rcutree.c 69.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39 40 41 42 43 44 45 46 47 48
#include <asm/atomic.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52

53 54
#include "rcutree.h"

55 56
/* Data structures. */

57
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
58

59 60
#define RCU_STATE_INITIALIZER(structname) { \
	.level = { &structname.node[0] }, \
61 62 63 64
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
65 66
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67
	}, \
68
	.signaled = RCU_GP_IDLE, \
69 70
	.gpnum = -300, \
	.completed = -300, \
71 72
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 74
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
75
	.name = #structname, \
76 77
}

78 79
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
80

81 82
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
83

84 85
static struct rcu_state *rcu_state;

86 87 88
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

89 90 91 92 93
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
94
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
95
static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
96
DEFINE_PER_CPU(char, rcu_cpu_has_work);
97 98
static char rcu_kthreads_spawnable;

99
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
100
static void invoke_rcu_cpu_kthread(void);
101 102 103

#define RCU_KTHREAD_PRIO 1	/* RT priority for per-CPU kthreads. */

104 105 106 107 108 109 110 111 112 113 114 115
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

116 117 118 119 120 121 122 123 124 125
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

126
/*
127
 * Note a quiescent state.  Because we do not need to know
128
 * how many quiescent states passed, just if there was at least
129
 * one since the start of the grace period, this just sets a flag.
130
 */
131
void rcu_sched_qs(int cpu)
132
{
133
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
134

135
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
136 137
	barrier();
	rdp->passed_quiesc = 1;
138 139
}

140
void rcu_bh_qs(int cpu)
141
{
142
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
143

144
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
145 146
	barrier();
	rdp->passed_quiesc = 1;
147
}
148

149 150 151 152 153 154 155 156 157 158
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
 */
void rcu_note_context_switch(int cpu)
{
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
}

159
#ifdef CONFIG_NO_HZ
160 161
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
162
	.dynticks = ATOMIC_INIT(1),
163
};
164 165 166 167 168 169
#endif /* #ifdef CONFIG_NO_HZ */

static int blimit = 10;		/* Maximum callbacks per softirq. */
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

170 171 172 173
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

174
int rcu_cpu_stall_suppress __read_mostly;
175
module_param(rcu_cpu_stall_suppress, int, 0644);
176

177
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
178
static int rcu_pending(int cpu);
179 180

/*
181
 * Return the number of RCU-sched batches processed thus far for debug & stats.
182
 */
183
long rcu_batches_completed_sched(void)
184
{
185
	return rcu_sched_state.completed;
186
}
187
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
188 189 190 191 192 193 194 195 196 197

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

198 199 200 201 202 203 204 205 206
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

232 233 234 235 236 237 238 239 240
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
256
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
		rdp->offline_fqs++;
		return 1;
	}

291 292 293 294
	/* If preemptable RCU, no point in sending reschedule IPI. */
	if (rdp->preemptable)
		return 0;

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
323 324 325 326 327 328 329 330 331
	if (--rdtp->dynticks_nesting) {
		local_irq_restore(flags);
		return;
	}
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
332
	local_irq_restore(flags);
333 334 335 336 337 338 339

	/* If the interrupt queued a callback, get out of dyntick mode. */
	if (in_irq() &&
	    (__get_cpu_var(rcu_sched_data).nxtlist ||
	     __get_cpu_var(rcu_bh_data).nxtlist ||
	     rcu_preempt_needs_cpu(smp_processor_id())))
		set_need_resched();
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
355 356 357 358 359 360 361 362 363
	if (rdtp->dynticks_nesting++) {
		local_irq_restore(flags);
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
364 365 366 367 368 369 370 371 372 373 374 375 376 377
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

378 379
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
380
		return;
381 382 383 384 385 386
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
387 388 389 390 391 392 393 394 395 396 397 398 399
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

400 401
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
402
		return;
403 404 405 406 407
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
408 409 410 411 412 413 414 415 416 417
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
418
	rcu_exit_nohz();
419 420 421 422 423 424 425 426 427 428 429
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
430
	rcu_enter_nohz();
431 432 433 434 435 436 437
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
438
 * is in dynticks idle mode, which is an extended quiescent state.
439 440 441
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
442 443
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
444 445 446 447 448 449 450 451 452 453
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
454 455
	unsigned long curr;
	unsigned long snap;
456

