rcutree.c 88.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64

65
#define RCU_STATE_INITIALIZER(sname, cr) { \
66
	.level = { &sname##_state.node[0] }, \
67
	.call = cr, \
68
	.fqs_state = RCU_GP_IDLE, \
69 70
	.gpnum = -300, \
	.completed = -300, \
71 72 73
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
74
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
75 76
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
	.name = #sname, \
77 78
}

79 80
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82

83
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85

86
static struct rcu_state *rcu_state;
87
LIST_HEAD(rcu_struct_flavors);
88

89 90 91 92 93 94 95 96 97 98 99 100 101
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
module_param(rcu_fanout_leaf, int, 0);
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

102 103 104 105 106 107 108 109 110
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
111 112 113
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

128 129
#ifdef CONFIG_RCU_BOOST

130 131 132 133 134
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
135
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
136
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
137
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138
DEFINE_PER_CPU(char, rcu_cpu_has_work);
139

140 141
#endif /* #ifdef CONFIG_RCU_BOOST */

142
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143 144
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145

146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

158 159 160 161 162 163 164 165 166 167
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

168
/*
169
 * Note a quiescent state.  Because we do not need to know
170
 * how many quiescent states passed, just if there was at least
171
 * one since the start of the grace period, this just sets a flag.
172
 * The caller must have disabled preemption.
173
 */
174
void rcu_sched_qs(int cpu)
175
{
176
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177

178
	rdp->passed_quiesce_gpnum = rdp->gpnum;
179
	barrier();
180
	if (rdp->passed_quiesce == 0)
181
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182
	rdp->passed_quiesce = 1;
183 184
}

185
void rcu_bh_qs(int cpu)
186
{
187
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188

189
	rdp->passed_quiesce_gpnum = rdp->gpnum;
190
	barrier();
191
	if (rdp->passed_quiesce == 0)
192
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
193
	rdp->passed_quiesce = 1;
194
}
195

196 197 198
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
199
 * The caller must have disabled preemption.
200 201 202
 */
void rcu_note_context_switch(int cpu)
{
203
	trace_rcu_utilization("Start context switch");
204
	rcu_sched_qs(cpu);
205
	rcu_preempt_note_context_switch(cpu);
206
	trace_rcu_utilization("End context switch");
207
}
208
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
209

210
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
211
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
212
	.dynticks = ATOMIC_INIT(1),
213
};
214

215
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
216 217 218
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

219 220 221 222
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

223 224 225
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

226
module_param(rcu_cpu_stall_suppress, int, 0644);
227
module_param(rcu_cpu_stall_timeout, int, 0644);
228

229
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
230
static int rcu_pending(int cpu);
231 232

/*
233
 * Return the number of RCU-sched batches processed thus far for debug & stats.
234
 */
235
long rcu_batches_completed_sched(void)
236
{
237
	return rcu_sched_state.completed;
238
}
239
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
240 241 242 243 244 245 246 247 248 249

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

250 251 252 253 254 255 256 257 258
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

284 285 286 287 288 289 290 291 292
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
308 309 310
	return *rdp->nxttail[RCU_DONE_TAIL +
			     ACCESS_ONCE(rsp->completed) != rdp->completed] &&
	       !rcu_gp_in_progress(rsp);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
335 336 337 338 339
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
340
	 */
341 342
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
343
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
344 345 346 347 348 349
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

350 351 352 353 354 355 356
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
357
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
358
{
359
	trace_rcu_dyntick("Start", oldval, 0);
360
	if (!is_idle_task(current)) {
361 362
		struct task_struct *idle = idle_task(smp_processor_id());

363
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
364
		ftrace_dump(DUMP_ORIG);
365 366 367
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
368
	}
369
	rcu_prepare_for_idle(smp_processor_id());
370 371 372 373 374
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
375 376 377 378 379 380 381 382 383 384 385

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
386
}
387 388

/**
389
 * rcu_idle_enter - inform RCU that current CPU is entering idle
390
 *
391
 * Enter idle mode, in other words, -leave- the mode in which RCU
392
 * read-side critical sections can occur.  (Though RCU read-side
393 394 395 396 397 398
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
399
 */
400
void rcu_idle_enter(void)
401 402
{
	unsigned long flags;
403
	long long oldval;
404 405 406 407
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
408
	oldval = rdtp->dynticks_nesting;
409 410 411 412 413
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
414
	rcu_idle_enter_common(rdtp, oldval);
415 416
	local_irq_restore(flags);
}
417
EXPORT_SYMBOL_GPL(rcu_idle_enter);
418

