rcutree.c 84.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
64

65
#define RCU_STATE_INITIALIZER(structname) { \
66
	.level = { &structname##_state.node[0] }, \
67 68 69 70
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
71 72
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73
	}, \
74
	.fqs_state = RCU_GP_IDLE, \
75 76
	.gpnum = -300, \
	.completed = -300, \
77
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 79
	.orphan_nxttail = &structname##_state.orphan_nxtlist, \
	.orphan_donetail = &structname##_state.orphan_donelist, \
80
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
81 82
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
83
	.name = #structname, \
84 85
}

86
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
87
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
88

89
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
90
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
91

92 93
static struct rcu_state *rcu_state;

94 95 96 97 98 99 100 101 102
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
103 104 105
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

106 107 108 109 110 111 112 113 114 115 116 117 118 119
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

120 121
#ifdef CONFIG_RCU_BOOST

122 123 124 125 126
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
127
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
128
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
129
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
130
DEFINE_PER_CPU(char, rcu_cpu_has_work);
131

132 133
#endif /* #ifdef CONFIG_RCU_BOOST */

134
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
135 136
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
137

138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

150 151 152 153 154 155 156
/* State information for rcu_barrier() and friends. */

static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

157 158 159 160 161 162 163 164 165 166
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

167
/*
168
 * Note a quiescent state.  Because we do not need to know
169
 * how many quiescent states passed, just if there was at least
170
 * one since the start of the grace period, this just sets a flag.
171
 * The caller must have disabled preemption.
172
 */
173
void rcu_sched_qs(int cpu)
174
{
175
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
176

177
	rdp->passed_quiesce_gpnum = rdp->gpnum;
178
	barrier();
179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182 183
}

184
void rcu_bh_qs(int cpu)
185
{
186
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187

188
	rdp->passed_quiesce_gpnum = rdp->gpnum;
189
	barrier();
190
	if (rdp->passed_quiesce == 0)
191
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
192
	rdp->passed_quiesce = 1;
193
}
194

195 196 197
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
198
 * The caller must have disabled preemption.
199 200 201
 */
void rcu_note_context_switch(int cpu)
{
202
	trace_rcu_utilization("Start context switch");
203
	rcu_sched_qs(cpu);
204
	trace_rcu_utilization("End context switch");
205
}
206
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
207

208
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
209
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
210
	.dynticks = ATOMIC_INIT(1),
211
};
212

213
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
214 215 216
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

217 218 219 220
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

221 222 223
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

224
module_param(rcu_cpu_stall_suppress, int, 0644);
225
module_param(rcu_cpu_stall_timeout, int, 0644);
226

227
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
228
static int rcu_pending(int cpu);
229 230

/*
231
 * Return the number of RCU-sched batches processed thus far for debug & stats.
232
 */
233
long rcu_batches_completed_sched(void)
234
{
235
	return rcu_sched_state.completed;
236
}
237
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
238 239 240 241 242 243 244 245 246 247

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

248 249 250 251 252 253 254 255 256
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

282 283 284 285 286 287 288 289 290
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
306
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
331 332 333 334 335
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
336
	 */
337 338
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
339
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
340 341 342 343 344 345
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

346 347 348 349 350 351 352
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
353
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
354
{
355
	trace_rcu_dyntick("Start", oldval, 0);
356
	if (!is_idle_task(current)) {
357 358
		struct task_struct *idle = idle_task(smp_processor_id());

359
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
360
		ftrace_dump(DUMP_ALL);
361 362 363
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
364
	}
365
	rcu_prepare_for_idle(smp_processor_id());
366 367 368 369 370
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
371 372 373 374 375 376 377 378 379 380 381

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
382
}
383 384

/**
385
 * rcu_idle_enter - inform RCU that current CPU is entering idle
386
 *
387
 * Enter idle mode, in other words, -leave- the mode in which RCU
388
 * read-side critical sections can occur.  (Though RCU read-side
389 390 391 392 393 394
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
395
 */
396
void rcu_idle_enter(void)
397 398
{
	unsigned long flags;
399
	long long oldval;
400 401 402 403
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
404
	oldval = rdtp->dynticks_nesting;
405 406 407 408 409
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
410
	rcu_idle_enter_common(rdtp, oldval);
411 412
	local_irq_restore(flags);
}
413
EXPORT_SYMBOL_GPL(rcu_idle_enter);
414