457 458
	curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned long)rdp->dynticks_snap;
459 460 461 462 463 464 465 466 467

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
468
	if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

497
int rcu_cpu_stall_suppress __read_mostly;
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
514
	raw_spin_lock_irqsave(&rnp->lock, flags);
515
	delta = jiffies - rsp->jiffies_stall;
516
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
517
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
518 519 520
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
521 522 523 524 525 526

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
527
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
528

529 530 531 532 533
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
534 535
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
536
	rcu_for_each_leaf_node(rsp, rnp) {
537
		raw_spin_lock_irqsave(&rnp->lock, flags);
538
		rcu_print_task_stall(rnp);
539
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
540
		if (rnp->qsmask == 0)
541
			continue;
542 543 544
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
545
	}
546
	printk("} (detected by %d, t=%ld jiffies)\n",
547
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
548 549
	trigger_all_cpu_backtrace();

550 551 552 553
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

554 555 556 557 558 559 560 561
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

562 563 564 565 566
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
567 568
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
569 570
	trigger_all_cpu_backtrace();

P
Paul E. McKenney 已提交
571
	raw_spin_lock_irqsave(&rnp->lock, flags);
572
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
573 574
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
575
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
576

577 578 579 580 581 582 583 584
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
	long delta;
	struct rcu_node *rnp;

585
	if (rcu_cpu_stall_suppress)
586
		return;
587
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
588
	rnp = rdp->mynode;
589
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
590 591 592 593

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

594
	} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
595 596 597 598 599 600

		/* They had two time units to dump stack, so complain. */
		print_other_cpu_stall(rsp);
	}
}

601 602
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
603
	rcu_cpu_stall_suppress = 1;
604 605 606
	return NOTIFY_DONE;
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

623 624 625 626 627 628 629 630 631
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

632 633 634
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
635 636 637
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
638
 */
639 640 641
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
642 643 644 645 646
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
647
		rdp->gpnum = rnp->gpnum;
648 649 650 651 652
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
			rdp->passed_quiesc = 0;
		} else
			rdp->qs_pending = 0;
653 654 655
	}
}

656 657
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
658 659 660 661 662 663
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
664
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
665 666 667 668
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
669
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
711

712 713
		/*
		 * If we were in an extended quiescent state, we may have
714
		 * missed some grace periods that others CPUs handled on
715
		 * our behalf. Catch up with this state to avoid noting
716 717 718
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
719
		 */
720
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
721 722
			rdp->gpnum = rdp->completed;

723
		/*
724 725
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
726
		 */
727
		if ((rnp->qsmask & rdp->grpmask) == 0)
728
			rdp->qs_pending = 0;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
746
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
747 748 749 750
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
751
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
778 779 780

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
781 782
}

783 784 785 786 787 788 789 790 791 792
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
793
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
794 795
	struct rcu_node *rnp = rcu_get_root(rsp);

796
	if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
797 798
		if (cpu_needs_another_gp(rsp, rdp))
			rsp->fqs_need_gp = 1;
799
		if (rnp->completed == rsp->completed) {
P
Paul E. McKenney 已提交
800
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
801 802
			return;
		}
P
Paul E. McKenney 已提交
803
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
804 805 806 807 808 809 810

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
811
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
812
			rnp->completed = rsp->completed;
P
Paul E. McKenney 已提交
813
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
814 815
		}
		local_irq_restore(flags);
816 817 818 819 820
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
821
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
822 823 824 825 826 827
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
828
		rcu_preempt_check_blocked_tasks(rnp);
829
		rnp->qsmask = rnp->qsmaskinit;
830
		rnp->gpnum = rsp->gpnum;
831
		rnp->completed = rsp->completed;
832
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
833
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
834
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
835
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
836 837 838
		return;
	}

P
Paul E. McKenney 已提交
839
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
840 841 842


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
843
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
844 845