419 420 421 422 423 424
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
425
 *
426 427 428 429 430 431 432 433
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
434
 */
435
void rcu_irq_exit(void)
436 437
{
	unsigned long flags;
438
	long long oldval;
439 440 441 442
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
443
	oldval = rdtp->dynticks_nesting;
444 445
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
446 447 448 449
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
450 451 452 453 454 455 456 457 458 459 460 461
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
462 463 464 465 466
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
467
	rcu_cleanup_after_idle(smp_processor_id());
468
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
469
	if (!is_idle_task(current)) {
470 471
		struct task_struct *idle = idle_task(smp_processor_id());

472 473
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
474
		ftrace_dump(DUMP_ORIG);
475 476 477
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
478 479 480 481 482 483 484 485 486
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
487
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
488
 * allow for the possibility of usermode upcalls messing up our count
489 490 491 492 493 494 495 496 497 498 499 500
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
501 502 503 504 505
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
506 507 508
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
509
EXPORT_SYMBOL_GPL(rcu_idle_exit);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
541 542 543 544
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
545 546 547 548 549 550 551 552 553 554 555 556 557 558
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

559 560
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
561
		return;
562 563 564 565 566 567
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
568 569 570 571 572 573 574 575 576 577 578 579 580
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

581 582
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
583
		return;
584 585 586 587 588
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
589 590 591
}

/**
592
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
593
 *
594
 * If the current CPU is in its idle loop and is neither in an interrupt
595
 * or NMI handler, return true.
596
 */
597
int rcu_is_cpu_idle(void)
598
{
599 600 601 602 603 604
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
605
}
606
EXPORT_SYMBOL(rcu_is_cpu_idle);
607

608
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
609 610 611 612 613 614 615

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
616 617 618 619 620 621 622 623 624 625 626
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
627 628 629 630 631 632
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
633 634
	struct rcu_data *rdp;
	struct rcu_node *rnp;
635 636 637 638 639
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
640 641 642
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
643 644 645 646 647 648
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

649
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
650

651
/**
652
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
653
 *
654 655 656
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
657
 */
658
int rcu_is_cpu_rrupt_from_idle(void)
659
{
660
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
661 662 663 664 665
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
666
 * is in dynticks idle mode, which is an extended quiescent state.
667 668 669
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
670
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
671
	return (rdp->dynticks_snap & 0x1) == 0;
672 673 674 675 676 677 678 679 680 681
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
682 683
	unsigned int curr;
	unsigned int snap;
684

685 686
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
687 688 689 690 691 692 693 694 695

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
696
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
697
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
698 699 700 701 702 703 704 705
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

724 725 726
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
727
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
728 729 730 731 732 733 734
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
735
	int ndetected = 0;
736 737 738 739
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
740
	raw_spin_lock_irqsave(&rnp->lock, flags);
741
	delta = jiffies - rsp->jiffies_stall;
742
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
743
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
744 745
		return;
	}
746
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
747
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
748

749 750 751 752 753
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
754
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
755
	       rsp->name);
756
	print_cpu_stall_info_begin();
757
	rcu_for_each_leaf_node(rsp, rnp) {
758
		raw_spin_lock_irqsave(&rnp->lock, flags);
759
		ndetected += rcu_print_task_stall(rnp);
760
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
761
		if (rnp->qsmask == 0)
762
			continue;
763
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
764
			if (rnp->qsmask & (1UL << cpu)) {
765
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
766 767
				ndetected++;
			}
768
	}
769 770 771 772 773 774 775

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
776
	ndetected += rcu_print_task_stall(rnp);
777 778 779 780
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
781
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
782 783 784
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
785
		dump_stack();
786

787 788 789 790
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

791 792 793 794 795 796 797 798
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

799 800 801 802 803
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
804 805 806 807 808
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
809 810
	if (!trigger_all_cpu_backtrace())
		dump_stack();
811

P
Paul E. McKenney 已提交
812
	raw_spin_lock_irqsave(&rnp->lock, flags);
813
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
814 815
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
816
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
817

818 819 820 821 822
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
823 824
	unsigned long j;
	unsigned long js;
825 826
	struct rcu_node *rnp;

