875
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
876
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
877 878
	}

879
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
880
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
881
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
882 883
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
884 885
}

886
/*
P
Paul E. McKenney 已提交
887 888 889 890 891
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
892
 */
P
Paul E. McKenney 已提交
893
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
894
	__releases(rcu_get_root(rsp)->lock)
895
{
896 897
	unsigned long gp_duration;

898
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
899 900 901 902 903 904

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
905 906 907
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
908
	rsp->completed = rsp->gpnum;
909
	rsp->signaled = RCU_GP_IDLE;
910 911 912
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

913
/*
P
Paul E. McKenney 已提交
914 915 916 917 918 919
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
920 921
 */
static void
P
Paul E. McKenney 已提交
922 923
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
924 925
	__releases(rnp->lock)
{
926 927
	struct rcu_node *rnp_c;

928 929 930 931 932
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
933
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
934 935 936
			return;
		}
		rnp->qsmask &= ~mask;
937
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
938 939

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
940
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
941 942 943 944 945 946 947 948 949
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
950
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
951
		rnp_c = rnp;
952
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
953
		raw_spin_lock_irqsave(&rnp->lock, flags);
954
		WARN_ON_ONCE(rnp_c->qsmask);
955 956 957 958
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
959
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
960
	 * to clean up and start the next grace period if one is needed.
961
	 */
P
Paul E. McKenney 已提交
962
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
963 964 965
}

/*
P
Paul E. McKenney 已提交
966 967 968 969 970 971 972
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
973 974
 */
static void
P
Paul E. McKenney 已提交
975
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
976 977 978 979 980 981
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
982
	raw_spin_lock_irqsave(&rnp->lock, flags);
983
	if (lastcomp != rnp->completed) {
984 985 986 987 988 989

		/*
		 * Someone beat us to it for this grace period, so leave.
		 * The race with GP start is resolved by the fact that we
		 * hold the leaf rcu_node lock, so that the per-CPU bits
		 * cannot yet be initialized -- so we would simply find our
P
Paul E. McKenney 已提交
990 991
		 * CPU's bit already cleared in rcu_report_qs_rnp() if this
		 * race occurred.
992 993
		 */
		rdp->passed_quiesc = 0;	/* try again later! */
P
Paul E. McKenney 已提交
994
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
995 996 997 998
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
999
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000 1001 1002 1003 1004 1005 1006 1007 1008
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1009
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;

P
Paul E. McKenney 已提交
1040 1041 1042 1043 1044
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1045 1046 1047 1048
}

#ifdef CONFIG_HOTPLUG_CPU

1049
/*
1050 1051 1052
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1053
 */
1054
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1055 1056
{
	int i;
1057 1058
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1059
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1060
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1061 1062 1063

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1064 1065 1066 1067 1068 1069 1070

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1071 1072 1073 1074 1075 1076
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1077 1078 1079
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1080 1081
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1082 1083 1084 1085 1086
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1087
	int need_report = 0;
1088
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1089
	struct rcu_node *rnp;
1090 1091 1092 1093 1094 1095 1096 1097
	struct task_struct *t;

	/* Stop the CPU's kthread. */
	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t != NULL) {
		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
		kthread_stop(t);
	}
1098 1099

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1100
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1101 1102

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1103
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1104 1105
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1106
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1107 1108
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1109
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1110
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1111 1112
			break;
		}
1113
		if (rnp == rdp->mynode)
1114
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1115
		else
P
Paul E. McKenney 已提交
1116
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1117 1118 1119 1120
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1121 1122 1123
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1124 1125
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1126
	 */
P
Paul E. McKenney 已提交
1127
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1128
	rnp = rdp->mynode;
1129
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1130
		rcu_report_unblock_qs_rnp(rnp, flags);
1131
	else
P
Paul E. McKenney 已提交
1132
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1133 1134
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1135 1136 1137 1138 1139 1140 1141 1142 1143

