rcutree.c 88.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64

65
#define RCU_STATE_INITIALIZER(sname, cr) { \
66
	.level = { &sname##_state.node[0] }, \
67
	.call = cr, \
68
	.fqs_state = RCU_GP_IDLE, \
69 70
	.gpnum = -300, \
	.completed = -300, \
71 72 73
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
74
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
75 76
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
	.name = #sname, \
77 78
}

79 80
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82

83
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85

86
static struct rcu_state *rcu_state;
87
LIST_HEAD(rcu_struct_flavors);
88

89 90 91 92 93 94 95 96 97 98 99 100 101
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
module_param(rcu_fanout_leaf, int, 0);
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

102 103 104 105 106 107 108 109 110
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
111 112 113
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

128 129
#ifdef CONFIG_RCU_BOOST

130 131 132 133 134
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
135
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
136
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
137
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138
DEFINE_PER_CPU(char, rcu_cpu_has_work);
139

140 141
#endif /* #ifdef CONFIG_RCU_BOOST */

142
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143 144
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145

146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

158 159 160 161 162 163 164 165 166 167
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

168
/*
169
 * Note a quiescent state.  Because we do not need to know
170
 * how many quiescent states passed, just if there was at least
171
 * one since the start of the grace period, this just sets a flag.
172
 * The caller must have disabled preemption.
173
 */
174
void rcu_sched_qs(int cpu)
175
{
176
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177

178
	rdp->passed_quiesce_gpnum = rdp->gpnum;
179
	barrier();
180
	if (rdp->passed_quiesce == 0)
181
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182
	rdp->passed_quiesce = 1;
183 184
}

185
void rcu_bh_qs(int cpu)
186
{
187
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188

189
	rdp->passed_quiesce_gpnum = rdp->gpnum;
190
	barrier();
191
	if (rdp->passed_quiesce == 0)
192
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
193
	rdp->passed_quiesce = 1;
194
}
195

196 197 198
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
199
 * The caller must have disabled preemption.
200 201 202
 */
void rcu_note_context_switch(int cpu)
{
203
	trace_rcu_utilization("Start context switch");
204
	rcu_sched_qs(cpu);
205
	rcu_preempt_note_context_switch(cpu);
206
	trace_rcu_utilization("End context switch");
207
}
208
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
209

210
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
211
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
212
	.dynticks = ATOMIC_INIT(1),
213
};
214

215
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
216 217 218
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

219 220 221 222
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

223 224 225
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

226
module_param(rcu_cpu_stall_suppress, int, 0644);
227
module_param(rcu_cpu_stall_timeout, int, 0644);
228

229
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
230
static int rcu_pending(int cpu);
231 232

/*
233
 * Return the number of RCU-sched batches processed thus far for debug & stats.
234
 */
235
long rcu_batches_completed_sched(void)
236
{
237
	return rcu_sched_state.completed;
238
}
239
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
240 241 242 243 244 245 246 247 248 249

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

250 251 252 253 254 255 256 257 258
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

284 285 286 287 288 289 290 291 292
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
308
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
333 334 335 336 337
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
338
	 */
339 340
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
341
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
342 343 344 345 346 347
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

348 349 350 351 352 353 354
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
355
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
356
{
357
	trace_rcu_dyntick("Start", oldval, 0);
358
	if (!is_idle_task(current)) {
359 360
		struct task_struct *idle = idle_task(smp_processor_id());

361
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
362
		ftrace_dump(DUMP_ORIG);
363 364 365
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
366
	}
367
	rcu_prepare_for_idle(smp_processor_id());
368 369 370 371 372
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
373 374 375 376 377 378 379 380 381 382 383

