rcutree.c 87.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64

65
#define RCU_STATE_INITIALIZER(sname, cr) { \
66
	.level = { &sname##_state.node[0] }, \
67
	.call = cr, \
68
	.fqs_state = RCU_GP_IDLE, \
69 70
	.gpnum = -300, \
	.completed = -300, \
71 72 73
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
74
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
75 76
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
	.name = #sname, \
77 78
}

79 80
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82

83
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85

86 87
static struct rcu_state *rcu_state;

88 89 90 91 92 93 94 95 96 97 98 99 100
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
module_param(rcu_fanout_leaf, int, 0);
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

101 102 103 104 105 106 107 108 109
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
110 111 112
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

113 114 115 116 117 118 119 120 121 122 123 124 125 126
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

127 128
#ifdef CONFIG_RCU_BOOST

129 130 131 132 133
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
134
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
135
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
136
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
137
DEFINE_PER_CPU(char, rcu_cpu_has_work);
138

139 140
#endif /* #ifdef CONFIG_RCU_BOOST */

141
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
142 143
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
144

145 146 147 148 149 150 151 152 153 154 155 156
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

157 158 159 160 161 162 163 164 165 166
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

167
/*
168
 * Note a quiescent state.  Because we do not need to know
169
 * how many quiescent states passed, just if there was at least
170
 * one since the start of the grace period, this just sets a flag.
171
 * The caller must have disabled preemption.
172
 */
173
void rcu_sched_qs(int cpu)
174
{
175
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
176

177
	rdp->passed_quiesce_gpnum = rdp->gpnum;
178
	barrier();
179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182 183
}

184
void rcu_bh_qs(int cpu)
185
{
186
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187

188
	rdp->passed_quiesce_gpnum = rdp->gpnum;
189
	barrier();
190
	if (rdp->passed_quiesce == 0)
191
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
192
	rdp->passed_quiesce = 1;
193
}
194

195 196 197
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
198
 * The caller must have disabled preemption.
199 200 201
 */
void rcu_note_context_switch(int cpu)
{
202
	trace_rcu_utilization("Start context switch");
203
	rcu_sched_qs(cpu);
204
	rcu_preempt_note_context_switch(cpu);
205
	trace_rcu_utilization("End context switch");
206
}
207
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
208

209
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
210
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
211
	.dynticks = ATOMIC_INIT(1),
212
};
213

214
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
215 216 217
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

218 219 220 221
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

222 223 224
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

225
module_param(rcu_cpu_stall_suppress, int, 0644);
226
module_param(rcu_cpu_stall_timeout, int, 0644);
227

228
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
229
static int rcu_pending(int cpu);
230 231

/*
232
 * Return the number of RCU-sched batches processed thus far for debug & stats.
233
 */
234
long rcu_batches_completed_sched(void)
235
{
236
	return rcu_sched_state.completed;
237
}
238
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
239 240 241 242 243 244 245 246 247 248

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

249 250 251 252 253 254 255 256 257
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

283 284 285 286 287 288 289 290 291
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
307
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
332 333 334 335 336
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
337
	 */
338 339
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
340
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
341 342 343 344 345 346
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

347 348 349 350 351 352 353
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
354
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
355
{
356
	trace_rcu_dyntick("Start", oldval, 0);
357
	if (!is_idle_task(current)) {
358 359
		struct task_struct *idle = idle_task(smp_processor_id());

360
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
361
		ftrace_dump(DUMP_ALL);
362 363 364
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
365
	}
366
	rcu_prepare_for_idle(smp_processor_id());
367 368 369 370 371
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
372 373 374 375 376 377 378 379 380 381 382