827
	if (rcu_cpu_stall_suppress)
828
		return;
829 830
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
831
	rnp = rdp->mynode;
832
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
833 834 835 836

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

837 838
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
839

840
		/* They had a few time units to dump stack, so complain. */
841 842 843 844
		print_other_cpu_stall(rsp);
	}
}

845 846
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
847
	rcu_cpu_stall_suppress = 1;
848 849 850
	return NOTIFY_DONE;
}

851 852 853 854 855 856 857 858 859 860 861
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
862 863 864 865
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
866 867
}

868 869 870 871 872 873 874 875 876
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

877 878 879
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
880 881 882
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
883
 */
884 885 886
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
887 888 889 890 891
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
892
		rdp->gpnum = rnp->gpnum;
893
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
894 895
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
896
			rdp->passed_quiesce = 0;
897
		} else {
898
			rdp->qs_pending = 0;
899
		}
900
		zero_cpu_stall_ticks(rdp);
901 902 903
	}
}

904 905
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
906 907 908 909 910 911
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
912
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
913 914 915 916
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
917
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

940 941 942 943 944 945 946 947 948 949 950 951
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
971
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
972

973 974
		/*
		 * If we were in an extended quiescent state, we may have
975
		 * missed some grace periods that others CPUs handled on
976
		 * our behalf. Catch up with this state to avoid noting
977 978 979
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
980
		 */
981
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
982 983
			rdp->gpnum = rdp->completed;

984
		/*
985 986
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
987
		 */
988
		if ((rnp->qsmask & rdp->grpmask) == 0)
989
			rdp->qs_pending = 0;
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1007
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1008 1009 1010 1011
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1012
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

1026 1027
	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1028 1029
}

1030 1031 1032
/*
 * Body of kthread that handles grace periods.
 */
1033
static int __noreturn rcu_gp_kthread(void *arg)
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
{
	struct rcu_data *rdp;
	struct rcu_node *rnp;
	struct rcu_state *rsp = arg;

	for (;;) {

		/* Handle grace-period start. */
		rnp = rcu_get_root(rsp);
		for (;;) {
			wait_event_interruptible(rsp->gp_wq, rsp->gp_flags);
			if (rsp->gp_flags)
				break;
			flush_signals(current);
		}
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags = 0;
		rdp = this_cpu_ptr(rsp->rda);

		if (rcu_gp_in_progress(rsp)) {
			/*
			 * A grace period is already in progress, so
			 * don't start another one.
			 */
			raw_spin_unlock_irq(&rnp->lock);
1059
			cond_resched();
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
			continue;
		}

		if (rsp->fqs_active) {
			/*
			 * We need a grace period, but force_quiescent_state()
			 * is running.  Tell it to start one on our behalf.
			 */
			rsp->fqs_need_gp = 1;
			raw_spin_unlock_irq(&rnp->lock);
1070
			cond_resched();
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
			continue;
		}

		/* Advance to a new grace period and initialize state. */
		rsp->gpnum++;
		trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
		WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
		rsp->fqs_state = RCU_GP_INIT; /* Stop force_quiescent_state. */
		rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
		record_gp_stall_check_time(rsp);
1081
		raw_spin_unlock_irq(&rnp->lock);
1082 1083

		/* Exclude any concurrent CPU-hotplug operations. */
1084
		get_online_cpus();
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

		/*
		 * Set the quiescent-state-needed bits in all the rcu_node
		 * structures for all currently online CPUs in breadth-first
		 * order, starting from the root rcu_node structure.
		 * This operation relies on the layout of the hierarchy
		 * within the rsp->node[] array.  Note that other CPUs will
		 * access only the leaves of the hierarchy, which still
		 * indicate that no grace period is in progress, at least
		 * until the corresponding leaf node has been initialized.
		 * In addition, we have excluded CPU-hotplug operations.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
1098
			raw_spin_lock_irq(&rnp->lock);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
			rcu_preempt_check_blocked_tasks(rnp);
			rnp->qsmask = rnp->qsmaskinit;
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
			if (rnp == rdp->mynode)
				rcu_start_gp_per_cpu(rsp, rnp, rdp);
			rcu_preempt_boost_start_gp(rnp);
			trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
						    rnp->level, rnp->grplo,
						    rnp->grphi, rnp->qsmask);
1109 1110
			raw_spin_unlock_irq(&rnp->lock);
			cond_resched();
1111 1112 1113
		}

		rnp = rcu_get_root(rsp);
1114
		raw_spin_lock_irq(&rnp->lock);
1115 1116
		/* force_quiescent_state() now OK. */
		rsp->fqs_state = RCU_SIGNAL_INIT;
1117 1118
		raw_spin_unlock_irq(&rnp->lock);
		put_online_cpus();
1119 1120 1121
	}
}