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
384
}
385 386

/**
387
 * rcu_idle_enter - inform RCU that current CPU is entering idle
388
 *
389
 * Enter idle mode, in other words, -leave- the mode in which RCU
390
 * read-side critical sections can occur.  (Though RCU read-side
391 392 393 394 395 396
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
397
 */
398
void rcu_idle_enter(void)
399 400
{
	unsigned long flags;
401
	long long oldval;
402 403 404 405
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
406
	oldval = rdtp->dynticks_nesting;
407 408 409 410 411
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
412
	rcu_idle_enter_common(rdtp, oldval);
413 414
	local_irq_restore(flags);
}
415
EXPORT_SYMBOL_GPL(rcu_idle_enter);
416

417 418 419 420 421 422
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
423
 *
424 425 426 427 428 429 430 431
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
432
 */
433
void rcu_irq_exit(void)
434 435
{
	unsigned long flags;
436
	long long oldval;
437 438 439 440
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
441
	oldval = rdtp->dynticks_nesting;
442 443
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
444 445 446 447
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
448 449 450 451 452 453 454 455 456 457 458 459
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
460 461 462 463 464
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
465
	rcu_cleanup_after_idle(smp_processor_id());
466
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
467
	if (!is_idle_task(current)) {
468 469
		struct task_struct *idle = idle_task(smp_processor_id());

470 471
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
472
		ftrace_dump(DUMP_ORIG);
473 474 475
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
476 477 478 479 480 481 482 483 484
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
485
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
486
 * allow for the possibility of usermode upcalls messing up our count
487 488 489 490 491 492 493 494 495 496 497 498
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
499 500 501 502 503
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
504 505 506
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
507
EXPORT_SYMBOL_GPL(rcu_idle_exit);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
539 540 541 542
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
543 544 545 546 547 548 549 550 551 552 553 554 555 556
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

557 558
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
559
		return;
560 561 562 563 564 565
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
566 567 568 569 570 571 572 573 574 575 576 577 578
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

579 580
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
581
		return;
582 583 584 585 586
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
587 588 589
}

/**
590
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
591
 *
592
 * If the current CPU is in its idle loop and is neither in an interrupt
593
 * or NMI handler, return true.
594
 */
595
int rcu_is_cpu_idle(void)
596
{
597 598 599 600 601 602
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
603
}
604
EXPORT_SYMBOL(rcu_is_cpu_idle);
605

606
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
607 608 609 610 611 612 613

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
614 615 616 617 618 619 620 621 622 623 624
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
625 626 627 628 629 630
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
631 632
	struct rcu_data *rdp;
	struct rcu_node *rnp;
633 634 635 636 637
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
638 639 640
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
641 642 643 644 645 646
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

647
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
648

649
/**
650
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
651
 *
652 653 654
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
655
 */
656
int rcu_is_cpu_rrupt_from_idle(void)
657
{
658
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
659 660 661 662 663
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
664
 * is in dynticks idle mode, which is an extended quiescent state.
665 666 667
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
668
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
669
	return (rdp->dynticks_snap & 0x1) == 0;
670 671 672 673 674 675 676 677 678 679
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
680 681
	unsigned int curr;
	unsigned int snap;
682

683 684
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
685 686 687 688 689 690 691 692 693

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
694
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
695
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
696 697 698 699 700 701 702 703
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

722 723 724
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
725
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
726 727 728 729 730 731 732
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
733
	int ndetected = 0;
734 735 736 737
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
738
	raw_spin_lock_irqsave(&rnp->lock, flags);
739
	delta = jiffies - rsp->jiffies_stall;
740
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
741
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
742 743
		return;
	}
744
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
745
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
746

747 748 749 750 751
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
752
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
753
	       rsp->name);
754
	print_cpu_stall_info_begin();
755
	rcu_for_each_leaf_node(rsp, rnp) {
756
		raw_spin_lock_irqsave(&rnp->lock, flags);
757
		ndetected += rcu_print_task_stall(rnp);
758
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
759
		if (rnp->qsmask == 0)
760
			continue;
761
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
762
			if (rnp->qsmask & (1UL << cpu)) {
763
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
764 765
				ndetected++;
			}
766
	}
767 768 769 770 771 772 773

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
774
	ndetected += rcu_print_task_stall(rnp);
775 776 777 778
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
779
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
780 781 782
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
783
		dump_stack();
784