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
383
}
384 385

/**
386
 * rcu_idle_enter - inform RCU that current CPU is entering idle
387
 *
388
 * Enter idle mode, in other words, -leave- the mode in which RCU
389
 * read-side critical sections can occur.  (Though RCU read-side
390 391 392 393 394 395
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
396
 */
397
void rcu_idle_enter(void)
398 399
{
	unsigned long flags;
400
	long long oldval;
401 402 403 404
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
405
	oldval = rdtp->dynticks_nesting;
406 407 408 409 410
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
411
	rcu_idle_enter_common(rdtp, oldval);
412 413
	local_irq_restore(flags);
}
414
EXPORT_SYMBOL_GPL(rcu_idle_enter);
415

416 417 418 419 420 421
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
422
 *
423 424 425 426 427 428 429 430
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
431
 */
432
void rcu_irq_exit(void)
433 434
{
	unsigned long flags;
435
	long long oldval;
436 437 438 439
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
440
	oldval = rdtp->dynticks_nesting;
441 442
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
443 444 445 446
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
447 448 449 450 451 452 453 454 455 456 457 458
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
459 460 461 462 463
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
464
	rcu_cleanup_after_idle(smp_processor_id());
465
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
466
	if (!is_idle_task(current)) {
467 468
		struct task_struct *idle = idle_task(smp_processor_id());

469 470
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
471
		ftrace_dump(DUMP_ALL);
472 473 474
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
475 476 477 478 479 480 481 482 483
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
484
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
485
 * allow for the possibility of usermode upcalls messing up our count
486 487 488 489 490 491 492 493 494 495 496 497
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
498 499 500 501 502
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
503 504 505
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
506
EXPORT_SYMBOL_GPL(rcu_idle_exit);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
538 539 540 541
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
542 543 544 545 546 547 548 549 550 551 552 553 554 555
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

556 557
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
558
		return;
559 560 561 562 563 564
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
565 566 567 568 569 570 571 572 573 574 575 576 577
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

578 579
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
580
		return;
581 582 583 584 585
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
586 587
}

588 589
#ifdef CONFIG_PROVE_RCU

590
/**
591
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
592
 *
593
 * If the current CPU is in its idle loop and is neither in an interrupt
594
 * or NMI handler, return true.
595
 */
596
int rcu_is_cpu_idle(void)
597
{
598 599 600 601 602 603
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
604
}
605
EXPORT_SYMBOL(rcu_is_cpu_idle);
606

607 608 609 610 611 612 613 614
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
615 616 617 618 619 620 621 622 623 624 625
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
626 627 628 629 630 631
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
632 633
	struct rcu_data *rdp;
	struct rcu_node *rnp;
634 635 636 637 638
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
639 640 641
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
642 643 644 645 646 647 648 649
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

650 651
#endif /* #ifdef CONFIG_PROVE_RCU */

652
/**
653
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
654
 *
655 656 657
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
658
 */
659
int rcu_is_cpu_rrupt_from_idle(void)
660
{
661
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
662 663 664 665 666
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
667
 * is in dynticks idle mode, which is an extended quiescent state.
668 669 670
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
671
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
672
	return (rdp->dynticks_snap & 0x1) == 0;
673 674 675 676 677 678 679 680 681 682
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
683 684
	unsigned int curr;
	unsigned int snap;
685

686 687
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
688 689 690 691 692 693 694 695 696

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
697
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
698
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
699 700 701 702 703 704 705 706
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

725 726 727
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
728
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
729 730 731 732 733 734 735
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
736
	int ndetected;
737 738 739 740
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
741
	raw_spin_lock_irqsave(&rnp->lock, flags);
742
	delta = jiffies - rsp->jiffies_stall;
743
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
744
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
745 746
		return;
	}
747
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
748
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
749

750 751 752 753 754
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
755
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
756
	       rsp->name);
757
	print_cpu_stall_info_begin();
758
	rcu_for_each_leaf_node(rsp, rnp) {
759
		raw_spin_lock_irqsave(&rnp->lock, flags);
760
		ndetected += rcu_print_task_stall(rnp);
761
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
762
		if (rnp->qsmask == 0)
763
			continue;
764
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
765
			if (rnp->qsmask & (1UL << cpu)) {
766
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
767 768
				ndetected++;
			}
769
	}
770 771 772 773 774 775 776 777 778 779 780 781

