rcutree.c 88.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56

57
#include "rcutree.h"
58 59 60
#include <trace/events/rcu.h>

#include "rcu.h"
61

62 63
/* Data structures. */

64
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66

67
#define RCU_STATE_INITIALIZER(sname, cr) { \
68
	.level = { &sname##_state.node[0] }, \
69
	.call = cr, \
70
	.fqs_state = RCU_GP_IDLE, \
71 72
	.gpnum = -300, \
	.completed = -300, \
73 74 75
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
76
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77
	.name = #sname, \
78 79
}

80 81
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
82
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
83

84
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
85
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
86

87
static struct rcu_state *rcu_state;
88
LIST_HEAD(rcu_struct_flavors);
89

90 91
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
92
module_param(rcu_fanout_leaf, int, 0444);
93 94 95 96 97 98 99 100 101 102
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

103 104 105 106 107 108 109 110 111
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
112 113 114
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

115 116 117 118 119 120 121 122 123 124 125 126 127 128
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

129 130
#ifdef CONFIG_RCU_BOOST

131 132 133 134 135
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
136
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
137
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
138
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139
DEFINE_PER_CPU(char, rcu_cpu_has_work);
140

141 142
#endif /* #ifdef CONFIG_RCU_BOOST */

143
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 145
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146

147 148 149 150 151 152 153 154 155 156 157 158
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

159 160 161 162 163 164 165 166 167 168
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

169
/*
170
 * Note a quiescent state.  Because we do not need to know
171
 * how many quiescent states passed, just if there was at least
172
 * one since the start of the grace period, this just sets a flag.
173
 * The caller must have disabled preemption.
174
 */
175
void rcu_sched_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178

179
	rdp->passed_quiesce_gpnum = rdp->gpnum;
180
	barrier();
181
	if (rdp->passed_quiesce == 0)
182
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
183
	rdp->passed_quiesce = 1;
184 185
}

186
void rcu_bh_qs(int cpu)
187
{
188
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
189

190
	rdp->passed_quiesce_gpnum = rdp->gpnum;
191
	barrier();
192
	if (rdp->passed_quiesce == 0)
193
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
194
	rdp->passed_quiesce = 1;
195
}
196

197 198 199
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
200
 * The caller must have disabled preemption.
201 202 203
 */
void rcu_note_context_switch(int cpu)
{
204
	trace_rcu_utilization("Start context switch");
205
	rcu_sched_qs(cpu);
206
	rcu_preempt_note_context_switch(cpu);
207
	trace_rcu_utilization("End context switch");
208
}
209
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
210

211
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
212
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
213
	.dynticks = ATOMIC_INIT(1),
214
};
215

216
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
217 218 219
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

220 221 222
module_param(blimit, int, 0444);
module_param(qhimark, int, 0444);
module_param(qlowmark, int, 0444);
223

224 225 226
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

227
module_param(rcu_cpu_stall_suppress, int, 0644);
228
module_param(rcu_cpu_stall_timeout, int, 0644);
229

230 231 232 233 234 235
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

236 237
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
static void force_quiescent_state(struct rcu_state *rsp);
238
static int rcu_pending(int cpu);
239 240

/*
241
 * Return the number of RCU-sched batches processed thus far for debug & stats.
242
 */
243
long rcu_batches_completed_sched(void)
244
{
245
	return rcu_sched_state.completed;
246
}
247
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
248 249 250 251 252 253 254 255 256 257

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

258 259 260 261 262
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
263
	force_quiescent_state(&rcu_bh_state);
264 265 266
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

292 293 294 295 296
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
297
	force_quiescent_state(&rcu_sched_state);
298 299 300
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
316 317 318
	return *rdp->nxttail[RCU_DONE_TAIL +
			     ACCESS_ONCE(rsp->completed) != rdp->completed] &&
	       !rcu_gp_in_progress(rsp);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
343 344 345 346 347
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
348
	 */
349 350
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
351
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
352 353 354 355 356 357
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

358 359 360 361 362 363 364
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
365
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
366
{
367
	trace_rcu_dyntick("Start", oldval, 0);
368
	if (!is_idle_task(current)) {
369 370
		struct task_struct *idle = idle_task(smp_processor_id());