	/*
846 847 848 849 850 851 852 853 854
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
855 856 857 858
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
859 860
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
861
	 */
862
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
863
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
864
		rcu_preempt_check_blocked_tasks(rnp);
865
		rnp->qsmask = rnp->qsmaskinit;
866
		rnp->gpnum = rsp->gpnum;
867 868 869
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
870
		rcu_preempt_boost_start_gp(rnp);
P
Paul E. McKenney 已提交
871
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
872 873
	}

874
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
875
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
876
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
877 878
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
879 880
}

881
/*
P
Paul E. McKenney 已提交
882 883 884 885 886
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
887
 */
P
Paul E. McKenney 已提交
888
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
889
	__releases(rcu_get_root(rsp)->lock)
890
{
891
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
892 893 894 895 896 897

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
898
	rsp->completed = rsp->gpnum;
899
	rsp->signaled = RCU_GP_IDLE;
900 901 902
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

903
/*
P
Paul E. McKenney 已提交
904 905 906 907 908 909
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
910 911
 */
static void
P
Paul E. McKenney 已提交
912 913
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
914 915
	__releases(rnp->lock)
{
916 917
	struct rcu_node *rnp_c;

918 919 920 921 922
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
923
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
924 925 926
			return;
		}
		rnp->qsmask &= ~mask;
927
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
928 929

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
930
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
931 932 933 934 935 936 937 938 939
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
940
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
941
		rnp_c = rnp;
942
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
943
		raw_spin_lock_irqsave(&rnp->lock, flags);
944
		WARN_ON_ONCE(rnp_c->qsmask);
945 946 947 948
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
949
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
950
	 * to clean up and start the next grace period if one is needed.
951
	 */
P
Paul E. McKenney 已提交
952
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
953 954 955
}

/*
P
Paul E. McKenney 已提交
956 957 958 959 960 961 962
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
963 964
 */
static void
P
Paul E. McKenney 已提交
965
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
966 967 968 969 970 971
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
972
	raw_spin_lock_irqsave(&rnp->lock, flags);
973
	if (lastcomp != rnp->completed) {
974 975 976 977 978 979

		/*
		 * Someone beat us to it for this grace period, so leave.
		 * The race with GP start is resolved by the fact that we
		 * hold the leaf rcu_node lock, so that the per-CPU bits
		 * cannot yet be initialized -- so we would simply find our
P
Paul E. McKenney 已提交
980 981
		 * CPU's bit already cleared in rcu_report_qs_rnp() if this
		 * race occurred.
982 983
		 */
		rdp->passed_quiesc = 0;	/* try again later! */
P
Paul E. McKenney 已提交
984
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
985 986 987 988
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
989
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
990 991 992 993 994 995 996 997 998
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
999
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
	if (!rdp->passed_quiesc)
		return;

P
Paul E. McKenney 已提交
1030 1031 1032 1033 1034
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1035 1036 1037 1038
}

#ifdef CONFIG_HOTPLUG_CPU

1039
/*
1040 1041 1042
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1043
 */
1044
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1045 1046
{
	int i;
1047 1048
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1049
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1050
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1051 1052 1053

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1054 1055 1056 1057 1058 1059 1060

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1061 1062 1063 1064 1065 1066
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1067 1068 1069
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1070 1071
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1072 1073 1074 1075 1076
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1077
	int need_report = 0;
1078
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1079
	struct rcu_node *rnp;
1080 1081 1082 1083 1084 1085 1086 1087
	struct task_struct *t;

	/* Stop the CPU's kthread. */
	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t != NULL) {
		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
		kthread_stop(t);
	}
1088 1089

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1090
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1091 1092

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1093
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1094 1095
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1096
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1097 1098
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1099
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1100
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1101 1102
			break;
		}
1103
		if (rnp == rdp->mynode)
1104
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1105
		else
P
Paul E. McKenney 已提交
1106
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1107 1108 1109 1110
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1111 1112 1113
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1114 1115
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1116
	 */
P
Paul E. McKenney 已提交
1117
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1118
	rnp = rdp->mynode;
1119
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1120
		rcu_report_unblock_qs_rnp(rnp, flags);
1121
	else
P
Paul E. McKenney 已提交
1122
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1123 1124
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1125 1126 1127 1128 1129 1130 1131 1132 1133