1122 1123 1124 1125 1126
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1127 1128 1129 1130
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1131 1132 1133 1134 1135
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1136
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1137 1138
	struct rcu_node *rnp = rcu_get_root(rsp);

1139
	if (!rsp->gp_kthread ||
1140 1141
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
1142 1143 1144
		 * Either we have not yet spawned the grace-period
		 * task or this CPU does not need another grace period.
		 * Either way, don't start a new grace period.
1145 1146 1147 1148
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1149

1150 1151 1152
	rsp->gp_flags = 1;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	wake_up(&rsp->gp_wq);
1153 1154
}

1155
/*
P
Paul E. McKenney 已提交
1156 1157 1158 1159 1160
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1161
 */
P
Paul E. McKenney 已提交
1162
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1163
	__releases(rcu_get_root(rsp)->lock)
1164
{
1165
	unsigned long gp_duration;
1166 1167
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1168

1169
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1170 1171 1172 1173 1174 1175

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1176 1177 1178
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1213
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1214
	rsp->fqs_state = RCU_GP_IDLE;
1215 1216 1217
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1218
/*
P
Paul E. McKenney 已提交
1219 1220 1221 1222 1223 1224
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1225 1226
 */
static void
P
Paul E. McKenney 已提交
1227 1228
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1229 1230
	__releases(rnp->lock)
{
1231 1232
	struct rcu_node *rnp_c;

1233 1234 1235 1236 1237
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1238
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1239 1240 1241
			return;
		}
		rnp->qsmask &= ~mask;
1242 1243 1244 1245
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1246
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1247 1248

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1249
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1250 1251 1252 1253 1254 1255 1256 1257 1258
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1259
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260
		rnp_c = rnp;
1261
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1262
		raw_spin_lock_irqsave(&rnp->lock, flags);
1263
		WARN_ON_ONCE(rnp_c->qsmask);
1264 1265 1266 1267
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1268
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1269
	 * to clean up and start the next grace period if one is needed.
1270
	 */
P
Paul E. McKenney 已提交
1271
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1272 1273 1274
}

/*
P
Paul E. McKenney 已提交
1275 1276 1277 1278 1279 1280 1281
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1282 1283
 */
static void
1284
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1285 1286 1287 1288 1289 1290
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1291
	raw_spin_lock_irqsave(&rnp->lock, flags);
1292
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1293 1294

		/*
1295 1296 1297 1298
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1299
		 */
1300
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1301
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1302 1303 1304 1305
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1306
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1307 1308 1309 1310 1311 1312 1313 1314 1315
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1316
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1344
	if (!rdp->passed_quiesce)
1345 1346
		return;

P
Paul E. McKenney 已提交
1347 1348 1349 1350
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1351
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1352 1353 1354 1355
}

#ifdef CONFIG_HOTPLUG_CPU

1356
/*
1357 1358 1359
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1360
 */
1361 1362 1363
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1364
{
1365 1366 1367 1368 1369
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1370
	if (rdp->nxtlist != NULL) {
1371 1372 1373
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1374
		rdp->qlen_lazy = 0;
1375
		ACCESS_ONCE(rdp->qlen) = 0;
1376 1377 1378
	}

	/*
1379 1380 1381 1382 1383 1384 1385
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1386
	 */
1387 1388 1389 1390
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1391 1392 1393
	}

	/*
1394 1395 1396
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1397
	 */
1398
	if (rdp->nxtlist != NULL) {
1399 1400
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1401
	}
1402

1403
	/* Finally, initialize the rcu_data structure's list to empty.  */
1404
	init_callback_list(rdp);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1416
	/*
1417 1418 1419 1420 1421
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1422
	 */
1423 1424 1425 1426 1427 1428 1429 1430
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1431 1432
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1472 1473 1474
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1475 1476 1477
}