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	ndetected = rcu_print_task_stall(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
782
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
783 784 785
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
786
		dump_stack();
787

788 789 790 791
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

792 793 794 795 796 797 798 799
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

800 801 802 803 804
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
805 806 807 808 809
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
810 811
	if (!trigger_all_cpu_backtrace())
		dump_stack();
812

P
Paul E. McKenney 已提交
813
	raw_spin_lock_irqsave(&rnp->lock, flags);
814
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
815 816
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
817
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
818

819 820 821 822 823
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
824 825
	unsigned long j;
	unsigned long js;
826 827
	struct rcu_node *rnp;

828
	if (rcu_cpu_stall_suppress)
829
		return;
830 831
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
832
	rnp = rdp->mynode;
833
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
834 835 836 837

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

838 839
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
840

841
		/* They had a few time units to dump stack, so complain. */
842 843 844 845
		print_other_cpu_stall(rsp);
	}
}

846 847
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
848
	rcu_cpu_stall_suppress = 1;
849 850 851
	return NOTIFY_DONE;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

868 869 870 871 872 873 874 875 876
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

877 878 879
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
880 881 882
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
883
 */
884 885 886
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
887 888 889 890 891
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
892
		rdp->gpnum = rnp->gpnum;
893
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
894 895
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
896
			rdp->passed_quiesce = 0;
897 898
		} else
			rdp->qs_pending = 0;
899
		zero_cpu_stall_ticks(rdp);
900 901 902
	}
}

903 904
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
905 906 907 908 909 910
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
911
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
912 913 914 915
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
916
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
958
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
959

960 961
		/*
		 * If we were in an extended quiescent state, we may have
962
		 * missed some grace periods that others CPUs handled on
963
		 * our behalf. Catch up with this state to avoid noting
964 965 966
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
967
		 */
968
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
969 970
			rdp->gpnum = rdp->completed;

971
		/*
972 973
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
974
		 */
975
		if ((rnp->qsmask & rdp->grpmask) == 0)
976
			rdp->qs_pending = 0;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
994
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
995 996 997 998
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
999
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1026 1027 1028

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1029 1030
}

1031 1032 1033 1034 1035
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1036 1037 1038 1039
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1040 1041 1042 1043 1044
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1045
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1046 1047
	struct rcu_node *rnp = rcu_get_root(rsp);

1048
	if (!rcu_scheduler_fully_active ||
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1059

1060
	if (rsp->fqs_active) {
1061
		/*
1062 1063
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
1064
		 */
1065 1066
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067 1068 1069 1070 1071
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
1072
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1073 1074
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1075 1076
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
1077
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1078 1079

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
1080
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1081 1082

	/*
1083 1084 1085 1086 1087 1088 1089 1090 1091
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1092 1093 1094 1095
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1096 1097
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1098
	 */
1099
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1100
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1101
		rcu_preempt_check_blocked_tasks(rnp);
1102
		rnp->qsmask = rnp->qsmaskinit;
1103
		rnp->gpnum = rsp->gpnum;
1104 1105 1106
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1107
		rcu_preempt_boost_start_gp(rnp);
1108 1109 1110
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1111
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1112 1113
	}

1114
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1115
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1116
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1117 1118
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1119 1120
}

1121
/*
P
Paul E. McKenney 已提交
1122 1123 1124 1125 1126
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1127
 */
P
Paul E. McKenney 已提交
1128
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1129
	__releases(rcu_get_root(rsp)->lock)
1130
{
1131
	unsigned long gp_duration;
1132 1133
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1134

1135
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1136 1137 1138 1139 1140 1141

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1142 1143 1144
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1179
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1180
	rsp->fqs_state = RCU_GP_IDLE;
1181 1182 1183
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1184
/*
P
Paul E. McKenney 已提交
1185 1186 1187 1188 1189 1190
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1191 1192
 */
static void
P
Paul E. McKenney 已提交
1193 1194
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1195 1196
	__releases(rnp->lock)
{
1197 1198
	struct rcu_node *rnp_c;