	/*
	 * If there are no more online CPUs for this rcu_node structure,
	 * kill the rcu_node structure's kthread.  Otherwise, adjust its
	 * affinity.
	 */
	t = rnp->node_kthread_task;
	if (t != NULL &&
	    rnp->qsmaskinit == 0) {
1134
		raw_spin_lock_irqsave(&rnp->lock, flags);
1135
		rnp->node_kthread_task = NULL;
1136 1137 1138
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		kthread_stop(t);
		rcu_stop_boost_kthread(rnp);
1139
	} else
1140
		rcu_node_kthread_setaffinity(rnp, -1);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1151
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1152
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1153
	rcu_preempt_offline_cpu(cpu);
1154 1155 1156 1157
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1158
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1159 1160 1161
{
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1172
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
	int count;

	/* If no callbacks are ready, just return.*/
	if (!cpu_has_callbacks_ready_to_invoke(rdp))
		return;

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1201
		debug_rcu_head_unqueue(list);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		list->func(list);
		list = next;
		if (++count >= rdp->blimit)
			break;
	}

	local_irq_save(flags);

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1212
	rdp->n_cbs_invoked += count;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1227 1228 1229 1230 1231 1232 1233
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1234 1235 1236 1237
	local_irq_restore(flags);

	/* Re-raise the RCU softirq if there are callbacks remaining. */
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1238
		invoke_rcu_cpu_kthread();
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
 * Also schedule the RCU softirq handler.
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
	if (user ||
1253 1254
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1255 1256 1257 1258 1259

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1260
		 * a quiescent state, so note it.
1261 1262
		 *
		 * No memory barrier is required here because both
1263 1264 1265
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1266 1267
		 */

1268 1269
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1270 1271 1272 1273 1274 1275 1276

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1277
		 * critical section, so note it.
1278 1279
		 */

1280
		rcu_bh_qs(cpu);
1281
	}
1282
	rcu_preempt_check_callbacks(cpu);
1283
	if (rcu_pending(cpu))
1284
		invoke_rcu_cpu_kthread();
1285 1286 1287 1288 1289 1290 1291
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1292 1293
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1294
 * The caller must have suppressed start of new grace periods.
1295
 */
1296
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1297 1298 1299 1300 1301
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1302
	struct rcu_node *rnp;
1303

1304
	rcu_for_each_leaf_node(rsp, rnp) {
1305
		mask = 0;
P
Paul E. McKenney 已提交
1306
		raw_spin_lock_irqsave(&rnp->lock, flags);
1307
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1308
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1309
			return;
1310
		}
1311
		if (rnp->qsmask == 0) {
1312
			rcu_initiate_boost(rnp);
P
Paul E. McKenney 已提交
1313
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314 1315
			continue;
		}
1316
		cpu = rnp->grplo;
1317
		bit = 1;
1318
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1319 1320
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1321 1322
				mask |= bit;
		}
1323
		if (mask != 0) {
1324

P
Paul E. McKenney 已提交
1325 1326
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1327 1328
			continue;
		}
P
Paul E. McKenney 已提交
1329
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330
	}
1331 1332 1333 1334 1335
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	if (rnp->qsmask == 0)
		rcu_initiate_boost(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1347
	if (!rcu_gp_in_progress(rsp))
1348
		return;  /* No grace period in progress, nothing to force. */
P
Paul E. McKenney 已提交
1349
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1350 1351 1352
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
		return;	/* Someone else is already on the job. */
	}
1353
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1354
		goto unlock_fqs_ret; /* no emergency and done recently. */
1355
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1356
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1357
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1358
	if(!rcu_gp_in_progress(rsp)) {
1359
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1360
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1361
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1362
	}
1363
	rsp->fqs_active = 1;
1364
	switch (rsp->signaled) {
1365
	case RCU_GP_IDLE:
1366 1367
	case RCU_GP_INIT:

1368
		break; /* grace period idle or initializing, ignore. */
1369 1370 1371 1372 1373

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1374 1375
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1376
		/* Record dyntick-idle state. */
1377
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1378
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1379
		if (rcu_gp_in_progress(rsp))
1380
			rsp->signaled = RCU_FORCE_QS;
1381
		break;
1382 1383 1384 1385