371
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
372
		ftrace_dump(DUMP_ORIG);
373 374 375
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
376
	}
377
	rcu_prepare_for_idle(smp_processor_id());
378 379 380 381 382
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
383 384 385 386 387 388 389 390 391 392 393

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
394
}
395 396

/**
397
 * rcu_idle_enter - inform RCU that current CPU is entering idle
398
 *
399
 * Enter idle mode, in other words, -leave- the mode in which RCU
400
 * read-side critical sections can occur.  (Though RCU read-side
401 402 403 404 405 406
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
407
 */
408
void rcu_idle_enter(void)
409 410
{
	unsigned long flags;
411
	long long oldval;
412 413 414 415
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
416
	oldval = rdtp->dynticks_nesting;
417 418 419 420 421
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
422
	rcu_idle_enter_common(rdtp, oldval);
423 424
	local_irq_restore(flags);
}
425
EXPORT_SYMBOL_GPL(rcu_idle_enter);
426

427 428 429 430 431 432
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
433
 *
434 435 436 437 438 439 440 441
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
442
 */
443
void rcu_irq_exit(void)
444 445
{
	unsigned long flags;
446
	long long oldval;
447 448 449 450
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
451
	oldval = rdtp->dynticks_nesting;
452 453
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
454 455 456 457
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
458 459 460 461 462 463 464 465 466 467 468 469
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
470 471 472 473 474
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
475
	rcu_cleanup_after_idle(smp_processor_id());
476
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
477
	if (!is_idle_task(current)) {
478 479
		struct task_struct *idle = idle_task(smp_processor_id());

480 481
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
482
		ftrace_dump(DUMP_ORIG);
483 484 485
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
486 487 488 489 490 491 492 493 494
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
495
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
496
 * allow for the possibility of usermode upcalls messing up our count
497 498 499 500 501 502 503 504 505 506 507 508
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
509 510 511 512 513
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
514 515 516
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
517
EXPORT_SYMBOL_GPL(rcu_idle_exit);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
549 550 551 552
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
553 554 555 556 557 558 559 560 561 562 563 564 565 566
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

567 568
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
569
		return;
570 571 572 573 574 575
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
576 577 578 579 580 581 582 583 584 585 586 587 588
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

589 590
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
591
		return;
592 593 594 595 596
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
597 598 599
}

/**
600
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
601
 *
602
 * If the current CPU is in its idle loop and is neither in an interrupt
603
 * or NMI handler, return true.
604
 */
605
int rcu_is_cpu_idle(void)
606
{
607 608 609 610 611 612
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
613
}
614
EXPORT_SYMBOL(rcu_is_cpu_idle);
615

616
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
617 618 619 620 621 622 623

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
624 625 626 627 628 629 630 631 632 633 634
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
635 636 637 638 639 640
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
641 642
	struct rcu_data *rdp;
	struct rcu_node *rnp;
643 644 645 646 647
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
648 649 650
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
651 652 653 654 655 656
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

657
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
658

659
/**
660
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
661
 *
662 663 664
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
665
 */
666
int rcu_is_cpu_rrupt_from_idle(void)
667
{
668
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
669 670 671 672 673
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
674
 * is in dynticks idle mode, which is an extended quiescent state.
675 676 677
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
678
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
679
	return (rdp->dynticks_snap & 0x1) == 0;
680 681 682 683 684 685 686 687 688 689
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
690 691
	unsigned int curr;
	unsigned int snap;
692

693 694
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
695 696 697 698 699 700 701 702 703

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
704
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
705
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
706 707 708 709 710 711 712 713
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

732 733 734
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
735
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
736 737 738 739 740 741 742
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
743
	int ndetected = 0;
744 745 746 747
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
748
	raw_spin_lock_irqsave(&rnp->lock, flags);
749
	delta = jiffies - rsp->jiffies_stall;
750
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
751
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
752 753
		return;
	}
754
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
755
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
756

757 758 759 760 761
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
762
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
763
	       rsp->name);
764
	print_cpu_stall_info_begin();
765
	rcu_for_each_leaf_node(rsp, rnp) {
766
		raw_spin_lock_irqsave(&rnp->lock, flags);
767
		ndetected += rcu_print_task_stall(rnp);
768
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
769
		if (rnp->qsmask == 0)
770
			continue;
771
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
772
			if (rnp->qsmask & (1UL << cpu)) {
773
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
774 775
				ndetected++;
			}
776
	}
777 778 779 780 781 782 783