785 786 787 788
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

789 790 791 792 793 794 795 796
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

797 798 799 800 801
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
802 803 804 805 806
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
807 808
	if (!trigger_all_cpu_backtrace())
		dump_stack();
809

P
Paul E. McKenney 已提交
810
	raw_spin_lock_irqsave(&rnp->lock, flags);
811
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
812 813
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
814
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
815

816 817 818 819 820
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
821 822
	unsigned long j;
	unsigned long js;
823 824
	struct rcu_node *rnp;

825
	if (rcu_cpu_stall_suppress)
826
		return;
827 828
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
829
	rnp = rdp->mynode;
830
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
831 832 833 834

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

835 836
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
837

838
		/* They had a few time units to dump stack, so complain. */
839 840 841 842
		print_other_cpu_stall(rsp);
	}
}

843 844
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
845
	rcu_cpu_stall_suppress = 1;
846 847 848
	return NOTIFY_DONE;
}

849 850 851 852 853 854 855 856 857 858 859
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
860 861 862 863
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
864 865
}

866 867 868 869 870 871 872 873 874
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

875 876 877
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
878 879 880
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
881
 */
882 883 884
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
885 886 887 888 889
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
890
		rdp->gpnum = rnp->gpnum;
891
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
892 893
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
894
			rdp->passed_quiesce = 0;
895
		} else {
896
			rdp->qs_pending = 0;
897
		}
898
		zero_cpu_stall_ticks(rdp);
899 900 901
	}
}

902 903
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
904 905 906 907 908 909
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
910
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
911 912 913 914
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
915
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

938 939 940 941 942 943 944 945 946 947 948 949
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
969
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
970

971 972
		/*
		 * If we were in an extended quiescent state, we may have
973
		 * missed some grace periods that others CPUs handled on
974
		 * our behalf. Catch up with this state to avoid noting
975 976 977
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
978
		 */
979
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
980 981
			rdp->gpnum = rdp->completed;

982
		/*
983 984
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
985
		 */
986
		if ((rnp->qsmask & rdp->grpmask) == 0)
987
			rdp->qs_pending = 0;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1005
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1006 1007 1008 1009
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1010
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1037 1038 1039

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1040 1041
}

1042 1043 1044 1045 1046
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1047 1048 1049 1050
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1051 1052 1053 1054 1055
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1056
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1057 1058
	struct rcu_node *rnp = rcu_get_root(rsp);

1059
	if (!rcu_scheduler_fully_active ||
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1070

1071
	if (rsp->fqs_active) {
1072
		/*
1073 1074
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
1075
		 */
1076 1077
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1078 1079 1080 1081 1082
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
1083
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1084 1085
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1086 1087
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
1088
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1089 1090

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
1091
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1092 1093

	/*
1094 1095 1096 1097 1098 1099 1100 1101 1102
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1103 1104 1105 1106
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1107 1108
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1109
	 */
1110
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1111
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1112
		rcu_preempt_check_blocked_tasks(rnp);
1113
		rnp->qsmask = rnp->qsmaskinit;
1114
		rnp->gpnum = rsp->gpnum;
1115 1116 1117
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1118
		rcu_preempt_boost_start_gp(rnp);
1119 1120 1121
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1122
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1123 1124
	}

1125
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1126
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1127
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1128 1129
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1130 1131
}

1132
/*
P
Paul E. McKenney 已提交
1133 1134 1135 1136 1137
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1138
 */
P
Paul E. McKenney 已提交
1139
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1140
	__releases(rcu_get_root(rsp)->lock)
1141
{
1142
	unsigned long gp_duration;
1143 1144
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1145

1146
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1147 1148 1149 1150 1151 1152

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1153 1154 1155
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1190
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1191
	rsp->fqs_state = RCU_GP_IDLE;
1192 1193 1194
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1195
/*
P
Paul E. McKenney 已提交
1196 1197 1198 1199 1200 1201
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1202 1203
 */
static void
P
Paul E. McKenney 已提交
1204 1205
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1206 1207
	__releases(rnp->lock)
{
1208 1209
	struct rcu_node *rnp_c;