1199 1200 1201 1202 1203
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1204
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1205 1206 1207
			return;
		}
		rnp->qsmask &= ~mask;
1208 1209 1210 1211
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1212
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1213 1214

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1215
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1216 1217 1218 1219 1220 1221 1222 1223 1224
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1225
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1226
		rnp_c = rnp;
1227
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1228
		raw_spin_lock_irqsave(&rnp->lock, flags);
1229
		WARN_ON_ONCE(rnp_c->qsmask);
1230 1231 1232 1233
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1234
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1235
	 * to clean up and start the next grace period if one is needed.
1236
	 */
P
Paul E. McKenney 已提交
1237
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1238 1239 1240
}

/*
P
Paul E. McKenney 已提交
1241 1242 1243 1244 1245 1246 1247
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1248 1249
 */
static void
1250
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1251 1252 1253 1254 1255 1256
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1257
	raw_spin_lock_irqsave(&rnp->lock, flags);
1258
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1259 1260

		/*
1261 1262 1263 1264
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1265
		 */
1266
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1267
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1268 1269 1270 1271
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1272
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1273 1274 1275 1276 1277 1278 1279 1280 1281
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1282
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1310
	if (!rdp->passed_quiesce)
1311 1312
		return;

P
Paul E. McKenney 已提交
1313 1314 1315 1316
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1317
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1318 1319 1320 1321
}

#ifdef CONFIG_HOTPLUG_CPU

1322
/*
1323 1324 1325
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1326
 */
1327 1328 1329
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1330 1331
{
	int i;
1332

1333 1334 1335 1336 1337
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1338
	if (rdp->nxtlist != NULL) {
1339 1340 1341
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1342 1343 1344 1345 1346
		rdp->qlen_lazy = 0;
		rdp->qlen = 0;
	}

	/*
1347 1348 1349 1350 1351 1352 1353
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1354
	 */
1355 1356 1357 1358
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1359 1360 1361
	}

	/*
1362 1363 1364
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1365
	 */
1366
	if (rdp->nxtlist != NULL) {
1367 1368
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1369
	}
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/* Finally, initialize the rcu_data structure's list to empty.  */
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1386
	/*
1387 1388 1389 1390 1391
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1392
	 */
1393 1394 1395 1396 1397 1398 1399 1400
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1401 1402
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1442 1443 1444
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1445 1446 1447
}

/*
1448
 * The CPU has been completely removed, and some other CPU is reporting
1449 1450 1451
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1452 1453
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1454
 */
1455
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1456
{
1457 1458 1459
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1460
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1461
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1462

1463
	/* Adjust any no-longer-needed kthreads. */
1464 1465
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1466

1467
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1468 1469 1470 1471

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1472 1473 1474 1475
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1508 1509 1510 1511
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1512 1513 1514 1515
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1516
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1517 1518 1519
{
}

1520
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1521 1522 1523 1524 1525 1526 1527 1528 1529
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1530
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1531 1532 1533
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1534
	int bl, count, count_lazy, i;
1535 1536

	/* If no callbacks are ready, just return.*/
1537
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1538
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1539 1540 1541
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1542
		return;
1543
	}
1544 1545 1546 1547 1548 1549

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1550
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1551
	bl = rdp->blimit;
1552
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1553 1554 1555 1556
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1557 1558 1559
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1560 1561 1562
	local_irq_restore(flags);

	/* Invoke callbacks. */
1563
	count = count_lazy = 0;
1564 1565 1566
	while (list) {
		next = list->next;
		prefetch(next);
1567
		debug_rcu_head_unqueue(list);
1568 1569
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1570
		list = next;
1571 1572 1573 1574
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1575 1576 1577 1578
			break;
	}

	local_irq_save(flags);
1579 1580 1581
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1582 1583 1584 1585 1586

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1587 1588 1589
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1590 1591 1592
			else
				break;
	}
1593 1594 1595 1596
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
	rdp->qlen -= count;
	rdp->n_cbs_invoked += count;
1597 1598 1599 1600 1601