	/*
	 * If there are no more online CPUs for this rcu_node structure,
	 * kill the rcu_node structure's kthread.  Otherwise, adjust its
	 * affinity.
	 */
	t = rnp->node_kthread_task;
	if (t != NULL &&
	    rnp->qsmaskinit == 0) {
1144
		raw_spin_lock_irqsave(&rnp->lock, flags);
1145
		rnp->node_kthread_task = NULL;
1146 1147 1148
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		kthread_stop(t);
		rcu_stop_boost_kthread(rnp);
1149
	} else
1150
		rcu_node_kthread_setaffinity(rnp, -1);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1161
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1162
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1163
	rcu_preempt_offline_cpu(cpu);
1164 1165 1166 1167
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1168
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1169 1170 1171
{
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1182
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
	int count;

	/* If no callbacks are ready, just return.*/
	if (!cpu_has_callbacks_ready_to_invoke(rdp))
		return;

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1211
		debug_rcu_head_unqueue(list);
L
Lai Jiangshan 已提交
1212
		__rcu_reclaim(list);
1213 1214 1215 1216 1217 1218 1219 1220 1221
		list = next;
		if (++count >= rdp->blimit)
			break;
	}

	local_irq_save(flags);

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1222
	rdp->n_cbs_invoked += count;
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1237 1238 1239 1240 1241 1242 1243
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1244 1245 1246 1247
	local_irq_restore(flags);

	/* Re-raise the RCU softirq if there are callbacks remaining. */
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1248
		invoke_rcu_cpu_kthread();
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 * Also schedule the RCU softirq handler.
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
	if (user ||
1263 1264
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1265 1266 1267 1268 1269

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1270
		 * a quiescent state, so note it.
1271 1272
		 *
		 * No memory barrier is required here because both
1273 1274 1275
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1276 1277
		 */

1278 1279
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1280 1281 1282 1283 1284 1285 1286

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1287
		 * critical section, so note it.
1288 1289
		 */

1290
		rcu_bh_qs(cpu);
1291
	}
1292
	rcu_preempt_check_callbacks(cpu);
1293
	if (rcu_pending(cpu))
1294
		invoke_rcu_cpu_kthread();
1295 1296 1297 1298 1299 1300 1301
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1302 1303
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1304
 * The caller must have suppressed start of new grace periods.
1305
 */
1306
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1307 1308 1309 1310 1311
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1312
	struct rcu_node *rnp;
1313

1314
	rcu_for_each_leaf_node(rsp, rnp) {
1315
		mask = 0;
P
Paul E. McKenney 已提交
1316
		raw_spin_lock_irqsave(&rnp->lock, flags);
1317
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1318
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1319
			return;
1320
		}
1321
		if (rnp->qsmask == 0) {
1322
			rcu_initiate_boost(rnp);
P
Paul E. McKenney 已提交
1323
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324 1325
			continue;
		}
1326
		cpu = rnp->grplo;
1327
		bit = 1;
1328
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1329 1330
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1331 1332
				mask |= bit;
		}
1333
		if (mask != 0) {
1334

P
Paul E. McKenney 已提交
1335 1336
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1337 1338
			continue;
		}
P
Paul E. McKenney 已提交
1339
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1340
	}
1341 1342 1343 1344 1345
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	if (rnp->qsmask == 0)
		rcu_initiate_boost(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1357
	if (!rcu_gp_in_progress(rsp))
1358
		return;  /* No grace period in progress, nothing to force. */
P
Paul E. McKenney 已提交
1359
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1360 1361 1362
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
		return;	/* Someone else is already on the job. */
	}
1363
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1364
		goto unlock_fqs_ret; /* no emergency and done recently. */
1365
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1366
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1367
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1368
	if(!rcu_gp_in_progress(rsp)) {
1369
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1370
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1371
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1372
	}
1373
	rsp->fqs_active = 1;
1374
	switch (rsp->signaled) {
1375
	case RCU_GP_IDLE:
1376 1377
	case RCU_GP_INIT:

1378
		break; /* grace period idle or initializing, ignore. */
1379 1380 1381 1382 1383

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1384 1385
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1386
		/* Record dyntick-idle state. */
1387
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1388
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1389
		if (rcu_gp_in_progress(rsp))
1390
			rsp->signaled = RCU_FORCE_QS;
1391
		break;
1392 1393 1394 1395