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1386
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1387
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1388 1389 1390

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1391
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1392
		break;
1393
	}
1394
	rsp->fqs_active = 0;
1395
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1396
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1397 1398 1399 1400
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
		return;
	}
P
Paul E. McKenney 已提交
1401
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1402
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1403
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
 * This does the RCU processing work from softirq context for the
 * specified rcu_state and rcu_data structures.  This may be called
 * only from the CPU to whom the rdp belongs.
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1425 1426
	WARN_ON_ONCE(rdp->beenonline == 0);

1427 1428 1429 1430
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1431
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1445
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1446 1447 1448 1449
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1450
	rcu_do_batch(rsp, rdp);
1451 1452 1453 1454 1455
}

/*
 * Do softirq processing for the current CPU.
 */
1456
static void rcu_process_callbacks(void)
1457
{
1458 1459
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1460
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1461
	rcu_preempt_process_callbacks();
1462 1463 1464

	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
	rcu_needs_cpu_flush();
1465 1466
}

1467 1468 1469 1470 1471 1472
/*
 * Wake up the current CPU's kthread.  This replaces raise_softirq()
 * in earlier versions of RCU.  Note that because we are running on
 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
 * cannot disappear out from under us.
 */
1473
static void invoke_rcu_cpu_kthread(void)
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
{
	unsigned long flags;
	wait_queue_head_t *q;
	int cpu;

	local_irq_save(flags);
	cpu = smp_processor_id();
	per_cpu(rcu_cpu_has_work, cpu) = 1;
	if (per_cpu(rcu_cpu_kthread_task, cpu) == NULL) {
		local_irq_restore(flags);
		return;
	}
	q = &per_cpu(rcu_cpu_wq, cpu);
	wake_up(q);
	local_irq_restore(flags);
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/*
 * Wake up the specified per-rcu_node-structure kthread.
 * The caller must hold ->lock.
 */
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
	struct task_struct *t;

	t = rnp->node_kthread_task;
	if (t != NULL)
		wake_up_process(t);
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * Set the specified CPU's kthread to run RT or not, as specified by
 * the to_rt argument.  The CPU-hotplug locks are held, so the task
 * is not going away.
 */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
	int policy;
	struct sched_param sp;
	struct task_struct *t;

	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t == NULL)
		return;
	if (to_rt) {
		policy = SCHED_FIFO;
		sp.sched_priority = RCU_KTHREAD_PRIO;
	} else {
		policy = SCHED_NORMAL;
		sp.sched_priority = 0;
	}
	sched_setscheduler_nocheck(t, policy, &sp);
}

1528 1529 1530
/*
 * Timer handler to initiate the waking up of per-CPU kthreads that
 * have yielded the CPU due to excess numbers of RCU callbacks.
1531 1532
 * We wake up the per-rcu_node kthread, which in turn will wake up
 * the booster kthread.
1533 1534 1535 1536
 */
static void rcu_cpu_kthread_timer(unsigned long arg)
{
	unsigned long flags;
1537
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1538 1539 1540 1541
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->wakemask |= rdp->grpmask;
1542
	invoke_rcu_node_kthread(rnp);
1543 1544 1545 1546 1547 1548 1549 1550 1551
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Drop to non-real-time priority and yield, but only after posting a
 * timer that will cause us to regain our real-time priority if we
 * remain preempted.  Either way, we restore our real-time priority
 * before returning.
 */
1552
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1553 1554 1555 1556
{
	struct sched_param sp;
	struct timer_list yield_timer;

1557
	setup_timer_on_stack(&yield_timer, f, arg);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	mod_timer(&yield_timer, jiffies + 2);
	sp.sched_priority = 0;
	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
	schedule();
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
	del_timer(&yield_timer);
}