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1602 1603 1604 1605 1606 1607 1608
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1609 1610
	local_irq_restore(flags);

1611
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1612
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1613
		invoke_rcu_core();
1614 1615 1616 1617 1618
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1619
 * Also schedule RCU core processing.
1620
 *
1621
 * This function must be called from hardirq context.  It is normally
1622 1623 1624 1625 1626
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1627
	trace_rcu_utilization("Start scheduler-tick");
1628
	increment_cpu_stall_ticks();
1629
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1630 1631 1632 1633 1634

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1635
		 * a quiescent state, so note it.
1636 1637
		 *
		 * No memory barrier is required here because both
1638 1639 1640
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1641 1642
		 */

1643 1644
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1645 1646 1647 1648 1649 1650 1651

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1652
		 * critical section, so note it.
1653 1654
		 */

1655
		rcu_bh_qs(cpu);
1656
	}
1657
	rcu_preempt_check_callbacks(cpu);
1658
	if (rcu_pending(cpu))
1659
		invoke_rcu_core();
1660
	trace_rcu_utilization("End scheduler-tick");
1661 1662 1663 1664 1665
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1666 1667
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1668
 * The caller must have suppressed start of new grace periods.
1669
 */
1670
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1671 1672 1673 1674 1675
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1676
	struct rcu_node *rnp;
1677

1678
	rcu_for_each_leaf_node(rsp, rnp) {
1679
		mask = 0;
P
Paul E. McKenney 已提交
1680
		raw_spin_lock_irqsave(&rnp->lock, flags);
1681
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1682
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1683
			return;
1684
		}
1685
		if (rnp->qsmask == 0) {
1686
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1687 1688
			continue;
		}
1689
		cpu = rnp->grplo;
1690
		bit = 1;
1691
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1692 1693
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1694 1695
				mask |= bit;
		}
1696
		if (mask != 0) {
1697

P
Paul E. McKenney 已提交
1698 1699
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1700 1701
			continue;
		}
P
Paul E. McKenney 已提交
1702
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1703
	}
1704
	rnp = rcu_get_root(rsp);
1705 1706 1707 1708
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1720 1721 1722
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1723
		return;  /* No grace period in progress, nothing to force. */
1724
	}
P
Paul E. McKenney 已提交
1725
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1726
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1727
		trace_rcu_utilization("End fqs");
1728 1729
		return;	/* Someone else is already on the job. */
	}
1730
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1731
		goto unlock_fqs_ret; /* no emergency and done recently. */
1732
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1733
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1734
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1735
	if(!rcu_gp_in_progress(rsp)) {
1736
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1737
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1738
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1739
	}
1740
	rsp->fqs_active = 1;
1741
	switch (rsp->fqs_state) {
1742
	case RCU_GP_IDLE:
1743 1744
	case RCU_GP_INIT:

1745
		break; /* grace period idle or initializing, ignore. */
1746 1747 1748 1749 1750

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1751 1752
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1753
		/* Record dyntick-idle state. */
1754
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1755
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1756
		if (rcu_gp_in_progress(rsp))
1757
			rsp->fqs_state = RCU_FORCE_QS;
1758
		break;
1759 1760 1761 1762

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1763
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1764
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1765 1766 1767

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1768
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1769
		break;
1770
	}
1771
	rsp->fqs_active = 0;
1772
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1773
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1774 1775
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1776
		trace_rcu_utilization("End fqs");
1777 1778
		return;
	}
P
Paul E. McKenney 已提交
1779
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1780
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1781
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1782
	trace_rcu_utilization("End fqs");
1783 1784 1785
}

/*
1786 1787 1788
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1789 1790 1791 1792 1793 1794
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1795 1796
	WARN_ON_ONCE(rdp->beenonline == 0);

1797 1798 1799 1800
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1801
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1815
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1816 1817 1818 1819
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1820
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1821
		invoke_rcu_callbacks(rsp, rdp);
1822 1823
}