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
784
	ndetected += rcu_print_task_stall(rnp);
785 786 787 788
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
789
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
790 791 792
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
793
		dump_stack();
794

795
	/* Complain about tasks blocking the grace period. */
796 797 798

	rcu_print_detail_task_stall(rsp);

799
	force_quiescent_state(rsp);  /* Kick them all. */
800 801 802 803 804 805 806
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

807 808 809 810 811
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
812 813 814 815 816
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
817 818
	if (!trigger_all_cpu_backtrace())
		dump_stack();
819

P
Paul E. McKenney 已提交
820
	raw_spin_lock_irqsave(&rnp->lock, flags);
821
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
822 823
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
824
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
825

826 827 828 829 830
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
831 832
	unsigned long j;
	unsigned long js;
833 834
	struct rcu_node *rnp;

835
	if (rcu_cpu_stall_suppress)
836
		return;
837 838
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
839
	rnp = rdp->mynode;
840
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
841 842 843 844

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

845 846
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
847

848
		/* They had a few time units to dump stack, so complain. */
849 850 851 852
		print_other_cpu_stall(rsp);
	}
}

853 854
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
855
	rcu_cpu_stall_suppress = 1;
856 857 858
	return NOTIFY_DONE;
}

859 860 861 862 863 864 865 866 867 868 869
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
870 871 872 873
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
874 875
}

876 877 878 879 880 881 882 883 884
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

885 886 887
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
888 889 890
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
891
 */
892 893 894
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
895 896 897 898 899
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
900
		rdp->gpnum = rnp->gpnum;
901
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
902 903
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
904
			rdp->passed_quiesce = 0;
905
		} else {
906
			rdp->qs_pending = 0;
907
		}
908
		zero_cpu_stall_ticks(rdp);
909 910 911
	}
}

912 913
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
914 915 916 917 918 919
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
920
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
921 922 923 924
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
925
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
979
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
980

981 982
		/*
		 * If we were in an extended quiescent state, we may have
983
		 * missed some grace periods that others CPUs handled on
984
		 * our behalf. Catch up with this state to avoid noting
985 986 987
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
988
		 */
989
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
990 991
			rdp->gpnum = rdp->completed;

992
		/*
993 994
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
995
		 */
996
		if ((rnp->qsmask & rdp->grpmask) == 0)
997
			rdp->qs_pending = 0;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1015
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1016 1017 1018 1019
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1020
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

1034 1035
	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1036 1037
}

1038
/*
1039
 * Initialize a new grace period.
1040
 */
1041
static int rcu_gp_init(struct rcu_state *rsp)
1042 1043
{
	struct rcu_data *rdp;
1044
	struct rcu_node *rnp = rcu_get_root(rsp);
1045

1046
	raw_spin_lock_irq(&rnp->lock);
1047
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	if (rcu_gp_in_progress(rsp)) {
		/* Grace period already in progress, don't start another.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
	record_gp_stall_check_time(rsp);
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
	get_online_cpus();

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1078 1079
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1091 1092 1093 1094
#ifdef CONFIG_PROVE_RCU_DELAY
		if ((random32() % (rcu_num_nodes * 8)) == 0)
			schedule_timeout_uninterruptible(2);
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1095 1096
		cond_resched();
	}
1097

1098 1099 1100
	put_online_cpus();
	return 1;
}
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * Do one round of quiescent-state forcing.
 */
int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
{
	int fqs_state = fqs_state_in;
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(rsp, dyntick_save_progress_counter);
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1128 1129 1130
/*
 * Clean up after the old grace period.
 */
1131
static void rcu_gp_cleanup(struct rcu_state *rsp)
1132 1133 1134 1135
{
	unsigned long gp_duration;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1136

1137 1138 1139 1140
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1141

1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1150
	raw_spin_unlock_irq(&rnp->lock);
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1162
		raw_spin_lock_irq(&rnp->lock);
1163 1164 1165
		rnp->completed = rsp->gpnum;
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1166
	}
1167 1168
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1169 1170 1171 1172