415 416 417 418 419 420
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
421
 *
422 423 424 425 426 427 428 429
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
430
 */
431
void rcu_irq_exit(void)
432 433
{
	unsigned long flags;
434
	long long oldval;
435 436 437 438
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
439
	oldval = rdtp->dynticks_nesting;
440 441
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
442 443 444 445
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
446 447 448 449 450 451 452 453 454 455 456 457
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
458 459 460 461 462
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
463
	rcu_cleanup_after_idle(smp_processor_id());
464
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
465
	if (!is_idle_task(current)) {
466 467
		struct task_struct *idle = idle_task(smp_processor_id());

468 469
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
470
		ftrace_dump(DUMP_ALL);
471 472 473
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
474 475 476 477 478 479 480 481 482
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
483
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
484
 * allow for the possibility of usermode upcalls messing up our count
485 486 487 488 489 490 491 492 493 494 495 496
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
497 498 499 500 501
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
502 503 504
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
505
EXPORT_SYMBOL_GPL(rcu_idle_exit);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
537 538 539 540
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
541 542 543 544 545 546 547 548 549 550 551 552 553 554
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

555 556
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
557
		return;
558 559 560 561 562 563
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
564 565 566 567 568 569 570 571 572 573 574 575 576
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

577 578
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
579
		return;
580 581 582 583 584
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
585 586
}

587 588
#ifdef CONFIG_PROVE_RCU

589
/**
590
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
591
 *
592
 * If the current CPU is in its idle loop and is neither in an interrupt
593
 * or NMI handler, return true.
594
 */
595
int rcu_is_cpu_idle(void)
596
{
597 598 599 600 601 602
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
603
}
604
EXPORT_SYMBOL(rcu_is_cpu_idle);
605

606 607 608 609 610 611 612 613
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
614 615 616 617 618 619 620 621 622 623 624
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
625 626 627 628 629 630
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
631 632
	struct rcu_data *rdp;
	struct rcu_node *rnp;
633 634 635 636 637
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
638 639 640
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
641 642 643 644 645 646 647 648
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

649 650
#endif /* #ifdef CONFIG_PROVE_RCU */

651
/**
652
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
653
 *
654 655 656
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
657
 */
658
int rcu_is_cpu_rrupt_from_idle(void)
659
{
660
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
661 662 663 664 665
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
666
 * is in dynticks idle mode, which is an extended quiescent state.
667 668 669
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
670
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
671
	return (rdp->dynticks_snap & 0x1) == 0;
672 673 674 675 676 677 678 679 680 681
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
682 683
	unsigned int curr;
	unsigned int snap;
684

685 686
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
687 688 689 690 691 692 693 694 695

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
696
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
697
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
698 699 700 701 702 703 704 705
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

724 725 726
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
727
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
728 729 730 731 732 733 734
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
735
	int ndetected;
736 737 738 739
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
740
	raw_spin_lock_irqsave(&rnp->lock, flags);
741
	delta = jiffies - rsp->jiffies_stall;
742
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
743
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
744 745
		return;
	}
746
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
747
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
748

749 750 751 752 753
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
754
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
755
	       rsp->name);
756
	print_cpu_stall_info_begin();
757
	rcu_for_each_leaf_node(rsp, rnp) {
758
		raw_spin_lock_irqsave(&rnp->lock, flags);
759
		ndetected += rcu_print_task_stall(rnp);
760
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
761
		if (rnp->qsmask == 0)
762
			continue;
763
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
764
			if (rnp->qsmask & (1UL << cpu)) {
765
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
766 767
				ndetected++;
			}
768
	}
769 770 771 772 773 774 775 776 777 778 779 780

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	ndetected = rcu_print_task_stall(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
781
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
782 783 784
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
785
		dump_stack();
786

787 788 789 790
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

791 792 793 794 795 796 797 798
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

799 800 801 802 803
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
804 805 806 807 808
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
809 810
	if (!trigger_all_cpu_backtrace())
		dump_stack();
811

P
Paul E. McKenney 已提交
812
	raw_spin_lock_irqsave(&rnp->lock, flags);
813
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
814 815
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
816
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
817

818 819 820 821 822
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
823 824
	unsigned long j;
	unsigned long js;
825 826
	struct rcu_node *rnp;

827
	if (rcu_cpu_stall_suppress)
828
		return;
829 830
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
831
	rnp = rdp->mynode;
832
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
833 834 835 836