1824
/*
1825
 * Do RCU core processing for the current CPU.
1826
 */
1827
static void rcu_process_callbacks(struct softirq_action *unused)
1828
{
1829
	trace_rcu_utilization("Start RCU core");
1830 1831
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1832
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1833
	rcu_preempt_process_callbacks();
1834
	trace_rcu_utilization("End RCU core");
1835 1836
}

1837
/*
1838 1839 1840 1841 1842
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1843
 */
1844
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1845
{
1846 1847
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1848 1849
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1850 1851
		return;
	}
1852
	invoke_rcu_callbacks_kthread();
1853 1854
}

1855
static void invoke_rcu_core(void)
1856 1857 1858 1859
{
	raise_softirq(RCU_SOFTIRQ);
}

1860 1861
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1862
	   struct rcu_state *rsp, bool lazy)
1863 1864 1865 1866
{
	unsigned long flags;
	struct rcu_data *rdp;

1867
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1868
	debug_rcu_head_queue(head);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1881
	rdp = this_cpu_ptr(rsp->rda);
1882 1883

	/* Add the callback to our list. */
1884
	rdp->qlen++;
1885 1886
	if (lazy)
		rdp->qlen_lazy++;
1887 1888
	else
		rcu_idle_count_callbacks_posted();
1889 1890 1891
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1892

1893 1894
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1895
					 rdp->qlen_lazy, rdp->qlen);
1896
	else
1897
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1898

1899 1900 1901 1902 1903
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1904

1905 1906 1907 1908 1909 1910 1911
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1912
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1934
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1935 1936 1937 1938 1939
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1940
 * Queue an RCU-sched callback for invocation after a grace period.
1941
 */
1942
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1943
{
1944
	__call_rcu(head, func, &rcu_sched_state, 0);
1945
}
1946
EXPORT_SYMBOL_GPL(call_rcu_sched);
1947 1948

/*
1949
 * Queue an RCU callback for invocation after a quicker grace period.
1950 1951 1952
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1953
	__call_rcu(head, func, &rcu_bh_state, 0);
1954 1955 1956
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 *
 * Of course, sampling num_online_cpus() with preemption enabled can
 * give erroneous results if there are concurrent CPU-hotplug operations.
 * For example, given a demonic sequence of preemptions in num_online_cpus()
 * and CPU-hotplug operations, there could be two or more CPUs online at
 * all times, but num_online_cpus() might well return one (or even zero).
 *
 * However, all such demonic sequences require at least one CPU-offline
 * operation.  Furthermore, rcu_blocking_is_gp() giving the wrong answer
 * is only a problem if there is an RCU read-side critical section executing
 * throughout.  But RCU-sched and RCU-bh read-side critical sections
 * disable either preemption or bh, which prevents a CPU from going offline.
 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
 * that there is only one CPU when in fact there was more than one throughout
 * is when there were no RCU readers in the system.  If there are no
 * RCU readers, the grace period by definition can be of zero length,
 * regardless of the number of online CPUs.
 */
static inline int rcu_blocking_is_gp(void)
{
	might_sleep();  /* Check for RCU read-side critical section. */
	return num_online_cpus() <= 1;
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2014 2015 2016 2017
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2018 2019
	if (rcu_blocking_is_gp())
		return;
2020
	wait_rcu_gp(call_rcu_sched);
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2035 2036 2037 2038
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2039 2040
	if (rcu_blocking_is_gp())
		return;
2041
	wait_rcu_gp(call_rcu_bh);
2042 2043 2044
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2075
 *
2076 2077 2078 2079
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2109
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2166 2167 2168 2169 2170 2171 2172 2173 2174
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2175 2176
	struct rcu_node *rnp = rdp->mynode;

2177 2178 2179 2180 2181 2182
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2183 2184
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2185 2186 2187 2188 2189 2190