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
	rsp->fqs_state = RCU_GP_IDLE;
1173
	rdp = this_cpu_ptr(rsp->rda);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (cpu_needs_another_gp(rsp, rdp))
		rsp->gp_flags = 1;
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1184
	int fqs_state;
1185
	unsigned long j;
1186
	int ret;
1187 1188 1189 1190 1191 1192 1193
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1194 1195 1196 1197 1198
			wait_event_interruptible(rsp->gp_wq,
						 rsp->gp_flags &
						 RCU_GP_FLAG_INIT);
			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
			    rcu_gp_init(rsp))
1199 1200 1201 1202
				break;
			cond_resched();
			flush_signals(current);
		}
1203

1204 1205
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1206 1207 1208 1209 1210
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1211
		for (;;) {
1212
			rsp->jiffies_force_qs = jiffies + j;
1213 1214 1215 1216
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1217
					j);
1218
			/* If grace period done, leave loop. */
1219
			if (!ACCESS_ONCE(rnp->qsmask) &&
1220
			    !rcu_preempt_blocked_readers_cgp(rnp))
1221
				break;
1222 1223 1224 1225 1226 1227 1228 1229 1230
			/* If time for quiescent-state forcing, do it. */
			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
			}
1231 1232 1233 1234 1235 1236 1237 1238
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1239
		}
1240 1241 1242

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1243 1244 1245
	}
}

1246 1247 1248 1249 1250
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1251 1252 1253 1254
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1255 1256 1257 1258 1259
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1260
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1261 1262
	struct rcu_node *rnp = rcu_get_root(rsp);

1263
	if (!rsp->gp_kthread ||
1264 1265
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
1266 1267 1268
		 * Either we have not yet spawned the grace-period
		 * task or this CPU does not need another grace period.
		 * Either way, don't start a new grace period.
1269 1270 1271 1272
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1273

1274
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1275 1276
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	wake_up(&rsp->gp_wq);
1277 1278
}

1279
/*
P
Paul E. McKenney 已提交
1280 1281 1282 1283 1284
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1285
 */
P
Paul E. McKenney 已提交
1286
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1287
	__releases(rcu_get_root(rsp)->lock)
1288
{
1289
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1290 1291
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1292 1293
}

1294
/*
P
Paul E. McKenney 已提交
1295 1296 1297 1298 1299 1300
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1301 1302
 */
static void
P
Paul E. McKenney 已提交
1303 1304
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1305 1306
	__releases(rnp->lock)
{
1307 1308
	struct rcu_node *rnp_c;

1309 1310 1311 1312 1313
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1314
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1315 1316 1317
			return;
		}
		rnp->qsmask &= ~mask;
1318 1319 1320 1321
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1322
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1323 1324

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1325
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1326 1327 1328 1329 1330 1331 1332 1333 1334
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1335
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1336
		rnp_c = rnp;
1337
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1338
		raw_spin_lock_irqsave(&rnp->lock, flags);
1339
		WARN_ON_ONCE(rnp_c->qsmask);
1340 1341 1342 1343
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1344
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1345
	 * to clean up and start the next grace period if one is needed.
1346
	 */
P
Paul E. McKenney 已提交
1347
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1348 1349 1350
}

/*
P
Paul E. McKenney 已提交
1351 1352 1353 1354 1355 1356 1357
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1358 1359
 */
static void
1360
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1361 1362 1363 1364 1365 1366
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1367
	raw_spin_lock_irqsave(&rnp->lock, flags);
1368
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1369 1370

		/*
1371 1372 1373 1374
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1375
		 */
1376
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1377
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1378 1379 1380 1381
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1382
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1383 1384 1385 1386 1387 1388 1389 1390 1391
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1392
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1420
	if (!rdp->passed_quiesce)
1421 1422
		return;

P
Paul E. McKenney 已提交
1423 1424 1425 1426
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1427
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1428 1429 1430 1431
}

#ifdef CONFIG_HOTPLUG_CPU

1432
/*
1433 1434 1435
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1436
 */
1437 1438 1439
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1440
{
1441 1442 1443 1444 1445
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1446
	if (rdp->nxtlist != NULL) {
1447 1448 1449
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1450
		rdp->qlen_lazy = 0;
1451
		ACCESS_ONCE(rdp->qlen) = 0;
1452 1453 1454
	}