/*
1478
 * The CPU has been completely removed, and some other CPU is reporting
1479 1480 1481
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1482 1483
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1484
 */
1485
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1486
{
1487 1488 1489
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1490
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1491
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1492

1493
	/* Adjust any no-longer-needed kthreads. */
1494 1495
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1496

1497
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1498 1499 1500 1501

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1502 1503 1504 1505
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1538 1539 1540
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1541 1542 1543 1544
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1545 1546 1547 1548
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1549
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1550 1551 1552
{
}

1553
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1554 1555 1556 1557 1558 1559 1560 1561 1562
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1563
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1564 1565 1566
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1567
	int bl, count, count_lazy, i;
1568 1569

	/* If no callbacks are ready, just return.*/
1570
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1571
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1572 1573 1574
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1575
		return;
1576
	}
1577 1578 1579 1580 1581 1582

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1583
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1584
	bl = rdp->blimit;
1585
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1586 1587 1588 1589
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1590 1591 1592
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1593 1594 1595
	local_irq_restore(flags);

	/* Invoke callbacks. */
1596
	count = count_lazy = 0;
1597 1598 1599
	while (list) {
		next = list->next;
		prefetch(next);
1600
		debug_rcu_head_unqueue(list);
1601 1602
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1603
		list = next;
1604 1605 1606 1607
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1608 1609 1610 1611
			break;
	}

	local_irq_save(flags);
1612 1613 1614
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1615 1616 1617 1618 1619

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1620 1621 1622
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1623 1624 1625
			else
				break;
	}
1626 1627
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1628
	ACCESS_ONCE(rdp->qlen) -= count;
1629
	rdp->n_cbs_invoked += count;
1630 1631 1632 1633 1634

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1635 1636 1637 1638 1639 1640
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1641
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1642

1643 1644
	local_irq_restore(flags);

1645
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1646
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1647
		invoke_rcu_core();
1648 1649 1650 1651 1652
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1653
 * Also schedule RCU core processing.
1654
 *
1655
 * This function must be called from hardirq context.  It is normally
1656 1657 1658 1659 1660
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1661
	trace_rcu_utilization("Start scheduler-tick");
1662
	increment_cpu_stall_ticks();
1663
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1664 1665 1666 1667 1668

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1669
		 * a quiescent state, so note it.
1670 1671
		 *
		 * No memory barrier is required here because both
1672 1673 1674
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1675 1676
		 */

1677 1678
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1679 1680 1681 1682 1683 1684 1685

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1686
		 * critical section, so note it.
1687 1688
		 */

1689
		rcu_bh_qs(cpu);
1690
	}
1691
	rcu_preempt_check_callbacks(cpu);
1692
	if (rcu_pending(cpu))
1693
		invoke_rcu_core();
1694
	trace_rcu_utilization("End scheduler-tick");
1695 1696 1697 1698 1699
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1700 1701
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1702
 * The caller must have suppressed start of new grace periods.
1703
 */
1704
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1705 1706 1707 1708 1709
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1710
	struct rcu_node *rnp;
1711

1712
	rcu_for_each_leaf_node(rsp, rnp) {
1713
		mask = 0;
P
Paul E. McKenney 已提交
1714
		raw_spin_lock_irqsave(&rnp->lock, flags);
1715
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1716
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1717
			return;
1718
		}
1719
		if (rnp->qsmask == 0) {
1720
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1721 1722
			continue;
		}
1723
		cpu = rnp->grplo;
1724
		bit = 1;
1725
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1726 1727
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1728 1729
				mask |= bit;
		}
1730
		if (mask != 0) {
1731

P
Paul E. McKenney 已提交
1732 1733
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1734 1735
			continue;
		}
P
Paul E. McKenney 已提交
1736
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1737
	}
1738
	rnp = rcu_get_root(rsp);
1739 1740 1741 1742
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1754 1755 1756
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1757
		return;  /* No grace period in progress, nothing to force. */
1758
	}
P
Paul E. McKenney 已提交
1759
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1760
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1761
		trace_rcu_utilization("End fqs");
1762 1763
		return;	/* Someone else is already on the job. */
	}
1764
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1765
		goto unlock_fqs_ret; /* no emergency and done recently. */
1766
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1767
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1768
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1769
	if(!rcu_gp_in_progress(rsp)) {
1770
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1771
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1772
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1773
	}
1774
	rsp->fqs_active = 1;
1775
	switch (rsp->fqs_state) {
1776
	case RCU_GP_IDLE:
1777 1778
	case RCU_GP_INIT:

1779
		break; /* grace period idle or initializing, ignore. */
1780 1781 1782

	case RCU_SAVE_DYNTICK:

L
Lai Jiangshan 已提交
1783 1784
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1785
		/* Record dyntick-idle state. */
1786
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1787
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1788
		if (rcu_gp_in_progress(rsp))
1789
			rsp->fqs_state = RCU_FORCE_QS;
1790
		break;
1791 1792 1793 1794

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1795
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1796
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1797 1798 1799

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1800
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1801
		break;
1802
	}
1803
	rsp->fqs_active = 0;
1804
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1805
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1806 1807
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1808
		trace_rcu_utilization("End fqs");
1809 1810
		return;
	}
P
Paul E. McKenney 已提交
1811
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1812
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1813
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1814
	trace_rcu_utilization("End fqs");
1815 1816 1817
}

/*
1818 1819 1820
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1821 1822
 */
static void
1823
__rcu_process_callbacks(struct rcu_state *rsp)
1824 1825
{
	unsigned long flags;
1826
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1827

1828 1829
	WARN_ON_ONCE(rdp->beenonline == 0);

1830 1831 1832 1833
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1834
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1848
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1849 1850 1851 1852
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1853
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1854
		invoke_rcu_callbacks(rsp, rdp);
1855 1856
}

1857
/*
1858
 * Do RCU core processing for the current CPU.
1859
 */
1860
static void rcu_process_callbacks(struct softirq_action *unused)
1861
{
1862 1863
	struct rcu_state *rsp;

1864
	trace_rcu_utilization("Start RCU core");
1865 1866
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
1867
	trace_rcu_utilization("End RCU core");
1868 1869
}

1870
/*
1871 1872 1873 1874 1875
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1876
 */
1877
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1878
{
1879 1880
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1881 1882
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1883 1884
		return;
	}
1885
	invoke_rcu_callbacks_kthread();
1886 1887
}

1888
static void invoke_rcu_core(void)
1889 1890 1891 1892
{
	raise_softirq(RCU_SOFTIRQ);
}

1893 1894 1895 1896 1897
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
1898
{
1899 1900 1901 1902
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
1903
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1904 1905
		invoke_rcu_core();

1906
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1907
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1908
		return;
1909

1910 1911 1912 1913 1914 1915 1916
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1917
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1939
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1940
		force_quiescent_state(rsp, 1);
1941 1942
}

1943 1944
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1945
	   struct rcu_state *rsp, bool lazy)
1946 1947 1948 1949
{
	unsigned long flags;
	struct rcu_data *rdp;

1950
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1951
	debug_rcu_head_queue(head);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1964
	rdp = this_cpu_ptr(rsp->rda);
1965 1966

	/* Add the callback to our list. */
1967
	ACCESS_ONCE(rdp->qlen)++;
1968 1969
	if (lazy)
		rdp->qlen_lazy++;
1970 1971
	else
		rcu_idle_count_callbacks_posted();
1972 1973 1974
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1975

1976 1977
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1978
					 rdp->qlen_lazy, rdp->qlen);
1979
	else
1980
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1981

1982 1983
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
1984 1985 1986 1987
	local_irq_restore(flags);
}

/*
1988
 * Queue an RCU-sched callback for invocation after a grace period.
1989
 */
1990
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1991
{
1992
	__call_rcu(head, func, &rcu_sched_state, 0);
1993
}
1994
EXPORT_SYMBOL_GPL(call_rcu_sched);
1995 1996

/*
1997
 * Queue an RCU callback for invocation after a quicker grace period.
1998 1999 2000
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
2001
	__call_rcu(head, func, &rcu_bh_state, 0);
2002 2003 2004
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2016 2017
	int ret;

2018
	might_sleep();  /* Check for RCU read-side critical section. */
2019 2020 2021 2022
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2023 2024
}

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2050 2051 2052 2053
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2054 2055
	if (rcu_blocking_is_gp())
		return;
2056
	wait_rcu_gp(call_rcu_sched);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2071 2072 2073 2074
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2075 2076
	if (rcu_blocking_is_gp())
		return;
2077
	wait_rcu_gp(call_rcu_bh);
2078 2079 2080
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2111
 *
2112 2113 2114 2115
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2145
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
2157
		if (trycount++ < 10) {
2158
			udelay(trycount * num_online_cpus());
2159
		} else {
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2202 2203 2204 2205 2206 2207 2208 2209 2210
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2211 2212
	struct rcu_node *rnp = rdp->mynode;