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

837 838
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
839

840
		/* They had a few time units to dump stack, so complain. */
841 842 843 844
		print_other_cpu_stall(rsp);
	}
}

845 846
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
847
	rcu_cpu_stall_suppress = 1;
848 849 850
	return NOTIFY_DONE;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

867 868 869 870 871 872 873 874 875
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

876 877 878
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
879 880 881
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
882
 */
883 884 885
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
886 887 888 889 890
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
891
		rdp->gpnum = rnp->gpnum;
892
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
893 894
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
895
			rdp->passed_quiesce = 0;
896 897
		} else
			rdp->qs_pending = 0;
898
		zero_cpu_stall_ticks(rdp);
899 900 901
	}
}

902 903
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
904 905 906 907 908 909
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
910
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
911 912 913 914
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
915
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
957
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
958

959 960
		/*
		 * If we were in an extended quiescent state, we may have
961
		 * missed some grace periods that others CPUs handled on
962
		 * our behalf. Catch up with this state to avoid noting
963 964 965
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
966
		 */
967
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
968 969
			rdp->gpnum = rdp->completed;

970
		/*
971 972
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
973
		 */
974
		if ((rnp->qsmask & rdp->grpmask) == 0)
975
			rdp->qs_pending = 0;
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
993
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
994 995 996 997
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
998
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1025 1026 1027

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1028 1029
}

1030 1031 1032 1033 1034
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1035 1036 1037 1038
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1039 1040 1041 1042 1043
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1044
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1045 1046
	struct rcu_node *rnp = rcu_get_root(rsp);

1047
	if (!rcu_scheduler_fully_active ||
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1058

1059
	if (rsp->fqs_active) {
1060
		/*
1061 1062
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
1063
		 */
1064 1065
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1066 1067 1068 1069 1070
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
1071
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1072 1073
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1074 1075
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
1076
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1077 1078

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
1079
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1080 1081

	/*
1082 1083 1084 1085 1086 1087 1088 1089 1090
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1091 1092 1093 1094
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1095 1096
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1097
	 */
1098
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1099
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1100
		rcu_preempt_check_blocked_tasks(rnp);
1101
		rnp->qsmask = rnp->qsmaskinit;
1102
		rnp->gpnum = rsp->gpnum;
1103 1104 1105
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1106
		rcu_preempt_boost_start_gp(rnp);
1107 1108 1109
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1110
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1111 1112
	}

1113
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1114
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1115
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1116 1117
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1118 1119
}

1120
/*
P
Paul E. McKenney 已提交
1121 1122 1123 1124 1125
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1126
 */
P
Paul E. McKenney 已提交
1127
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1128
	__releases(rcu_get_root(rsp)->lock)
1129
{
1130
	unsigned long gp_duration;
1131 1132
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1133

1134
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1135 1136 1137 1138 1139 1140

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1141 1142 1143
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1178
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1179
	rsp->fqs_state = RCU_GP_IDLE;
1180 1181 1182
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1183
/*
P
Paul E. McKenney 已提交
1184 1185 1186 1187 1188 1189
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1190 1191
 */
static void
P
Paul E. McKenney 已提交
1192 1193
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1194 1195
	__releases(rnp->lock)
{
1196 1197
	struct rcu_node *rnp_c;

1198 1199 1200 1201 1202
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1203
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1204 1205 1206
			return;
		}
		rnp->qsmask &= ~mask;
1207 1208 1209 1210
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1211
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1212 1213

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1214
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1215 1216 1217 1218 1219 1220 1221 1222 1223
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1224
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1225
		rnp_c = rnp;
1226
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1227
		raw_spin_lock_irqsave(&rnp->lock, flags);
1228
		WARN_ON_ONCE(rnp_c->qsmask);
1229 1230 1231 1232
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1233
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1234
	 * to clean up and start the next grace period if one is needed.
1235
	 */
P
Paul E. McKenney 已提交
1236
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1237 1238 1239
}

/*
P
Paul E. McKenney 已提交
1240 1241 1242 1243 1244 1245 1246
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1247 1248
 */
static void
1249
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1250 1251 1252 1253 1254 1255
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1256
	raw_spin_lock_irqsave(&rnp->lock, flags);
1257
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1258 1259