	/*
1455 1456 1457 1458 1459 1460 1461
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1462
	 */
1463 1464 1465 1466
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1467 1468 1469
	}

	/*
1470 1471 1472
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1473
	 */
1474
	if (rdp->nxtlist != NULL) {
1475 1476
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1477
	}
1478

1479
	/* Finally, initialize the rcu_data structure's list to empty.  */
1480
	init_callback_list(rdp);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1492
	/*
1493 1494 1495 1496 1497
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1498
	 */
1499 1500 1501 1502 1503 1504 1505 1506
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1507 1508
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1548 1549 1550
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1551 1552 1553
}

/*
1554
 * The CPU has been completely removed, and some other CPU is reporting
1555 1556 1557
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1558 1559
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1560
 */
1561
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1562
{
1563 1564 1565
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1566
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1567
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1568

1569
	/* Adjust any no-longer-needed kthreads. */
1570 1571
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1572

1573
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1574 1575 1576 1577

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1578 1579 1580 1581
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1614 1615 1616
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1617 1618 1619 1620
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1621 1622 1623 1624
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1625
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1626 1627 1628
{
}

1629
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1630 1631 1632 1633 1634 1635 1636 1637 1638
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1639
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1640 1641 1642
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1643
	int bl, count, count_lazy, i;
1644 1645

	/* If no callbacks are ready, just return.*/
1646
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1647
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1648 1649 1650
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1651
		return;
1652
	}
1653 1654 1655 1656 1657 1658

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1659
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1660
	bl = rdp->blimit;
1661
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1662 1663 1664 1665
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1666 1667 1668
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1669 1670 1671
	local_irq_restore(flags);

	/* Invoke callbacks. */
1672
	count = count_lazy = 0;
1673 1674 1675
	while (list) {
		next = list->next;
		prefetch(next);
1676
		debug_rcu_head_unqueue(list);
1677 1678
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1679
		list = next;
1680 1681 1682 1683
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1684 1685 1686 1687
			break;
	}

	local_irq_save(flags);
1688 1689 1690
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1691 1692 1693 1694 1695

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1696 1697 1698
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1699 1700 1701
			else
				break;
	}
1702 1703
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1704
	ACCESS_ONCE(rdp->qlen) -= count;
1705
	rdp->n_cbs_invoked += count;
1706 1707 1708 1709 1710

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1711 1712 1713 1714 1715 1716
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1717
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1718

1719 1720
	local_irq_restore(flags);

1721
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1722
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1723
		invoke_rcu_core();
1724 1725 1726 1727 1728
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1729
 * Also schedule RCU core processing.
1730
 *
1731
 * This function must be called from hardirq context.  It is normally
1732 1733 1734 1735 1736
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1737
	trace_rcu_utilization("Start scheduler-tick");
1738
	increment_cpu_stall_ticks();
1739
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1740 1741 1742 1743 1744

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1745
		 * a quiescent state, so note it.
1746 1747
		 *
		 * No memory barrier is required here because both
1748 1749 1750
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1751 1752
		 */

1753 1754
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1755 1756 1757 1758 1759 1760 1761

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1762
		 * critical section, so note it.
1763 1764
		 */

1765
		rcu_bh_qs(cpu);
1766
	}
1767
	rcu_preempt_check_callbacks(cpu);
1768
	if (rcu_pending(cpu))
1769
		invoke_rcu_core();
1770
	trace_rcu_utilization("End scheduler-tick");
1771 1772 1773 1774 1775
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1776 1777
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1778
 * The caller must have suppressed start of new grace periods.
1779
 */
1780
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1781 1782 1783 1784 1785
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1786
	struct rcu_node *rnp;
1787

1788
	rcu_for_each_leaf_node(rsp, rnp) {
1789
		cond_resched();
1790
		mask = 0;
P
Paul E. McKenney 已提交
1791
		raw_spin_lock_irqsave(&rnp->lock, flags);
1792
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1793
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1794
			return;
1795
		}
1796
		if (rnp->qsmask == 0) {
1797
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1798 1799
			continue;
		}
1800
		cpu = rnp->grplo;
1801
		bit = 1;
1802
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1803 1804
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1805 1806
				mask |= bit;
		}
1807
		if (mask != 0) {
1808