1210 1211 1212 1213 1214
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1215
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1216 1217 1218
			return;
		}
		rnp->qsmask &= ~mask;
1219 1220 1221 1222
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1223
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1224 1225

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1226
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227 1228 1229 1230 1231 1232 1233 1234 1235
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1236
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1237
		rnp_c = rnp;
1238
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1239
		raw_spin_lock_irqsave(&rnp->lock, flags);
1240
		WARN_ON_ONCE(rnp_c->qsmask);
1241 1242 1243 1244
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1245
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1246
	 * to clean up and start the next grace period if one is needed.
1247
	 */
P
Paul E. McKenney 已提交
1248
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1249 1250 1251
}

/*
P
Paul E. McKenney 已提交
1252 1253 1254 1255 1256 1257 1258
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1259 1260
 */
static void
1261
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1262 1263 1264 1265 1266 1267
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1268
	raw_spin_lock_irqsave(&rnp->lock, flags);
1269
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1270 1271

		/*
1272 1273 1274 1275
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1276
		 */
1277
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1278
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1279 1280 1281 1282
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1283
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1284 1285 1286 1287 1288 1289 1290 1291 1292
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1293
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1321
	if (!rdp->passed_quiesce)
1322 1323
		return;

P
Paul E. McKenney 已提交
1324 1325 1326 1327
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1328
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1329 1330 1331 1332
}

#ifdef CONFIG_HOTPLUG_CPU

1333
/*
1334 1335 1336
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1337
 */
1338 1339 1340
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1341
{
1342 1343 1344 1345 1346
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1347
	if (rdp->nxtlist != NULL) {
1348 1349 1350
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1351
		rdp->qlen_lazy = 0;
1352
		ACCESS_ONCE(rdp->qlen) = 0;
1353 1354 1355
	}

	/*
1356 1357 1358 1359 1360 1361 1362
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1363
	 */
1364 1365 1366 1367
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1368 1369 1370
	}

	/*
1371 1372 1373
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1374
	 */
1375
	if (rdp->nxtlist != NULL) {
1376 1377
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1378
	}
1379

1380
	/* Finally, initialize the rcu_data structure's list to empty.  */
1381
	init_callback_list(rdp);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1393
	/*
1394 1395 1396 1397 1398
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1399
	 */
1400 1401 1402 1403 1404 1405 1406 1407
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1408 1409
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1449 1450 1451
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1452 1453 1454
}

/*
1455
 * The CPU has been completely removed, and some other CPU is reporting
1456 1457 1458
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1459 1460
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1461
 */
1462
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1463
{
1464 1465 1466
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1467
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1468
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1469

1470
	/* Adjust any no-longer-needed kthreads. */
1471 1472
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1473

1474
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1475 1476 1477 1478

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1479 1480 1481 1482
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1515 1516 1517
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1518 1519 1520 1521
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1522 1523 1524 1525
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1526
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1527 1528 1529
{
}

1530
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1531 1532 1533 1534 1535 1536 1537 1538 1539
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1540
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1541 1542 1543
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1544
	int bl, count, count_lazy, i;
1545 1546

	/* If no callbacks are ready, just return.*/
1547
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1548
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1549 1550 1551
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1552
		return;
1553
	}
1554 1555 1556 1557 1558 1559

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1560
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1561
	bl = rdp->blimit;
1562
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1563 1564 1565 1566
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1567 1568 1569
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1570 1571 1572
	local_irq_restore(flags);

	/* Invoke callbacks. */
1573
	count = count_lazy = 0;
1574 1575 1576
	while (list) {
		next = list->next;
		prefetch(next);
1577
		debug_rcu_head_unqueue(list);
1578 1579
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1580
		list = next;
1581 1582 1583 1584
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1585 1586 1587 1588
			break;
	}

	local_irq_save(flags);
1589 1590 1591
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1592 1593 1594 1595 1596