		/*
1260 1261 1262 1263
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1264
		 */
1265
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1266
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1267 1268 1269 1270
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1271
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1272 1273 1274 1275 1276 1277 1278 1279 1280
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1281
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1309
	if (!rdp->passed_quiesce)
1310 1311
		return;

P
Paul E. McKenney 已提交
1312 1313 1314 1315
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1316
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1317 1318 1319 1320
}

#ifdef CONFIG_HOTPLUG_CPU

1321
/*
1322 1323 1324
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1325
 */
1326 1327 1328
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1329 1330
{
	int i;
1331

1332 1333 1334 1335 1336
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1337
	if (rdp->nxtlist != NULL) {
1338 1339 1340
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1341 1342 1343 1344 1345
		rdp->qlen_lazy = 0;
		rdp->qlen = 0;
	}

	/*
1346 1347 1348 1349 1350 1351 1352
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1353
	 */
1354 1355 1356 1357
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1358 1359 1360
	}

	/*
1361 1362 1363
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1364
	 */
1365
	if (rdp->nxtlist != NULL) {
1366 1367
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1368
	}
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	/* Finally, initialize the rcu_data structure's list to empty.  */
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1385
	/*
1386 1387 1388 1389 1390
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1391
	 */
1392 1393 1394 1395 1396 1397 1398 1399
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1400 1401
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1441 1442 1443
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1444 1445 1446
}

/*
1447
 * The CPU has been completely removed, and some other CPU is reporting
1448 1449 1450
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1451 1452
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1453
 */
1454
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1455
{
1456 1457 1458
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1459
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1460
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1461

1462
	/* Adjust any no-longer-needed kthreads. */
1463 1464
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1465

1466
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1467 1468 1469 1470

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1471 1472 1473 1474
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1507 1508 1509 1510
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1511 1512 1513 1514
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1515
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1516 1517 1518
{
}

1519
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1520 1521 1522 1523 1524 1525 1526 1527 1528
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1529
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1530 1531 1532
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1533
	int bl, count, count_lazy, i;
1534 1535

	/* If no callbacks are ready, just return.*/
1536
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1537
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1538 1539 1540
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1541
		return;
1542
	}
1543 1544 1545 1546 1547 1548

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1549
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1550
	bl = rdp->blimit;
1551
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1552 1553 1554 1555
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1556 1557 1558
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1559 1560 1561
	local_irq_restore(flags);

	/* Invoke callbacks. */
1562
	count = count_lazy = 0;
1563 1564 1565
	while (list) {
		next = list->next;
		prefetch(next);
1566
		debug_rcu_head_unqueue(list);
1567 1568
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1569
		list = next;
1570 1571 1572 1573
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1574 1575 1576 1577
			break;
	}

	local_irq_save(flags);
1578 1579 1580
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1581 1582 1583 1584 1585

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1586 1587 1588
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1589 1590 1591
			else
				break;
	}
1592 1593 1594 1595
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
	rdp->qlen -= count;
	rdp->n_cbs_invoked += count;
1596 1597 1598 1599 1600

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1601 1602 1603 1604 1605 1606 1607
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1608 1609
	local_irq_restore(flags);

1610
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1611
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1612
		invoke_rcu_core();
1613 1614 1615 1616 1617
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1618
 * Also schedule RCU core processing.
1619
 *
1620
 * This function must be called from hardirq context.  It is normally
1621 1622 1623 1624 1625
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1626
	trace_rcu_utilization("Start scheduler-tick");
1627
	increment_cpu_stall_ticks();
1628
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1629 1630 1631 1632 1633

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1634
		 * a quiescent state, so note it.
1635 1636
		 *
		 * No memory barrier is required here because both
1637 1638 1639
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1640 1641
		 */

1642 1643
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1644 1645 1646 1647 1648 1649 1650

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1651
		 * critical section, so note it.
1652 1653
		 */

1654
		rcu_bh_qs(cpu);
1655
	}
1656
	rcu_preempt_check_callbacks(cpu);
1657
	if (rcu_pending(cpu))
1658
		invoke_rcu_core();
1659
	trace_rcu_utilization("End scheduler-tick");
1660 1661 1662 1663 1664
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1665 1666
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1667
 * The caller must have suppressed start of new grace periods.
1668
 */
1669
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1670 1671 1672 1673 1674
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1675
	struct rcu_node *rnp;
1676