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1396
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1397
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1398 1399 1400

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1401
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1402
		break;
1403
	}
1404
	rsp->fqs_active = 0;
1405
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1406
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1407 1408 1409 1410
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
		return;
	}
P
Paul E. McKenney 已提交
1411
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1412
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1413
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
 * This does the RCU processing work from softirq context for the
 * specified rcu_state and rcu_data structures.  This may be called
 * only from the CPU to whom the rdp belongs.
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1435 1436
	WARN_ON_ONCE(rdp->beenonline == 0);

1437 1438 1439 1440
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1441
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1455
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1456 1457 1458 1459
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1460
	rcu_do_batch(rsp, rdp);
1461 1462 1463 1464 1465
}

/*
 * Do softirq processing for the current CPU.
 */
1466
static void rcu_process_callbacks(void)
1467
{
1468 1469
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1470
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1471
	rcu_preempt_process_callbacks();
1472 1473 1474

	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
	rcu_needs_cpu_flush();
1475 1476
}

1477 1478 1479 1480 1481 1482
/*
 * Wake up the current CPU's kthread.  This replaces raise_softirq()
 * in earlier versions of RCU.  Note that because we are running on
 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
 * cannot disappear out from under us.
 */
1483
static void invoke_rcu_cpu_kthread(void)
1484 1485 1486 1487
{
	unsigned long flags;

	local_irq_save(flags);
1488 1489
	__this_cpu_write(rcu_cpu_has_work, 1);
	if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1490 1491 1492
		local_irq_restore(flags);
		return;
	}
1493
	wake_up(&__get_cpu_var(rcu_cpu_wq));
1494 1495 1496
	local_irq_restore(flags);
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/*
 * Wake up the specified per-rcu_node-structure kthread.
 * The caller must hold ->lock.
 */
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
	struct task_struct *t;

	t = rnp->node_kthread_task;
	if (t != NULL)
		wake_up_process(t);
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * Set the specified CPU's kthread to run RT or not, as specified by
 * the to_rt argument.  The CPU-hotplug locks are held, so the task
 * is not going away.
 */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
	int policy;
	struct sched_param sp;
	struct task_struct *t;

	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t == NULL)
		return;
	if (to_rt) {
		policy = SCHED_FIFO;
		sp.sched_priority = RCU_KTHREAD_PRIO;
	} else {
		policy = SCHED_NORMAL;
		sp.sched_priority = 0;
	}
	sched_setscheduler_nocheck(t, policy, &sp);
}

1534 1535 1536
/*
 * Timer handler to initiate the waking up of per-CPU kthreads that
 * have yielded the CPU due to excess numbers of RCU callbacks.
1537 1538
 * We wake up the per-rcu_node kthread, which in turn will wake up
 * the booster kthread.
1539 1540 1541 1542
 */
static void rcu_cpu_kthread_timer(unsigned long arg)
{
	unsigned long flags;
1543
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1544 1545 1546 1547
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->wakemask |= rdp->grpmask;
1548
	invoke_rcu_node_kthread(rnp);
1549 1550 1551 1552 1553 1554 1555 1556 1557
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Drop to non-real-time priority and yield, but only after posting a
 * timer that will cause us to regain our real-time priority if we
 * remain preempted.  Either way, we restore our real-time priority
 * before returning.
 */
1558
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1559 1560 1561 1562
{
	struct sched_param sp;
	struct timer_list yield_timer;

1563
	setup_timer_on_stack(&yield_timer, f, arg);
1564 1565 1566
	mod_timer(&yield_timer, jiffies + 2);
	sp.sched_priority = 0;
	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1567
	set_user_nice(current, 19);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	schedule();
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
	del_timer(&yield_timer);
}