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1597 1598 1599
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1600 1601 1602
			else
				break;
	}
1603 1604
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1605
	ACCESS_ONCE(rdp->qlen) -= count;
1606
	rdp->n_cbs_invoked += count;
1607 1608 1609 1610 1611

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1612 1613 1614 1615 1616 1617
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1618
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1619

1620 1621
	local_irq_restore(flags);

1622
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1623
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1624
		invoke_rcu_core();
1625 1626 1627 1628 1629
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1630
 * Also schedule RCU core processing.
1631
 *
1632
 * This function must be called from hardirq context.  It is normally
1633 1634 1635 1636 1637
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1638
	trace_rcu_utilization("Start scheduler-tick");
1639
	increment_cpu_stall_ticks();
1640
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1641 1642 1643 1644 1645

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1646
		 * a quiescent state, so note it.
1647 1648
		 *
		 * No memory barrier is required here because both
1649 1650 1651
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1652 1653
		 */

1654 1655
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1656 1657 1658 1659 1660 1661 1662

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1663
		 * critical section, so note it.
1664 1665
		 */

1666
		rcu_bh_qs(cpu);
1667
	}
1668
	rcu_preempt_check_callbacks(cpu);
1669
	if (rcu_pending(cpu))
1670
		invoke_rcu_core();
1671
	trace_rcu_utilization("End scheduler-tick");
1672 1673 1674 1675 1676
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1677 1678
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1679
 * The caller must have suppressed start of new grace periods.
1680
 */
1681
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1682 1683 1684 1685 1686
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1687
	struct rcu_node *rnp;
1688

1689
	rcu_for_each_leaf_node(rsp, rnp) {
1690
		mask = 0;
P
Paul E. McKenney 已提交
1691
		raw_spin_lock_irqsave(&rnp->lock, flags);
1692
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1693
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1694
			return;
1695
		}
1696
		if (rnp->qsmask == 0) {
1697
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1698 1699
			continue;
		}
1700
		cpu = rnp->grplo;
1701
		bit = 1;
1702
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1703 1704
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1705 1706
				mask |= bit;
		}
1707
		if (mask != 0) {
1708

P
Paul E. McKenney 已提交
1709 1710
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1711 1712
			continue;
		}
P
Paul E. McKenney 已提交
1713
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1714
	}
1715
	rnp = rcu_get_root(rsp);
1716 1717 1718 1719
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1731 1732 1733
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1734
		return;  /* No grace period in progress, nothing to force. */
1735
	}
P
Paul E. McKenney 已提交
1736
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1737
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1738
		trace_rcu_utilization("End fqs");
1739 1740
		return;	/* Someone else is already on the job. */
	}
1741
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1742
		goto unlock_fqs_ret; /* no emergency and done recently. */
1743
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1744
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1745
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1746
	if(!rcu_gp_in_progress(rsp)) {
1747
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1748
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1749
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1750
	}
1751
	rsp->fqs_active = 1;
1752
	switch (rsp->fqs_state) {
1753
	case RCU_GP_IDLE:
1754 1755
	case RCU_GP_INIT:

1756
		break; /* grace period idle or initializing, ignore. */
1757 1758 1759

	case RCU_SAVE_DYNTICK:

L
Lai Jiangshan 已提交
1760 1761
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1762
		/* Record dyntick-idle state. */
1763
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1764
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1765
		if (rcu_gp_in_progress(rsp))
1766
			rsp->fqs_state = RCU_FORCE_QS;
1767
		break;
1768 1769 1770 1771

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1772
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1773
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1774 1775 1776

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1777
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1778
		break;
1779
	}
1780
	rsp->fqs_active = 0;
1781
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1782
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1783 1784
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1785
		trace_rcu_utilization("End fqs");
1786 1787
		return;
	}
P
Paul E. McKenney 已提交
1788
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1789
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1790
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1791
	trace_rcu_utilization("End fqs");
1792 1793 1794
}