1677
	rcu_for_each_leaf_node(rsp, rnp) {
1678
		mask = 0;
P
Paul E. McKenney 已提交
1679
		raw_spin_lock_irqsave(&rnp->lock, flags);
1680
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1681
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1682
			return;
1683
		}
1684
		if (rnp->qsmask == 0) {
1685
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1686 1687
			continue;
		}
1688
		cpu = rnp->grplo;
1689
		bit = 1;
1690
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1691 1692
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1693 1694
				mask |= bit;
		}
1695
		if (mask != 0) {
1696

P
Paul E. McKenney 已提交
1697 1698
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1699 1700
			continue;
		}
P
Paul E. McKenney 已提交
1701
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1702
	}
1703
	rnp = rcu_get_root(rsp);
1704 1705 1706 1707
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1719 1720 1721
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1722
		return;  /* No grace period in progress, nothing to force. */
1723
	}
P
Paul E. McKenney 已提交
1724
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1725
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1726
		trace_rcu_utilization("End fqs");
1727 1728
		return;	/* Someone else is already on the job. */
	}
1729
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1730
		goto unlock_fqs_ret; /* no emergency and done recently. */
1731
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1732
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1733
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1734
	if(!rcu_gp_in_progress(rsp)) {
1735
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1736
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1737
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1738
	}
1739
	rsp->fqs_active = 1;
1740
	switch (rsp->fqs_state) {
1741
	case RCU_GP_IDLE:
1742 1743
	case RCU_GP_INIT:

1744
		break; /* grace period idle or initializing, ignore. */
1745 1746 1747 1748 1749

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1750 1751
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1752
		/* Record dyntick-idle state. */
1753
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1754
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1755
		if (rcu_gp_in_progress(rsp))
1756
			rsp->fqs_state = RCU_FORCE_QS;
1757
		break;
1758 1759 1760 1761

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1762
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1763
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1764 1765 1766

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1767
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1768
		break;
1769
	}
1770
	rsp->fqs_active = 0;
1771
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1772
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1773 1774
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1775
		trace_rcu_utilization("End fqs");
1776 1777
		return;
	}
P
Paul E. McKenney 已提交
1778
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1779
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1780
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1781
	trace_rcu_utilization("End fqs");
1782 1783 1784
}

/*
1785 1786 1787
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1788 1789 1790 1791 1792 1793
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1794 1795
	WARN_ON_ONCE(rdp->beenonline == 0);

1796 1797 1798 1799
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1800
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1814
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1815 1816 1817 1818
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1819
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1820
		invoke_rcu_callbacks(rsp, rdp);
1821 1822
}

1823
/*
1824
 * Do RCU core processing for the current CPU.
1825
 */
1826
static void rcu_process_callbacks(struct softirq_action *unused)
1827
{
1828
	trace_rcu_utilization("Start RCU core");
1829 1830
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1831
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1832
	rcu_preempt_process_callbacks();
1833
	trace_rcu_utilization("End RCU core");
1834 1835
}

1836
/*
1837 1838 1839 1840 1841
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1842
 */
1843
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1844
{
1845 1846
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1847 1848
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1849 1850
		return;
	}
1851
	invoke_rcu_callbacks_kthread();
1852 1853
}

1854
static void invoke_rcu_core(void)
1855 1856 1857 1858
{
	raise_softirq(RCU_SOFTIRQ);
}

1859 1860
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1861
	   struct rcu_state *rsp, bool lazy)
1862 1863 1864 1865
{
	unsigned long flags;
	struct rcu_data *rdp;

1866
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1867
	debug_rcu_head_queue(head);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1880
	rdp = this_cpu_ptr(rsp->rda);
1881 1882

	/* Add the callback to our list. */
1883
	rdp->qlen++;
1884 1885
	if (lazy)
		rdp->qlen_lazy++;
1886 1887
	else
		rcu_idle_count_callbacks_posted();
1888 1889 1890
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1891

1892 1893
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1894
					 rdp->qlen_lazy, rdp->qlen);
1895
	else
1896
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1897

1898 1899 1900 1901 1902
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1903

1904 1905 1906 1907 1908 1909 1910
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1911
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1933
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1934 1935 1936 1937 1938
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1939
 * Queue an RCU-sched callback for invocation after a grace period.
1940
 */
1941
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1942
{
1943
	__call_rcu(head, func, &rcu_sched_state, 0);
1944
}
1945
EXPORT_SYMBOL_GPL(call_rcu_sched);
1946 1947