/*
 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
 * This can happen while the corresponding CPU is either coming online
 * or going offline.  We cannot wait until the CPU is fully online
 * before starting the kthread, because the various notifier functions
 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
 * the corresponding CPU is online.
 *
 * Return 1 if the kthread needs to stop, 0 otherwise.
 *
 * Caller must disable bh.  This function can momentarily enable it.
 */
static int rcu_cpu_kthread_should_stop(int cpu)
{
	while (cpu_is_offline(cpu) ||
	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
	       smp_processor_id() != cpu) {
		if (kthread_should_stop())
			return 1;
1593 1594
		per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
		per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1595 1596 1597 1598 1599 1600
		local_bh_enable();
		schedule_timeout_uninterruptible(1);
		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
			set_cpus_allowed_ptr(current, cpumask_of(cpu));
		local_bh_disable();
	}
1601
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	return 0;
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
 * earlier RCU softirq.
 */
static int rcu_cpu_kthread(void *arg)
{
	int cpu = (int)(long)arg;
	unsigned long flags;
	int spincnt = 0;
1614
	unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1615 1616 1617 1618 1619
	wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
	char work;
	char *workp = &per_cpu(rcu_cpu_has_work, cpu);

	for (;;) {
1620
		*statusp = RCU_KTHREAD_WAITING;
1621 1622 1623 1624 1625 1626 1627
		wait_event_interruptible(*wqp,
					 *workp != 0 || kthread_should_stop());
		local_bh_disable();
		if (rcu_cpu_kthread_should_stop(cpu)) {
			local_bh_enable();
			break;
		}
1628
		*statusp = RCU_KTHREAD_RUNNING;
1629
		per_cpu(rcu_cpu_kthread_loops, cpu)++;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		local_irq_save(flags);
		work = *workp;
		*workp = 0;
		local_irq_restore(flags);
		if (work)
			rcu_process_callbacks();
		local_bh_enable();
		if (*workp != 0)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
1642
			*statusp = RCU_KTHREAD_YIELDING;
1643
			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1644 1645 1646
			spincnt = 0;
		}
	}
1647
	*statusp = RCU_KTHREAD_STOPPED;
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	return 0;
}

/*
 * Spawn a per-CPU kthread, setting up affinity and priority.
 * Because the CPU hotplug lock is held, no other CPU will be attempting
 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
 * attempting to access it during boot, but the locking in kthread_bind()
 * will enforce sufficient ordering.
 */
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
		return 0;
	t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
	if (IS_ERR(t))
		return PTR_ERR(t);
	kthread_bind(t, cpu);
1670
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
	per_cpu(rcu_cpu_kthread_task, cpu) = t;
	wake_up_process(t);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	return 0;
}

/*
 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
 * kthreads when needed.  We ignore requests to wake up kthreads
 * for offline CPUs, which is OK because force_quiescent_state()
 * takes care of this case.
 */
static int rcu_node_kthread(void *arg)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp = (struct rcu_node *)arg;
	struct sched_param sp;
	struct task_struct *t;

	for (;;) {
1695
		rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1696 1697 1698 1699
		wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0 ||
						       kthread_should_stop());
		if (kthread_should_stop())
			break;
1700
		rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1701 1702 1703
		raw_spin_lock_irqsave(&rnp->lock, flags);
		mask = rnp->wakemask;
		rnp->wakemask = 0;
1704
		rcu_initiate_boost(rnp);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
			if ((mask & 0x1) == 0)
				continue;
			preempt_disable();
			t = per_cpu(rcu_cpu_kthread_task, cpu);
			if (!cpu_online(cpu) || t == NULL) {
				preempt_enable();
				continue;
			}
			per_cpu(rcu_cpu_has_work, cpu) = 1;
			sp.sched_priority = RCU_KTHREAD_PRIO;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
			preempt_enable();
		}
	}
1721
	rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1722 1723 1724 1725 1726
	return 0;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1727 1728
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
1729 1730 1731 1732
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
1733
 */
1734
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1735 1736 1737 1738 1739
{
	cpumask_var_t cm;
	int cpu;
	unsigned long mask = rnp->qsmaskinit;

1740
	if (rnp->node_kthread_task == NULL || mask == 0)
1741 1742 1743 1744 1745
		return;
	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	cpumask_clear(cm);
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1746
		if ((mask & 0x1) && cpu != outgoingcpu)
1747
			cpumask_set_cpu(cpu, cm);
1748 1749 1750 1751 1752 1753
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
1754
	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1755
	rcu_boost_kthread_setaffinity(rnp, cm);
1756 1757 1758 1759 1760
	free_cpumask_var(cm);
}