/*
1795 1796 1797
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1798 1799
 */
static void
1800
__rcu_process_callbacks(struct rcu_state *rsp)
1801 1802
{
	unsigned long flags;
1803
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1804

1805 1806
	WARN_ON_ONCE(rdp->beenonline == 0);

1807 1808 1809 1810
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1811
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1825
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1826 1827 1828 1829
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1830
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1831
		invoke_rcu_callbacks(rsp, rdp);
1832 1833
}

1834
/*
1835
 * Do RCU core processing for the current CPU.
1836
 */
1837
static void rcu_process_callbacks(struct softirq_action *unused)
1838
{
1839 1840
	struct rcu_state *rsp;

1841
	trace_rcu_utilization("Start RCU core");
1842 1843
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
1844
	trace_rcu_utilization("End RCU core");
1845 1846
}

1847
/*
1848 1849 1850 1851 1852
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1853
 */
1854
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1855
{
1856 1857
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1858 1859
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1860 1861
		return;
	}
1862
	invoke_rcu_callbacks_kthread();
1863 1864
}

1865
static void invoke_rcu_core(void)
1866 1867 1868 1869
{
	raise_softirq(RCU_SOFTIRQ);
}

1870 1871 1872 1873 1874
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
1875
{
1876 1877 1878 1879
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
1880
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1881 1882
		invoke_rcu_core();

1883
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1884
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1885
		return;
1886

1887 1888 1889 1890 1891 1892 1893
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1894
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1916
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1917
		force_quiescent_state(rsp, 1);
1918 1919
}

1920 1921
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1922
	   struct rcu_state *rsp, bool lazy)
1923 1924 1925 1926
{
	unsigned long flags;
	struct rcu_data *rdp;

1927
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1928
	debug_rcu_head_queue(head);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1941
	rdp = this_cpu_ptr(rsp->rda);
1942 1943

	/* Add the callback to our list. */
1944
	ACCESS_ONCE(rdp->qlen)++;
1945 1946
	if (lazy)
		rdp->qlen_lazy++;
1947 1948
	else
		rcu_idle_count_callbacks_posted();
1949 1950 1951
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1952

1953 1954
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1955
					 rdp->qlen_lazy, rdp->qlen);
1956
	else
1957
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1958

1959 1960
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
1961 1962 1963 1964
	local_irq_restore(flags);
}

/*
1965
 * Queue an RCU-sched callback for invocation after a grace period.
1966
 */
1967
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1968
{
1969
	__call_rcu(head, func, &rcu_sched_state, 0);
1970
}
1971
EXPORT_SYMBOL_GPL(call_rcu_sched);
1972 1973

/*
1974
 * Queue an RCU callback for invocation after a quicker grace period.
1975 1976 1977
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1978
	__call_rcu(head, func, &rcu_bh_state, 0);
1979 1980 1981
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
1993 1994
	int ret;

1995
	might_sleep();  /* Check for RCU read-side critical section. */
1996 1997 1998 1999
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2027 2028 2029 2030
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2031 2032
	if (rcu_blocking_is_gp())
		return;
2033
	wait_rcu_gp(call_rcu_sched);
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2048 2049 2050 2051
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2052 2053
	if (rcu_blocking_is_gp())
		return;
2054
	wait_rcu_gp(call_rcu_bh);
2055 2056 2057
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2088
 *
2089 2090 2091 2092
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2122
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
2134
		if (trycount++ < 10) {
2135
			udelay(trycount * num_online_cpus());
2136
		} else {
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2179 2180 2181 2182 2183 2184 2185 2186 2187
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2188 2189
	struct rcu_node *rnp = rdp->mynode;

2190 2191 2192 2193 2194 2195
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2196 2197
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2198 2199 2200 2201 2202 2203

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
2204
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
2205
		if (!rdp->preemptible &&
2206 2207 2208
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2209
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2210
		rdp->n_rp_report_qs++;
2211
		return 1;
2212
	}
2213 2214

	/* Does this CPU have callbacks ready to invoke? */
2215 2216
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2217
		return 1;
2218
	}
2219 2220