P
Paul E. McKenney 已提交
1809 1810
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1811 1812
			continue;
		}
P
Paul E. McKenney 已提交
1813
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1814
	}
1815
	rnp = rcu_get_root(rsp);
1816 1817 1818 1819
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1820 1821 1822 1823 1824 1825
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
1826
static void force_quiescent_state(struct rcu_state *rsp)
1827 1828
{
	unsigned long flags;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1847

1848 1849 1850 1851 1852 1853
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1854
		return;  /* Someone beat us to it. */
1855
	}
1856
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
1857
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1858
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1859 1860 1861
}

/*
1862 1863 1864
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1865 1866
 */
static void
1867
__rcu_process_callbacks(struct rcu_state *rsp)
1868 1869
{
	unsigned long flags;
1870
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1871

1872 1873
	WARN_ON_ONCE(rdp->beenonline == 0);

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1885
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1886 1887 1888 1889
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1890
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1891
		invoke_rcu_callbacks(rsp, rdp);
1892 1893
}

1894
/*
1895
 * Do RCU core processing for the current CPU.
1896
 */
1897
static void rcu_process_callbacks(struct softirq_action *unused)
1898
{
1899 1900
	struct rcu_state *rsp;

1901 1902
	if (cpu_is_offline(smp_processor_id()))
		return;
1903
	trace_rcu_utilization("Start RCU core");
1904 1905
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
1906
	trace_rcu_utilization("End RCU core");
1907 1908
}

1909
/*
1910 1911 1912 1913 1914
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1915
 */
1916
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1917
{
1918 1919
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1920 1921
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1922 1923
		return;
	}
1924
	invoke_rcu_callbacks_kthread();
1925 1926
}

1927
static void invoke_rcu_core(void)
1928 1929 1930 1931
{
	raise_softirq(RCU_SOFTIRQ);
}

1932 1933 1934 1935 1936
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
1937
{
1938 1939 1940 1941
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
1942
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1943 1944
		invoke_rcu_core();

1945
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1946
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1947
		return;
1948

1949 1950 1951 1952 1953 1954 1955
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1956
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
1974
				force_quiescent_state(rsp);
1975 1976 1977
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1978
	}
1979 1980
}

1981 1982
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1983
	   struct rcu_state *rsp, bool lazy)
1984 1985 1986 1987
{
	unsigned long flags;
	struct rcu_data *rdp;

1988
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1989
	debug_rcu_head_queue(head);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2002
	rdp = this_cpu_ptr(rsp->rda);
2003 2004

	/* Add the callback to our list. */
2005
	ACCESS_ONCE(rdp->qlen)++;
2006 2007
	if (lazy)
		rdp->qlen_lazy++;
2008 2009
	else
		rcu_idle_count_callbacks_posted();
2010 2011 2012
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2013

2014 2015
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2016
					 rdp->qlen_lazy, rdp->qlen);
2017
	else
2018
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2019

2020 2021
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2022 2023 2024 2025
	local_irq_restore(flags);
}

/*
2026
 * Queue an RCU-sched callback for invocation after a grace period.
2027
 */
2028
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2029
{
2030
	__call_rcu(head, func, &rcu_sched_state, 0);
2031
}
2032
EXPORT_SYMBOL_GPL(call_rcu_sched);
2033 2034

/*
2035
 * Queue an RCU callback for invocation after a quicker grace period.
2036 2037 2038
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
2039
	__call_rcu(head, func, &rcu_bh_state, 0);
2040 2041 2042
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2054 2055
	int ret;

2056
	might_sleep();  /* Check for RCU read-side critical section. */
2057 2058 2059 2060
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2061 2062
}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2088 2089 2090 2091
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2092 2093
	if (rcu_blocking_is_gp())
		return;
2094
	wait_rcu_gp(call_rcu_sched);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2109 2110 2111 2112
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2113 2114
	if (rcu_blocking_is_gp())
		return;
2115
	wait_rcu_gp(call_rcu_bh);
2116 2117 2118
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2149
 *
2150 2151 2152 2153
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2183
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
2195
		if (trycount++ < 10) {
2196
			udelay(trycount * num_online_cpus());
2197
		} else {
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2240 2241 2242 2243 2244 2245 2246 2247 2248
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2249 2250
	struct rcu_node *rnp = rdp->mynode;