/*
 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
 * This can happen while the corresponding CPU is either coming online
 * or going offline.  We cannot wait until the CPU is fully online
 * before starting the kthread, because the various notifier functions
 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
 * the corresponding CPU is online.
 *
 * Return 1 if the kthread needs to stop, 0 otherwise.
 *
 * Caller must disable bh.  This function can momentarily enable it.
 */
static int rcu_cpu_kthread_should_stop(int cpu)
{
	while (cpu_is_offline(cpu) ||
	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
	       smp_processor_id() != cpu) {
		if (kthread_should_stop())
			return 1;
		local_bh_enable();
		schedule_timeout_uninterruptible(1);
		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
			set_cpus_allowed_ptr(current, cpumask_of(cpu));
		local_bh_disable();
	}
	return 0;
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
 * earlier RCU softirq.
 */
static int rcu_cpu_kthread(void *arg)
{
	int cpu = (int)(long)arg;
	unsigned long flags;
	int spincnt = 0;
1604
	unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1605 1606 1607 1608 1609
	wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
	char work;
	char *workp = &per_cpu(rcu_cpu_has_work, cpu);

	for (;;) {
1610
		*statusp = RCU_KTHREAD_WAITING;
1611 1612 1613 1614 1615 1616 1617
		wait_event_interruptible(*wqp,
					 *workp != 0 || kthread_should_stop());
		local_bh_disable();
		if (rcu_cpu_kthread_should_stop(cpu)) {
			local_bh_enable();
			break;
		}
1618
		*statusp = RCU_KTHREAD_RUNNING;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		local_irq_save(flags);
		work = *workp;
		*workp = 0;
		local_irq_restore(flags);
		if (work)
			rcu_process_callbacks();
		local_bh_enable();
		if (*workp != 0)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
1631
			*statusp = RCU_KTHREAD_YIELDING;
1632
			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1633 1634 1635
			spincnt = 0;
		}
	}
1636
	*statusp = RCU_KTHREAD_STOPPED;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	return 0;
}

/*
 * Spawn a per-CPU kthread, setting up affinity and priority.
 * Because the CPU hotplug lock is held, no other CPU will be attempting
 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
 * attempting to access it during boot, but the locking in kthread_bind()
 * will enforce sufficient ordering.
 */
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
		return 0;
	t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
	if (IS_ERR(t))
		return PTR_ERR(t);
	kthread_bind(t, cpu);
	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
	per_cpu(rcu_cpu_kthread_task, cpu) = t;
	wake_up_process(t);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	return 0;
}

/*
 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
 * kthreads when needed.  We ignore requests to wake up kthreads
 * for offline CPUs, which is OK because force_quiescent_state()
 * takes care of this case.
 */
static int rcu_node_kthread(void *arg)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp = (struct rcu_node *)arg;
	struct sched_param sp;
	struct task_struct *t;

	for (;;) {
1683
		rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1684 1685 1686 1687
		wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0 ||
						       kthread_should_stop());
		if (kthread_should_stop())
			break;
1688
		rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1689 1690 1691
		raw_spin_lock_irqsave(&rnp->lock, flags);
		mask = rnp->wakemask;
		rnp->wakemask = 0;
1692
		rcu_initiate_boost(rnp);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
			if ((mask & 0x1) == 0)
				continue;
			preempt_disable();
			t = per_cpu(rcu_cpu_kthread_task, cpu);
			if (!cpu_online(cpu) || t == NULL) {
				preempt_enable();
				continue;
			}
			per_cpu(rcu_cpu_has_work, cpu) = 1;
			sp.sched_priority = RCU_KTHREAD_PRIO;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
			preempt_enable();
		}
	}
1709
	rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1710 1711 1712 1713 1714
	return 0;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1715 1716
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
1717 1718 1719 1720
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
1721
 */
1722
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1723 1724 1725 1726 1727
{
	cpumask_var_t cm;
	int cpu;
	unsigned long mask = rnp->qsmaskinit;

1728
	if (rnp->node_kthread_task == NULL || mask == 0)
1729 1730 1731 1732 1733
		return;
	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	cpumask_clear(cm);
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1734
		if ((mask & 0x1) && cpu != outgoingcpu)
1735
			cpumask_set_cpu(cpu, cm);
1736 1737 1738 1739 1740 1741
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
1742
	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1743
	rcu_boost_kthread_setaffinity(rnp, cm);
1744 1745 1746 1747 1748
	free_cpumask_var(cm);
}