	/* Has RCU gone idle with this CPU needing another grace period? */
2221 2222
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2223
		return 1;
2224
	}
2225 2226

	/* Has another RCU grace period completed?  */
2227
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2228
		rdp->n_rp_gp_completed++;
2229
		return 1;
2230
	}
2231 2232

	/* Has a new RCU grace period started? */
2233
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2234
		rdp->n_rp_gp_started++;
2235
		return 1;
2236
	}
2237 2238

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2239
	if (rcu_gp_in_progress(rsp) &&
2240
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2241
		rdp->n_rp_need_fqs++;
2242
		return 1;
2243
	}
2244 2245

	/* nothing to do */
2246
	rdp->n_rp_need_nothing++;
2247 2248 2249 2250 2251 2252 2253 2254
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2255
static int rcu_pending(int cpu)
2256
{
2257 2258 2259 2260 2261 2262
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2263 2264 2265 2266 2267
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2268
 * 1 if so.
2269
 */
2270
static int rcu_cpu_has_callbacks(int cpu)
2271
{
2272 2273
	struct rcu_state *rsp;

2274
	/* RCU callbacks either ready or pending? */
2275 2276 2277 2278
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2279 2280
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2292 2293 2294 2295
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2296
static void rcu_barrier_callback(struct rcu_head *rhp)
2297
{
2298 2299 2300
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2301 2302
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2303
		complete(&rsp->barrier_completion);
2304 2305 2306
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2307 2308 2309 2310 2311 2312 2313
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2314
	struct rcu_state *rsp = type;
2315
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2316

2317
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2318
	atomic_inc(&rsp->barrier_cpu_count);
2319
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2320 2321 2322 2323 2324 2325
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2326
static void _rcu_barrier(struct rcu_state *rsp)
2327
{
2328 2329 2330
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
2331
	struct rcu_data rd;
2332 2333
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2334

2335
	init_rcu_head_on_stack(&rd.barrier_head);
2336
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2337

2338
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2339
	mutex_lock(&rsp->barrier_mutex);
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2354
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2355
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2356
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2369
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2370
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2371

2372
	/*
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2388
	 */
2389
	init_completion(&rsp->barrier_completion);
2390
	atomic_set(&rsp->barrier_cpu_count, 1);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
2406 2407
			_rcu_barrier_trace(rsp, "Offline", cpu,
					   rsp->n_barrier_done);
2408 2409 2410 2411
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2412 2413
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2414
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2415 2416
			preempt_enable();
		} else {
2417 2418
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2435
	atomic_inc(&rsp->barrier_cpu_count);
2436
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2437 2438
	rd.rsp = rsp;
	rsp->call(&rd.barrier_head, rcu_barrier_callback);
2439 2440 2441 2442 2443

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2444
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2445
		complete(&rsp->barrier_completion);
2446

2447 2448 2449 2450
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2451
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2452 2453
	smp_mb(); /* Keep increment before caller's subsequent code. */

2454
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2455
	wait_for_completion(&rsp->barrier_completion);
2456 2457

	/* Other rcu_barrier() invocations can now safely proceed. */
2458
	mutex_unlock(&rsp->barrier_mutex);
2459

2460
	destroy_rcu_head_on_stack(&rd.barrier_head);
2461 2462 2463 2464 2465 2466 2467
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2468
	_rcu_barrier(&rcu_bh_state);
2469 2470 2471 2472 2473 2474 2475 2476
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2477
	_rcu_barrier(&rcu_sched_state);
2478 2479 2480
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2481
/*
2482
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2483
 */
2484 2485
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2486 2487
{
	unsigned long flags;
2488
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2489 2490 2491
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2492
	raw_spin_lock_irqsave(&rnp->lock, flags);
2493
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2494
	init_callback_list(rdp);
2495
	rdp->qlen_lazy = 0;
2496
	ACCESS_ONCE(rdp->qlen) = 0;
2497
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2498
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2499
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2500
	rdp->cpu = cpu;
2501
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2502
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2503 2504 2505 2506 2507 2508 2509
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2510
 */
2511
static void __cpuinit
P
Paul E. McKenney 已提交
2512
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2513 2514 2515
{
	unsigned long flags;
	unsigned long mask;
2516
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2517 2518 2519
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2520
	raw_spin_lock_irqsave(&rnp->lock, flags);
2521
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2522
	rdp->preemptible = preemptible;
2523 2524
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2525
	rdp->blimit = blimit;
2526
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2527 2528
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2529
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2530
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2531 2532 2533 2534 2535 2536 2537