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
2191
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
2192
		if (!rdp->preemptible &&
2193 2194 2195
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2196
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2197
		rdp->n_rp_report_qs++;
2198
		return 1;
2199
	}
2200 2201

	/* Does this CPU have callbacks ready to invoke? */
2202 2203
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2204
		return 1;
2205
	}
2206 2207

	/* Has RCU gone idle with this CPU needing another grace period? */
2208 2209
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2210
		return 1;
2211
	}
2212 2213

	/* Has another RCU grace period completed?  */
2214
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2215
		rdp->n_rp_gp_completed++;
2216
		return 1;
2217
	}
2218 2219

	/* Has a new RCU grace period started? */
2220
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2221
		rdp->n_rp_gp_started++;
2222
		return 1;
2223
	}
2224 2225

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2226
	if (rcu_gp_in_progress(rsp) &&
2227
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2228
		rdp->n_rp_need_fqs++;
2229
		return 1;
2230
	}
2231 2232

	/* nothing to do */
2233
	rdp->n_rp_need_nothing++;
2234 2235 2236 2237 2238 2239 2240 2241
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2242
static int rcu_pending(int cpu)
2243
{
2244
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2245 2246
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2247 2248 2249 2250 2251
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2252
 * 1 if so.
2253
 */
2254
static int rcu_cpu_has_callbacks(int cpu)
2255 2256
{
	/* RCU callbacks either ready or pending? */
2257
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2258
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2259
	       rcu_preempt_cpu_has_callbacks(cpu);
2260 2261
}

2262 2263 2264 2265
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2266
static void rcu_barrier_callback(struct rcu_head *rhp)
2267
{
2268 2269 2270 2271
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2272
		complete(&rsp->barrier_completion);
2273 2274 2275 2276 2277 2278 2279
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2280
	struct rcu_state *rsp = type;
2281
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2282

2283
	atomic_inc(&rsp->barrier_cpu_count);
2284
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2285 2286 2287 2288 2289 2290
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2291
static void _rcu_barrier(struct rcu_state *rsp)
2292
{
2293 2294 2295
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
2296
	struct rcu_data rd;
2297 2298
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2299

2300
	init_rcu_head_on_stack(&rd.barrier_head);
2301

2302
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2303
	mutex_lock(&rsp->barrier_mutex);
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2332

2333
	/*
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2349
	 */
2350
	init_completion(&rsp->barrier_completion);
2351
	atomic_set(&rsp->barrier_cpu_count, 1);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2371
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
			preempt_enable();
		} else {
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2390
	atomic_inc(&rsp->barrier_cpu_count);
2391
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2392 2393
	rd.rsp = rsp;
	rsp->call(&rd.barrier_head, rcu_barrier_callback);
2394 2395 2396 2397 2398

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2399
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2400
		complete(&rsp->barrier_completion);
2401

2402 2403 2404 2405 2406 2407
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
	smp_mb(); /* Keep increment before caller's subsequent code. */

2408
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2409
	wait_for_completion(&rsp->barrier_completion);
2410 2411

	/* Other rcu_barrier() invocations can now safely proceed. */
2412
	mutex_unlock(&rsp->barrier_mutex);
2413

2414
	destroy_rcu_head_on_stack(&rd.barrier_head);
2415 2416 2417 2418 2419 2420 2421
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2422
	_rcu_barrier(&rcu_bh_state);
2423 2424 2425 2426 2427 2428 2429 2430
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2431
	_rcu_barrier(&rcu_sched_state);
2432 2433 2434
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2435
/*
2436
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2437
 */
2438 2439
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2440 2441 2442
{
	unsigned long flags;
	int i;
2443
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2444 2445 2446
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2447
	raw_spin_lock_irqsave(&rnp->lock, flags);
2448 2449 2450 2451
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
2452
	rdp->qlen_lazy = 0;
2453 2454
	rdp->qlen = 0;
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2455
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2456
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2457
	rdp->cpu = cpu;
2458
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2459
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2460 2461 2462 2463 2464 2465 2466
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2467
 */
2468
static void __cpuinit
P
Paul E. McKenney 已提交
2469
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2470 2471 2472
{
	unsigned long flags;
	unsigned long mask;
2473
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2474 2475 2476
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2477
	raw_spin_lock_irqsave(&rnp->lock, flags);
2478
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2479
	rdp->preemptible = preemptible;
2480 2481
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2482
	rdp->blimit = blimit;
2483
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2484 2485
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2486
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2487
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2488 2489 2490 2491 2492 2493 2494