2251 2252 2253 2254 2255 2256
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2257 2258
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2259
		rdp->n_rp_qs_pending++;
2260
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2261
		rdp->n_rp_report_qs++;
2262
		return 1;
2263
	}
2264 2265

	/* Does this CPU have callbacks ready to invoke? */
2266 2267
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2268
		return 1;
2269
	}
2270 2271

	/* Has RCU gone idle with this CPU needing another grace period? */
2272 2273
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2274
		return 1;
2275
	}
2276 2277

	/* Has another RCU grace period completed?  */
2278
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2279
		rdp->n_rp_gp_completed++;
2280
		return 1;
2281
	}
2282 2283

	/* Has a new RCU grace period started? */
2284
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2285
		rdp->n_rp_gp_started++;
2286
		return 1;
2287
	}
2288 2289

	/* nothing to do */
2290
	rdp->n_rp_need_nothing++;
2291 2292 2293 2294 2295 2296 2297 2298
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2299
static int rcu_pending(int cpu)
2300
{
2301 2302 2303 2304 2305 2306
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2307 2308 2309 2310 2311
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2312
 * 1 if so.
2313
 */
2314
static int rcu_cpu_has_callbacks(int cpu)
2315
{
2316 2317
	struct rcu_state *rsp;

2318
	/* RCU callbacks either ready or pending? */
2319 2320 2321 2322
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2323 2324
}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2336 2337 2338 2339
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2340
static void rcu_barrier_callback(struct rcu_head *rhp)
2341
{
2342 2343 2344
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2345 2346
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2347
		complete(&rsp->barrier_completion);
2348 2349 2350
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2351 2352 2353 2354 2355 2356 2357
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2358
	struct rcu_state *rsp = type;
2359
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2360

2361
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2362
	atomic_inc(&rsp->barrier_cpu_count);
2363
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2364 2365 2366 2367 2368 2369
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2370
static void _rcu_barrier(struct rcu_state *rsp)
2371
{
2372 2373 2374
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
2375
	struct rcu_data rd;
2376 2377
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2378

2379
	init_rcu_head_on_stack(&rd.barrier_head);
2380
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2381

2382
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2383
	mutex_lock(&rsp->barrier_mutex);
2384

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2398
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2399
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2400
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2413
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2414
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2415

2416
	/*
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2432
	 */
2433
	init_completion(&rsp->barrier_completion);
2434
	atomic_set(&rsp->barrier_cpu_count, 1);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
2450 2451
			_rcu_barrier_trace(rsp, "Offline", cpu,
					   rsp->n_barrier_done);
2452 2453 2454 2455
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2456 2457
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2458
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2459 2460
			preempt_enable();
		} else {
2461 2462
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2479
	atomic_inc(&rsp->barrier_cpu_count);
2480
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2481 2482
	rd.rsp = rsp;
	rsp->call(&rd.barrier_head, rcu_barrier_callback);
2483 2484 2485 2486 2487

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2488
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2489
		complete(&rsp->barrier_completion);
2490

2491 2492 2493 2494
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2495
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2496 2497
	smp_mb(); /* Keep increment before caller's subsequent code. */

2498
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2499
	wait_for_completion(&rsp->barrier_completion);
2500 2501

	/* Other rcu_barrier() invocations can now safely proceed. */
2502
	mutex_unlock(&rsp->barrier_mutex);
2503