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2538
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2539 2540 2541 2542 2543 2544

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2545
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2546 2547
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2548
		if (rnp == rdp->mynode) {
2549 2550 2551 2552 2553 2554
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2555
			rdp->completed = rnp->completed;
2556 2557
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2558
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2559
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2560
		}
P
Paul E. McKenney 已提交
2561
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2562 2563 2564
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2565
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2566 2567
}

P
Peter Zijlstra 已提交
2568
static void __cpuinit rcu_prepare_cpu(int cpu)
2569
{
2570 2571 2572 2573 2574
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2575 2576 2577
}

/*
2578
 * Handle CPU online/offline notification events.
2579
 */
2580 2581
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2582 2583
{
	long cpu = (long)hcpu;
2584
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2585
	struct rcu_node *rnp = rdp->mynode;
2586
	struct rcu_state *rsp;
2587

2588
	trace_rcu_utilization("Start CPU hotplug");
2589 2590 2591
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2592 2593
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2594 2595
		break;
	case CPU_ONLINE:
2596 2597
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2598
		rcu_cpu_kthread_setrt(cpu, 1);
2599 2600 2601
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2602
		rcu_cpu_kthread_setrt(cpu, 0);
2603
		break;
2604 2605 2606
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2607 2608 2609
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2610
		 */
2611 2612
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2613
		rcu_cleanup_after_idle(cpu);
2614
		break;
2615 2616 2617 2618
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2619 2620
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2621 2622 2623 2624
		break;
	default:
		break;
	}
2625
	trace_rcu_utilization("End CPU hotplug");
2626 2627 2628
	return NOTIFY_OK;
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2644 2645 2646 2647 2648 2649 2650 2651 2652
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2653
	for (i = rcu_num_lvls - 1; i > 0; i--)
2654
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2655
	rsp->levelspread[0] = rcu_fanout_leaf;
2656 2657 2658 2659 2660 2661 2662 2663 2664
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
2665
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2676 2677
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2678
{
2679 2680 2681 2682
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2683 2684 2685 2686 2687
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2688 2689
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2690 2691
	/* Initialize the level-tracking arrays. */

2692 2693 2694
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2695 2696 2697 2698 2699
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2700
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2701 2702 2703
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2704
			raw_spin_lock_init(&rnp->lock);
2705 2706
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2707
			rnp->gpnum = 0;
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2725
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2726 2727
		}
	}
2728

2729
	rsp->rda = rda;
2730
	rnp = rsp->level[rcu_num_lvls - 1];
2731
	for_each_possible_cpu(i) {
2732
		while (i > rnp->grphi)
2733
			rnp++;
2734
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2735 2736
		rcu_boot_init_percpu_data(i, rsp);
	}
2737
	list_add(&rsp->flavors, &rcu_struct_flavors);
2738 2739
}

2740 2741 2742 2743 2744 2745 2746 2747 2748
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
2749
	int n = nr_cpu_ids;
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2800
void __init rcu_init(void)
2801
{
P
Paul E. McKenney 已提交
2802
	int cpu;
2803

2804
	rcu_bootup_announce();
2805
	rcu_init_geometry();
2806 2807
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2808
	__rcu_init_preempt();
2809
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2810 2811 2812 2813 2814 2815 2816

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2817 2818
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2819
	check_cpu_stall_init();
2820 2821
}

2822
#include "rcutree_plugin.h"