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2495
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2496 2497 2498 2499 2500 2501

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2502
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2503 2504
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2505
		if (rnp == rdp->mynode) {
2506 2507 2508 2509 2510 2511
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2512
			rdp->completed = rnp->completed;
2513 2514
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2515
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2516
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2517
		}
P
Paul E. McKenney 已提交
2518
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2519 2520 2521
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2522
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2523 2524
}

P
Peter Zijlstra 已提交
2525
static void __cpuinit rcu_prepare_cpu(int cpu)
2526
{
2527 2528 2529
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2530 2531 2532
}

/*
2533
 * Handle CPU online/offline notification events.
2534
 */
2535 2536
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2537 2538
{
	long cpu = (long)hcpu;
2539
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2540
	struct rcu_node *rnp = rdp->mynode;
2541

2542
	trace_rcu_utilization("Start CPU hotplug");
2543 2544 2545
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2546 2547
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2548 2549
		break;
	case CPU_ONLINE:
2550 2551
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2552
		rcu_cpu_kthread_setrt(cpu, 1);
2553 2554 2555
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2556
		rcu_cpu_kthread_setrt(cpu, 0);
2557
		break;
2558 2559 2560
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2561 2562 2563
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2564
		 */
2565 2566 2567
		rcu_cleanup_dying_cpu(&rcu_bh_state);
		rcu_cleanup_dying_cpu(&rcu_sched_state);
		rcu_preempt_cleanup_dying_cpu();
2568
		rcu_cleanup_after_idle(cpu);
2569
		break;
2570 2571 2572 2573
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2574 2575 2576
		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
		rcu_preempt_cleanup_dead_cpu(cpu);
2577 2578 2579 2580
		break;
	default:
		break;
	}
2581
	trace_rcu_utilization("End CPU hotplug");
2582 2583 2584
	return NOTIFY_OK;
}

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2600 2601 2602 2603 2604 2605 2606 2607 2608
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2609
	for (i = rcu_num_lvls - 1; i > 0; i--)
2610
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2611
	rsp->levelspread[0] = rcu_fanout_leaf;
2612 2613 2614 2615 2616 2617 2618 2619 2620
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
2621
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2632 2633
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2634
{
2635 2636 2637 2638
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2639 2640 2641 2642 2643
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2644 2645
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2646 2647
	/* Initialize the level-tracking arrays. */

2648 2649 2650
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2651 2652 2653 2654 2655
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2656
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2657 2658 2659
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2660
			raw_spin_lock_init(&rnp->lock);
2661 2662
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2663
			rnp->gpnum = 0;
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2681
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2682 2683
		}
	}
2684

2685
	rsp->rda = rda;
2686
	rnp = rsp->level[rcu_num_lvls - 1];
2687
	for_each_possible_cpu(i) {
2688
		while (i > rnp->grphi)
2689
			rnp++;
2690
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2691 2692
		rcu_boot_init_percpu_data(i, rsp);
	}
2693 2694
}

2695 2696 2697 2698 2699 2700 2701 2702 2703
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
2704
	int n = nr_cpu_ids;
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2755
void __init rcu_init(void)
2756
{
P
Paul E. McKenney 已提交
2757
	int cpu;
2758

2759
	rcu_bootup_announce();
2760
	rcu_init_geometry();
2761 2762
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2763
	__rcu_init_preempt();
2764
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2765 2766 2767 2768 2769 2770 2771

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2772 2773
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2774
	check_cpu_stall_init();
2775 2776
}

2777
#include "rcutree_plugin.h"