2213 2214 2215 2216 2217 2218
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2219 2220
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2221 2222 2223 2224 2225 2226

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
2227
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
2228
		if (!rdp->preemptible &&
2229 2230 2231
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2232
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2233
		rdp->n_rp_report_qs++;
2234
		return 1;
2235
	}
2236 2237

	/* Does this CPU have callbacks ready to invoke? */
2238 2239
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2240
		return 1;
2241
	}
2242 2243

	/* Has RCU gone idle with this CPU needing another grace period? */
2244 2245
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2246
		return 1;
2247
	}
2248 2249

	/* Has another RCU grace period completed?  */
2250
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2251
		rdp->n_rp_gp_completed++;
2252
		return 1;
2253
	}
2254 2255

	/* Has a new RCU grace period started? */
2256
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2257
		rdp->n_rp_gp_started++;
2258
		return 1;
2259
	}
2260 2261

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2262
	if (rcu_gp_in_progress(rsp) &&
2263
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2264
		rdp->n_rp_need_fqs++;
2265
		return 1;
2266
	}
2267 2268

	/* nothing to do */
2269
	rdp->n_rp_need_nothing++;
2270 2271 2272 2273 2274 2275 2276 2277
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2278
static int rcu_pending(int cpu)
2279
{
2280 2281 2282 2283 2284 2285
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2286 2287 2288 2289 2290
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2291
 * 1 if so.
2292
 */
2293
static int rcu_cpu_has_callbacks(int cpu)
2294
{
2295 2296
	struct rcu_state *rsp;

2297
	/* RCU callbacks either ready or pending? */
2298 2299 2300 2301
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2302 2303
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2315 2316 2317 2318
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2319
static void rcu_barrier_callback(struct rcu_head *rhp)
2320
{
2321 2322 2323
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2324 2325
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2326
		complete(&rsp->barrier_completion);
2327 2328 2329
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2330 2331 2332 2333 2334 2335 2336
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2337
	struct rcu_state *rsp = type;
2338
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2339

2340
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2341
	atomic_inc(&rsp->barrier_cpu_count);
2342
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2343 2344 2345 2346 2347 2348
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2349
static void _rcu_barrier(struct rcu_state *rsp)
2350
{
2351 2352 2353
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
2354
	struct rcu_data rd;
2355 2356
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2357

2358
	init_rcu_head_on_stack(&rd.barrier_head);
2359
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2360

2361
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2362
	mutex_lock(&rsp->barrier_mutex);
2363

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2377
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2378
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2379
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2392
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2393
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2394

2395
	/*
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2411
	 */
2412
	init_completion(&rsp->barrier_completion);
2413
	atomic_set(&rsp->barrier_cpu_count, 1);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
2429 2430
			_rcu_barrier_trace(rsp, "Offline", cpu,
					   rsp->n_barrier_done);
2431 2432 2433 2434
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2435 2436
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2437
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2438 2439
			preempt_enable();
		} else {
2440 2441
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2458
	atomic_inc(&rsp->barrier_cpu_count);
2459
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2460 2461
	rd.rsp = rsp;
	rsp->call(&rd.barrier_head, rcu_barrier_callback);
2462 2463 2464 2465 2466

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2467
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2468
		complete(&rsp->barrier_completion);
2469

2470 2471 2472 2473
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2474
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2475 2476
	smp_mb(); /* Keep increment before caller's subsequent code. */

2477
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2478
	wait_for_completion(&rsp->barrier_completion);
2479 2480

	/* Other rcu_barrier() invocations can now safely proceed. */
2481
	mutex_unlock(&rsp->barrier_mutex);
2482