/*
 * Spawn a per-rcu_node kthread, setting priority and affinity.
1749 1750 1751
 * Called during boot before online/offline can happen, or, if
 * during runtime, with the main CPU-hotplug locks held.  So only
 * one of these can be executing at a time.
1752 1753 1754 1755
 */
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
						struct rcu_node *rnp)
{
1756
	unsigned long flags;
1757 1758 1759 1760 1761
	int rnp_index = rnp - &rsp->node[0];
	struct sched_param sp;
	struct task_struct *t;

	if (!rcu_kthreads_spawnable ||
1762
	    rnp->qsmaskinit == 0)
1763
		return 0;
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	if (rnp->node_kthread_task == NULL) {
		t = kthread_create(rcu_node_kthread, (void *)rnp,
				   "rcun%d", rnp_index);
		if (IS_ERR(t))
			return PTR_ERR(t);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rnp->node_kthread_task = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		wake_up_process(t);
		sp.sched_priority = 99;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	}
	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	int cpu;
	struct rcu_node *rnp;

	rcu_kthreads_spawnable = 1;
	for_each_possible_cpu(cpu) {
		init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
		per_cpu(rcu_cpu_has_work, cpu) = 0;
		if (cpu_online(cpu))
			(void)rcu_spawn_one_cpu_kthread(cpu);
	}
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	rnp = rcu_get_root(rcu_state);
	init_waitqueue_head(&rnp->node_wq);
	rcu_init_boost_waitqueue(rnp);
	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	if (NUM_RCU_NODES > 1)
		rcu_for_each_leaf_node(rcu_state, rnp) {
			init_waitqueue_head(&rnp->node_wq);
			rcu_init_boost_waitqueue(rnp);
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
		}
1804 1805 1806 1807
	return 0;
}
early_initcall(rcu_spawn_kthreads);

1808 1809 1810 1811 1812 1813 1814
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1815
	debug_rcu_head_queue(head);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1828
	rdp = this_cpu_ptr(rsp->rda);
1829 1830 1831 1832 1833

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;

1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
	if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1863
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1864 1865 1866 1867 1868
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1869
 * Queue an RCU-sched callback for invocation after a grace period.
1870
 */
1871
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1872
{
1873
	__call_rcu(head, func, &rcu_sched_state);
1874
}
1875
EXPORT_SYMBOL_GPL(call_rcu_sched);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1916
	init_rcu_head_on_stack(&rcu.head);
1917 1918 1919 1920 1921
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_sched(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1922
	destroy_rcu_head_on_stack(&rcu.head);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	struct rcu_synchronize rcu;

	if (rcu_blocking_is_gp())
		return;

1942
	init_rcu_head_on_stack(&rcu.head);
1943 1944 1945 1946 1947
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu_bh(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
1948
	destroy_rcu_head_on_stack(&rcu.head);
1949 1950 1951
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1952 1953 1954 1955 1956 1957 1958 1959 1960
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1961 1962
	struct rcu_node *rnp = rdp->mynode;

1963 1964 1965 1966 1967 1968
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1969
	if (rdp->qs_pending && !rdp->passed_quiesc) {
1970 1971 1972 1973 1974 1975

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1976
		rdp->n_rp_qs_pending++;
1977 1978 1979 1980
		if (!rdp->preemptable &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1981 1982
	} else if (rdp->qs_pending && rdp->passed_quiesc) {
		rdp->n_rp_report_qs++;
1983
		return 1;
1984
	}
1985 1986

	/* Does this CPU have callbacks ready to invoke? */
1987 1988
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1989
		return 1;
1990
	}
1991 1992

	/* Has RCU gone idle with this CPU needing another grace period? */
1993 1994
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1995
		return 1;
1996
	}
1997 1998

	/* Has another RCU grace period completed?  */
1999
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2000
		rdp->n_rp_gp_completed++;
2001
		return 1;
2002
	}
2003 2004

	/* Has a new RCU grace period started? */
2005
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2006
		rdp->n_rp_gp_started++;
2007
		return 1;
2008
	}
2009 2010

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2011
	if (rcu_gp_in_progress(rsp) &&
2012
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2013
		rdp->n_rp_need_fqs++;
2014
		return 1;
2015
	}
2016 2017