/*
 * Spawn a per-rcu_node kthread, setting priority and affinity.
1761 1762 1763
 * Called during boot before online/offline can happen, or, if
 * during runtime, with the main CPU-hotplug locks held.  So only
 * one of these can be executing at a time.
1764 1765 1766 1767
 */
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
						struct rcu_node *rnp)
{
1768
	unsigned long flags;
1769 1770 1771 1772 1773
	int rnp_index = rnp - &rsp->node[0];
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
1774
	    rnp->qsmaskinit == 0)
1775
		return 0;
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	if (rnp->node_kthread_task == NULL) {
		t = kthread_create(rcu_node_kthread, (void *)rnp,
				   "rcun%d", rnp_index);
		if (IS_ERR(t))
			return PTR_ERR(t);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rnp->node_kthread_task = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		wake_up_process(t);
		sp.sched_priority = 99;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	}
	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
}

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	int cpu;
	struct rcu_node *rnp;

	rcu_kthreads_spawnable = 1;
	for_each_possible_cpu(cpu) {
		init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
		per_cpu(rcu_cpu_has_work, cpu) = 0;
		if (cpu_online(cpu))
			(void)rcu_spawn_one_cpu_kthread(cpu);
	}
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	rnp = rcu_get_root(rcu_state);
	init_waitqueue_head(&rnp->node_wq);
	rcu_init_boost_waitqueue(rnp);
	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	if (NUM_RCU_NODES > 1)
		rcu_for_each_leaf_node(rcu_state, rnp) {
			init_waitqueue_head(&rnp->node_wq);
			rcu_init_boost_waitqueue(rnp);
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
		}
1816 1817 1818 1819
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1820 1821 1822 1823 1824 1825 1826
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1827
	debug_rcu_head_queue(head);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1840
	rdp = this_cpu_ptr(rsp->rda);
1841 1842 1843 1844

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1845 1846 1847 1848 1849 1850 1851
	rdp->qlen++;

	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1852

1853 1854 1855 1856 1857 1858 1859
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1860
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1882
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1883 1884 1885 1886 1887
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1888
 * Queue an RCU-sched callback for invocation after a grace period.
1889
 */
1890
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1891
{
1892
	__call_rcu(head, func, &rcu_sched_state);
1893
}
1894
EXPORT_SYMBOL_GPL(call_rcu_sched);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1935
	init_rcu_head_on_stack(&rcu.head);
1936 1937 1938 1939 1940
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_sched(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1941
	destroy_rcu_head_on_stack(&rcu.head);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1961
	init_rcu_head_on_stack(&rcu.head);
1962 1963 1964 1965 1966
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_bh(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1967
	destroy_rcu_head_on_stack(&rcu.head);
1968 1969 1970
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1971 1972 1973 1974 1975 1976 1977 1978 1979
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1980 1981
	struct rcu_node *rnp = rdp->mynode;

1982 1983 1984 1985 1986 1987
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1988
	if (rdp->qs_pending && !rdp->passed_quiesc) {
1989 1990 1991 1992 1993 1994

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1995
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1996
		if (!rdp->preemptible &&
1997 1998 1999
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2000 2001
	} else if (rdp->qs_pending && rdp->passed_quiesc) {
		rdp->n_rp_report_qs++;
2002
		return 1;
2003
	}
2004 2005

	/* Does this CPU have callbacks ready to invoke? */
2006 2007
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2008
		return 1;
2009
	}
2010 2011

	/* Has RCU gone idle with this CPU needing another grace period? */
2012 2013
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2014
		return 1;
2015
	}
2016 2017

	/* Has another RCU grace period completed?  */
2018
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2019
		rdp->n_rp_gp_completed++;
2020
		return 1;
2021
	}
2022 2023

	/* Has a new RCU grace period started? */
2024
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2025
		rdp->n_rp_gp_started++;
2026
		return 1;
2027
	}
2028 2029

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2030
	if (rcu_gp_in_progress(rsp) &&
2031
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2032
		rdp->n_rp_need_fqs++;
2033
		return 1;
2034
	}
2035 2036