/*
1948
 * Queue an RCU callback for invocation after a quicker grace period.
1949 1950 1951
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1952
	__call_rcu(head, func, &rcu_bh_state, 0);
1953 1954 1955
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 *
 * Of course, sampling num_online_cpus() with preemption enabled can
 * give erroneous results if there are concurrent CPU-hotplug operations.
 * For example, given a demonic sequence of preemptions in num_online_cpus()
 * and CPU-hotplug operations, there could be two or more CPUs online at
 * all times, but num_online_cpus() might well return one (or even zero).
 *
 * However, all such demonic sequences require at least one CPU-offline
 * operation.  Furthermore, rcu_blocking_is_gp() giving the wrong answer
 * is only a problem if there is an RCU read-side critical section executing
 * throughout.  But RCU-sched and RCU-bh read-side critical sections
 * disable either preemption or bh, which prevents a CPU from going offline.
 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
 * that there is only one CPU when in fact there was more than one throughout
 * is when there were no RCU readers in the system.  If there are no
 * RCU readers, the grace period by definition can be of zero length,
 * regardless of the number of online CPUs.
 */
static inline int rcu_blocking_is_gp(void)
{
	might_sleep();  /* Check for RCU read-side critical section. */
	return num_online_cpus() <= 1;
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2013 2014 2015 2016
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2017 2018
	if (rcu_blocking_is_gp())
		return;
2019
	wait_rcu_gp(call_rcu_sched);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2034 2035 2036 2037
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2038 2039
	if (rcu_blocking_is_gp())
		return;
2040
	wait_rcu_gp(call_rcu_bh);
2041 2042 2043
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2074
 *
2075 2076 2077 2078
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2108
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2165 2166 2167 2168 2169 2170 2171 2172 2173
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2174 2175
	struct rcu_node *rnp = rdp->mynode;

2176 2177 2178 2179 2180 2181
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2182 2183
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2184 2185 2186 2187 2188 2189

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
2190
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
2191
		if (!rdp->preemptible &&
2192 2193 2194
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2195
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2196
		rdp->n_rp_report_qs++;
2197
		return 1;
2198
	}
2199 2200

	/* Does this CPU have callbacks ready to invoke? */
2201 2202
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2203
		return 1;
2204
	}
2205 2206

	/* Has RCU gone idle with this CPU needing another grace period? */
2207 2208
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2209
		return 1;
2210
	}
2211 2212

	/* Has another RCU grace period completed?  */
2213
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2214
		rdp->n_rp_gp_completed++;
2215
		return 1;
2216
	}
2217 2218

	/* Has a new RCU grace period started? */
2219
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2220
		rdp->n_rp_gp_started++;
2221
		return 1;
2222
	}
2223 2224

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2225
	if (rcu_gp_in_progress(rsp) &&
2226
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2227
		rdp->n_rp_need_fqs++;
2228
		return 1;
2229
	}
2230 2231

	/* nothing to do */
2232
	rdp->n_rp_need_nothing++;
2233 2234 2235 2236 2237 2238 2239 2240
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2241
static int rcu_pending(int cpu)
2242
{
2243
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2244 2245
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2246 2247 2248 2249 2250
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2251
 * 1 if so.
2252
 */
2253
static int rcu_cpu_has_callbacks(int cpu)
2254 2255
{
	/* RCU callbacks either ready or pending? */
2256
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2257
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2258
	       rcu_preempt_cpu_has_callbacks(cpu);
2259 2260
}

2261 2262 2263 2264
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2290 2291
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2292 2293
					       void (*func)(struct rcu_head *head)))
{
2294 2295 2296 2297 2298 2299 2300
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_head rh;

	init_rcu_head_on_stack(&rh);

2301
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2302
	mutex_lock(&rcu_barrier_mutex);
2303 2304 2305

	smp_mb();  /* Prevent any prior operations from leaking in. */

2306
	/*
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2322
	 */
2323
	init_completion(&rcu_barrier_completion);
2324
	atomic_set(&rcu_barrier_cpu_count, 1);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
			smp_call_function_single(cpu, rcu_barrier_func,
						 (void *)call_rcu_func, 1);
			preempt_enable();
		} else {
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
	atomic_inc(&rcu_barrier_cpu_count);
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
	call_rcu_func(&rh, rcu_barrier_callback);