2483
	destroy_rcu_head_on_stack(&rd.barrier_head);
2484 2485 2486 2487 2488 2489 2490
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2491
	_rcu_barrier(&rcu_bh_state);
2492 2493 2494 2495 2496 2497 2498 2499
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2500
	_rcu_barrier(&rcu_sched_state);
2501 2502 2503
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2504
/*
2505
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2506
 */
2507 2508
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2509 2510
{
	unsigned long flags;
2511
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2512 2513 2514
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2515
	raw_spin_lock_irqsave(&rnp->lock, flags);
2516
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2517
	init_callback_list(rdp);
2518
	rdp->qlen_lazy = 0;
2519
	ACCESS_ONCE(rdp->qlen) = 0;
2520
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2521
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2522
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2523
	rdp->cpu = cpu;
2524
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2525
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2526 2527 2528 2529 2530 2531 2532
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2533
 */
2534
static void __cpuinit
P
Paul E. McKenney 已提交
2535
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2536 2537 2538
{
	unsigned long flags;
	unsigned long mask;
2539
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2540 2541 2542
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2543
	raw_spin_lock_irqsave(&rnp->lock, flags);
2544
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2545
	rdp->preemptible = preemptible;
2546 2547
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2548
	rdp->blimit = blimit;
2549
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2550 2551
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2552
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2553
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2554 2555 2556 2557 2558 2559 2560

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2561
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2562 2563 2564 2565 2566 2567

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2568
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2569 2570
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2571
		if (rnp == rdp->mynode) {
2572 2573 2574 2575 2576 2577
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2578
			rdp->completed = rnp->completed;
2579 2580
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2581
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2582
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2583
		}
P
Paul E. McKenney 已提交
2584
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2585 2586 2587
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2588
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2589 2590
}

P
Peter Zijlstra 已提交
2591
static void __cpuinit rcu_prepare_cpu(int cpu)
2592
{
2593 2594 2595 2596 2597
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2598 2599 2600
}

/*
2601
 * Handle CPU online/offline notification events.
2602
 */
2603 2604
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2605 2606
{
	long cpu = (long)hcpu;
2607
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2608
	struct rcu_node *rnp = rdp->mynode;
2609
	struct rcu_state *rsp;
2610

2611
	trace_rcu_utilization("Start CPU hotplug");
2612 2613 2614
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2615 2616
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2617 2618
		break;
	case CPU_ONLINE:
2619 2620
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2621
		rcu_cpu_kthread_setrt(cpu, 1);
2622 2623 2624
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2625
		rcu_cpu_kthread_setrt(cpu, 0);
2626
		break;
2627 2628 2629
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2630 2631 2632
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2633
		 */
2634 2635
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2636
		rcu_cleanup_after_idle(cpu);
2637
		break;
2638 2639 2640 2641
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2642 2643
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2644 2645 2646 2647
		break;
	default:
		break;
	}
2648
	trace_rcu_utilization("End CPU hotplug");
2649 2650 2651
	return NOTIFY_OK;
}

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2689 2690 2691 2692 2693 2694 2695 2696 2697
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2698
	for (i = rcu_num_lvls - 1; i > 0; i--)
2699
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2700
	rsp->levelspread[0] = rcu_fanout_leaf;
2701 2702 2703 2704 2705 2706 2707 2708 2709
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
2710
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2721 2722
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2723
{
2724 2725 2726 2727
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2728 2729 2730 2731 2732
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2733 2734
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2735 2736
	/* Initialize the level-tracking arrays. */

2737 2738 2739
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2740 2741 2742 2743 2744
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2745
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2746 2747 2748
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2749
			raw_spin_lock_init(&rnp->lock);
2750 2751
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2752
			rnp->gpnum = 0;
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2770
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2771 2772
		}
	}
2773

2774
	rsp->rda = rda;
2775
	init_waitqueue_head(&rsp->gp_wq);
2776
	rnp = rsp->level[rcu_num_lvls - 1];
2777
	for_each_possible_cpu(i) {
2778
		while (i > rnp->grphi)
2779
			rnp++;
2780
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2781 2782
		rcu_boot_init_percpu_data(i, rsp);
	}
2783
	list_add(&rsp->flavors, &rcu_struct_flavors);
2784 2785
}

2786 2787 2788 2789 2790 2791 2792 2793 2794
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
2795
	int n = nr_cpu_ids;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2846
void __init rcu_init(void)
2847
{
P
Paul E. McKenney 已提交
2848
	int cpu;
2849

2850
	rcu_bootup_announce();
2851
	rcu_init_geometry();
2852 2853
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2854
	__rcu_init_preempt();
2855
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2856 2857 2858 2859 2860 2861 2862

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2863 2864
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2865
	check_cpu_stall_init();
2866 2867
}

2868
#include "rcutree_plugin.h"