	/* nothing to do */
2037
	rdp->n_rp_need_nothing++;
2038 2039 2040 2041 2042 2043 2044 2045
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2046
static int rcu_pending(int cpu)
2047
{
2048
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2049 2050
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2051 2052 2053 2054 2055
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2056
 * 1 if so.
2057
 */
2058
static int rcu_needs_cpu_quick_check(int cpu)
2059 2060
{
	/* RCU callbacks either ready or pending? */
2061
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2062 2063
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2096 2097
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2098 2099 2100
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
2101
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2102 2103 2104 2105 2106 2107 2108 2109 2110
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
2111 2112 2113
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2128
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2129 2130 2131 2132 2133 2134 2135 2136
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2137
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2138 2139 2140
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2141
/*
2142
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2143
 */
2144 2145
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2146 2147 2148
{
	unsigned long flags;
	int i;
2149
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2150 2151 2152
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2153
	raw_spin_lock_irqsave(&rnp->lock, flags);
2154 2155 2156 2157 2158 2159 2160 2161 2162
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
P
Paul E. McKenney 已提交
2163
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2164 2165 2166 2167 2168 2169 2170
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2171
 */
2172
static void __cpuinit
P
Paul E. McKenney 已提交
2173
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2174 2175 2176
{
	unsigned long flags;
	unsigned long mask;
2177
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2178 2179 2180
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2181
	raw_spin_lock_irqsave(&rnp->lock, flags);
2182 2183 2184
	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2185
	rdp->preemptible = preemptible;
2186 2187
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2188
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
2189
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2190 2191 2192 2193 2194 2195 2196

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2197
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2198 2199 2200 2201 2202 2203

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2204
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2205 2206
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2207 2208 2209 2210 2211
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
			rdp->passed_quiesc_completed = rnp->completed - 1;
		}
P
Paul E. McKenney 已提交
2212
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2213 2214 2215
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2216
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2217 2218 2219 2220
}

static void __cpuinit rcu_online_cpu(int cpu)
{
2221 2222 2223
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2224 2225
}

2226 2227
static void __cpuinit rcu_online_kthreads(int cpu)
{
2228
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2229 2230 2231 2232 2233 2234
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
	if (rcu_kthreads_spawnable) {
		(void)rcu_spawn_one_cpu_kthread(cpu);
		if (rnp->node_kthread_task == NULL)
2235
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2236 2237 2238
	}
}

2239
/*
2240
 * Handle CPU online/offline notification events.
2241
 */
2242 2243
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2244 2245
{
	long cpu = (long)hcpu;
2246
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2247
	struct rcu_node *rnp = rdp->mynode;
2248 2249 2250 2251 2252

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		rcu_online_cpu(cpu);
2253 2254 2255
		rcu_online_kthreads(cpu);
		break;
	case CPU_ONLINE:
2256 2257
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2258
		rcu_cpu_kthread_setrt(cpu, 1);
2259 2260 2261
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2262
		rcu_cpu_kthread_setrt(cpu, 0);
2263
		break;
2264 2265 2266
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2267 2268 2269
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2270
		 */
2271 2272 2273
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
2274
		break;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2311
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2312
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2313
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2334 2335
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2336
{
2337 2338 2339 2340
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2341 2342 2343 2344 2345
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2346 2347
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2360
			raw_spin_lock_init(&rnp->lock);
2361 2362
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2363
			rnp->gpnum = 0;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2381
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2382 2383
		}
	}
2384

2385
	rsp->rda = rda;
2386 2387
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2388
		while (i > rnp->grphi)
2389
			rnp++;
2390
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2391 2392
		rcu_boot_init_percpu_data(i, rsp);
	}
2393 2394
}

2395
void __init rcu_init(void)
2396
{
P
Paul E. McKenney 已提交
2397
	int cpu;
2398

2399
	rcu_bootup_announce();
2400 2401
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2402
	__rcu_init_preempt();
2403 2404 2405 2406 2407 2408 2409

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2410 2411
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2412
	check_cpu_stall_init();
2413 2414
}

2415
#include "rcutree_plugin.h"