	/* nothing to do */
2018
	rdp->n_rp_need_nothing++;
2019 2020 2021 2022 2023 2024 2025 2026
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2027
static int rcu_pending(int cpu)
2028
{
2029
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2030 2031
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2032 2033 2034 2035 2036
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2037
 * 1 if so.
2038
 */
2039
static int rcu_needs_cpu_quick_check(int cpu)
2040 2041
{
	/* RCU callbacks either ready or pending? */
2042
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2043 2044
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
2045 2046
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2077 2078
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2079 2080 2081
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
2082
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2083 2084 2085 2086 2087 2088 2089 2090 2091
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
2092 2093 2094
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2109
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2110 2111 2112 2113 2114 2115 2116 2117
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2118
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2119 2120 2121
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2122
/*
2123
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2124
 */
2125 2126
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2127 2128 2129
{
	unsigned long flags;
	int i;
2130
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2131 2132 2133
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2134
	raw_spin_lock_irqsave(&rnp->lock, flags);
2135 2136 2137 2138 2139 2140 2141 2142 2143
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
P
Paul E. McKenney 已提交
2144
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2145 2146 2147 2148 2149 2150 2151
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2152
 */
2153
static void __cpuinit
2154
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
2155 2156 2157
{
	unsigned long flags;
	unsigned long mask;
2158
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2159 2160 2161
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2162
	raw_spin_lock_irqsave(&rnp->lock, flags);
2163 2164 2165
	rdp->passed_quiesc = 0;  /* We could be racing with new GP, */
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
2166
	rdp->preemptable = preemptable;
2167 2168
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2169
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
2170
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2171 2172 2173 2174 2175 2176 2177

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2178
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2179 2180 2181 2182 2183 2184

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2185
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2186 2187
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2188 2189 2190 2191 2192
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
			rdp->passed_quiesc_completed = rnp->completed - 1;
		}
P
Paul E. McKenney 已提交
2193
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2194 2195 2196
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2197
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2198 2199 2200 2201
}

static void __cpuinit rcu_online_cpu(int cpu)
{
2202 2203 2204
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2205 2206
}

2207 2208
static void __cpuinit rcu_online_kthreads(int cpu)
{
2209
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2210 2211 2212 2213 2214 2215
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
	if (rcu_kthreads_spawnable) {
		(void)rcu_spawn_one_cpu_kthread(cpu);
		if (rnp->node_kthread_task == NULL)
2216
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2217 2218 2219
	}
}

2220
/*
2221
 * Handle CPU online/offline notification events.
2222
 */
2223 2224
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2225 2226
{
	long cpu = (long)hcpu;
2227
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2228
	struct rcu_node *rnp = rdp->mynode;
2229 2230 2231 2232 2233

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		rcu_online_cpu(cpu);
2234 2235 2236
		rcu_online_kthreads(cpu);
		break;
	case CPU_ONLINE:
2237 2238
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2239
		rcu_cpu_kthread_setrt(cpu, 1);
2240 2241 2242
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2243
		rcu_cpu_kthread_setrt(cpu, 0);
2244
		break;
2245 2246 2247
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2248 2249 2250
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2251
		 */
2252 2253 2254
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
2255
		break;
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2283 2284 2285 2286 2287 2288 2289 2290 2291
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2292
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2293
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2294
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2315 2316
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2317
{
2318 2319 2320 2321
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2322 2323 2324 2325 2326
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2327 2328
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2341
			raw_spin_lock_init(&rnp->lock);
2342 2343
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2344
			rnp->gpnum = 0;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2362
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2363 2364
		}
	}
2365

2366
	rsp->rda = rda;
2367 2368
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2369
		while (i > rnp->grphi)
2370
			rnp++;
2371
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2372 2373
		rcu_boot_init_percpu_data(i, rsp);
	}
2374 2375
}

2376
void __init rcu_init(void)
2377
{
P
Paul E. McKenney 已提交
2378
	int cpu;
2379

2380
	rcu_bootup_announce();
2381 2382
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2383
	__rcu_init_preempt();
2384 2385 2386 2387 2388 2389 2390

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2391 2392
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2393
	check_cpu_stall_init();
2394 2395
}

2396
#include "rcutree_plugin.h"