2504
	destroy_rcu_head_on_stack(&rd.barrier_head);
2505 2506 2507 2508 2509 2510 2511
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2512
	_rcu_barrier(&rcu_bh_state);
2513 2514 2515 2516 2517 2518 2519 2520
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2521
	_rcu_barrier(&rcu_sched_state);
2522 2523 2524
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2525
/*
2526
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2527
 */
2528 2529
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2530 2531
{
	unsigned long flags;
2532
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2533 2534 2535
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2536
	raw_spin_lock_irqsave(&rnp->lock, flags);
2537
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2538
	init_callback_list(rdp);
2539
	rdp->qlen_lazy = 0;
2540
	ACCESS_ONCE(rdp->qlen) = 0;
2541
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2542
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2543
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2544
	rdp->cpu = cpu;
2545
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2546
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2547 2548 2549 2550 2551 2552 2553
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2554
 */
2555
static void __cpuinit
P
Paul E. McKenney 已提交
2556
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2557 2558 2559
{
	unsigned long flags;
	unsigned long mask;
2560
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2561 2562 2563
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2564
	raw_spin_lock_irqsave(&rnp->lock, flags);
2565
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2566
	rdp->preemptible = preemptible;
2567 2568
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2569
	rdp->blimit = blimit;
2570
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2571 2572
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2573
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2574
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2575 2576 2577 2578 2579 2580 2581

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2582
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2583 2584 2585 2586 2587 2588

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2589
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2590 2591
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2592
		if (rnp == rdp->mynode) {
2593 2594 2595 2596 2597 2598
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2599
			rdp->completed = rnp->completed;
2600 2601
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2602
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2603
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2604
		}
P
Paul E. McKenney 已提交
2605
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2606 2607 2608
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2609
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2610 2611
}

P
Peter Zijlstra 已提交
2612
static void __cpuinit rcu_prepare_cpu(int cpu)
2613
{
2614 2615 2616 2617 2618
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2619 2620 2621
}

/*
2622
 * Handle CPU online/offline notification events.
2623
 */
2624 2625
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2626 2627
{
	long cpu = (long)hcpu;
2628
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2629
	struct rcu_node *rnp = rdp->mynode;
2630
	struct rcu_state *rsp;
2631

2632
	trace_rcu_utilization("Start CPU hotplug");
2633 2634 2635
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2636 2637
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2638 2639
		break;
	case CPU_ONLINE:
2640 2641
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2642
		rcu_cpu_kthread_setrt(cpu, 1);
2643 2644 2645
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2646
		rcu_cpu_kthread_setrt(cpu, 0);
2647
		break;
2648 2649 2650
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2651 2652 2653
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2654
		 */
2655 2656
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2657
		rcu_cleanup_after_idle(cpu);
2658
		break;
2659 2660 2661 2662
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2663 2664
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2665 2666 2667 2668
		break;
	default:
		break;
	}
2669
	trace_rcu_utilization("End CPU hotplug");
2670 2671 2672
	return NOTIFY_OK;
}

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2710 2711 2712 2713 2714 2715 2716 2717 2718
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2719
	for (i = rcu_num_lvls - 1; i > 0; i--)
2720
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2721
	rsp->levelspread[0] = rcu_fanout_leaf;
2722 2723 2724 2725 2726 2727 2728 2729 2730
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
2731
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2742 2743
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2744
{
2745 2746 2747 2748 2749 2750 2751 2752
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
2753 2754 2755 2756 2757
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2758 2759
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2760 2761
	/* Initialize the level-tracking arrays. */

2762 2763 2764
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2765 2766 2767 2768 2769
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2770
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2771 2772 2773
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2774
			raw_spin_lock_init(&rnp->lock);
2775 2776
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2777 2778 2779
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
2780
			rnp->gpnum = 0;
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2798
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2799 2800
		}
	}
2801

2802
	rsp->rda = rda;
2803
	init_waitqueue_head(&rsp->gp_wq);
2804
	rnp = rsp->level[rcu_num_lvls - 1];
2805
	for_each_possible_cpu(i) {
2806
		while (i > rnp->grphi)
2807
			rnp++;
2808
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2809 2810
		rcu_boot_init_percpu_data(i, rsp);
	}
2811
	list_add(&rsp->flavors, &rcu_struct_flavors);
2812 2813
}

2814 2815 2816 2817 2818 2819 2820 2821 2822
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
2823
	int n = nr_cpu_ids;
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2874
void __init rcu_init(void)
2875
{
P
Paul E. McKenney 已提交
2876
	int cpu;
2877

2878
	rcu_bootup_announce();
2879
	rcu_init_geometry();
2880 2881
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2882
	__rcu_init_preempt();
2883
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2884 2885 2886 2887 2888 2889 2890

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2891 2892
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2893
	check_cpu_stall_init();
2894 2895
}

2896
#include "rcutree_plugin.h"