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2372 2373
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
2374 2375

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2376
	wait_for_completion(&rcu_barrier_completion);
2377 2378

	/* Other rcu_barrier() invocations can now safely proceed. */
2379
	mutex_unlock(&rcu_barrier_mutex);
2380 2381

	destroy_rcu_head_on_stack(&rh);
2382 2383 2384 2385 2386 2387 2388
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2389
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2390 2391 2392 2393 2394 2395 2396 2397
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2398
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2399 2400 2401
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2402
/*
2403
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2404
 */
2405 2406
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2407 2408 2409
{
	unsigned long flags;
	int i;
2410
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2411 2412 2413
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2414
	raw_spin_lock_irqsave(&rnp->lock, flags);
2415 2416 2417 2418
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
2419
	rdp->qlen_lazy = 0;
2420 2421
	rdp->qlen = 0;
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2422
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2423
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2424
	rdp->cpu = cpu;
2425
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2426
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2427 2428 2429 2430 2431 2432 2433
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2434
 */
2435
static void __cpuinit
P
Paul E. McKenney 已提交
2436
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2437 2438 2439
{
	unsigned long flags;
	unsigned long mask;
2440
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2441 2442 2443
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2444
	raw_spin_lock_irqsave(&rnp->lock, flags);
2445
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2446
	rdp->preemptible = preemptible;
2447 2448
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2449
	rdp->blimit = blimit;
2450
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2451 2452
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2453
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2454
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2455 2456 2457 2458 2459 2460 2461

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2462
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2463 2464 2465 2466 2467 2468

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2469
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2470 2471
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2472
		if (rnp == rdp->mynode) {
2473 2474 2475 2476 2477 2478
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2479
			rdp->completed = rnp->completed;
2480 2481
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2482
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2483
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2484
		}
P
Paul E. McKenney 已提交
2485
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2486 2487 2488
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2489
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2490 2491
}

P
Peter Zijlstra 已提交
2492
static void __cpuinit rcu_prepare_cpu(int cpu)
2493
{
2494 2495 2496
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2497 2498 2499
}

/*
2500
 * Handle CPU online/offline notification events.
2501
 */
2502 2503
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2504 2505
{
	long cpu = (long)hcpu;
2506
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2507
	struct rcu_node *rnp = rdp->mynode;
2508

2509
	trace_rcu_utilization("Start CPU hotplug");
2510 2511 2512
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2513 2514
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2515 2516
		break;
	case CPU_ONLINE:
2517 2518
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2519
		rcu_cpu_kthread_setrt(cpu, 1);
2520 2521 2522
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2523
		rcu_cpu_kthread_setrt(cpu, 0);
2524
		break;
2525 2526 2527
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2528 2529 2530
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2531
		 */
2532 2533 2534
		rcu_cleanup_dying_cpu(&rcu_bh_state);
		rcu_cleanup_dying_cpu(&rcu_sched_state);
		rcu_preempt_cleanup_dying_cpu();
2535
		rcu_cleanup_after_idle(cpu);
2536
		break;
2537 2538 2539 2540
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2541 2542 2543
		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
		rcu_preempt_cleanup_dead_cpu(cpu);
2544 2545 2546 2547
		break;
	default:
		break;
	}
2548
	trace_rcu_utilization("End CPU hotplug");
2549 2550 2551
	return NOTIFY_OK;
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2567 2568 2569 2570 2571 2572 2573 2574 2575
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2576
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2577
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2578
	rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2599 2600
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2601
{
2602 2603 2604 2605
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2606 2607 2608 2609 2610
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2611 2612
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2625
			raw_spin_lock_init(&rnp->lock);
2626 2627
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2628
			rnp->gpnum = 0;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2646
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2647 2648
		}
	}
2649

2650
	rsp->rda = rda;
2651 2652
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2653
		while (i > rnp->grphi)
2654
			rnp++;
2655
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2656 2657
		rcu_boot_init_percpu_data(i, rsp);
	}
2658 2659
}

2660
void __init rcu_init(void)
2661
{
P
Paul E. McKenney 已提交
2662
	int cpu;
2663

2664
	rcu_bootup_announce();
2665 2666
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2667
	__rcu_init_preempt();
2668
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2669 2670 2671 2672 2673 2674 2675

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2676 2677
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2678
	check_cpu_stall_init();
2679 2680
}

2681
#include "rcutree_plugin.h"