rcutree.c 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53

54
#include "rcutree.h"
55 56 57
#include <trace/events/rcu.h>

#include "rcu.h"
58

59 60
/* Data structures. */

61
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62

63
#define RCU_STATE_INITIALIZER(structname) { \
64
	.level = { &structname##_state.node[0] }, \
65 66 67 68
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
69 70
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71
	}, \
72
	.fqs_state = RCU_GP_IDLE, \
73 74
	.gpnum = -300, \
	.completed = -300, \
75 76
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 78
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
79
	.name = #structname, \
80 81
}

82
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88 89
static struct rcu_state *rcu_state;

90 91 92 93 94 95 96 97 98
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
99 100 101
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

116 117
#ifdef CONFIG_RCU_BOOST

118 119 120 121 122
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126
DEFINE_PER_CPU(char, rcu_cpu_has_work);
127

128 129
#endif /* #ifdef CONFIG_RCU_BOOST */

130
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 132
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133

134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

146 147 148 149 150 151 152 153 154 155
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

156
/*
157
 * Note a quiescent state.  Because we do not need to know
158
 * how many quiescent states passed, just if there was at least
159
 * one since the start of the grace period, this just sets a flag.
160
 * The caller must have disabled preemption.
161
 */
162
void rcu_sched_qs(int cpu)
163
{
164
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165

166
	rdp->passed_quiesce_gpnum = rdp->gpnum;
167
	barrier();
168
	if (rdp->passed_quiesce == 0)
169
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170
	rdp->passed_quiesce = 1;
171 172
}

173
void rcu_bh_qs(int cpu)
174
{
175
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176

177
	rdp->passed_quiesce_gpnum = rdp->gpnum;
178
	barrier();
179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182
}
183

184 185 186
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
187
 * The caller must have disabled preemption.
188 189 190
 */
void rcu_note_context_switch(int cpu)
{
191
	trace_rcu_utilization("Start context switch");
192 193
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
194
	trace_rcu_utilization("End context switch");
195
}
196
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197

198
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199
	.dynticks_nesting = DYNTICK_TASK_NESTING,
200
	.dynticks = ATOMIC_INIT(1),
201
};
202

203
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
204 205 206
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

207 208 209 210
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

211
int rcu_cpu_stall_suppress __read_mostly;
212
module_param(rcu_cpu_stall_suppress, int, 0644);
213

214
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215
static int rcu_pending(int cpu);
216 217

/*
218
 * Return the number of RCU-sched batches processed thus far for debug & stats.
219
 */
220
long rcu_batches_completed_sched(void)
221
{
222
	return rcu_sched_state.completed;
223
}
224
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225 226 227 228 229 230 231 232 233 234

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

235 236 237 238 239 240 241 242 243
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

269 270 271 272 273 274 275 276 277
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
293
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
324
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 326 327 328
		rdp->offline_fqs++;
		return 1;
	}

329 330 331 332 333
	/*
	 * The CPU is online, so send it a reschedule IPI.  This forces
	 * it through the scheduler, and (inefficiently) also handles cases
	 * where idle loops fail to inform RCU about the CPU being idle.
	 */
334 335 336 337 338 339 340 341 342 343
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

344 345 346 347 348 349 350
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
351
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352
{
353
	trace_rcu_dyntick("Start", oldval, 0);
354
	if (!is_idle_task(current)) {
355 356
		struct task_struct *idle = idle_task(smp_processor_id());

357
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
358
		ftrace_dump(DUMP_ALL);
359 360 361
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
362
	}
363
	rcu_prepare_for_idle(smp_processor_id());
364 365 366 367 368 369
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
}
370 371

/**
372
 * rcu_idle_enter - inform RCU that current CPU is entering idle
373
 *
374
 * Enter idle mode, in other words, -leave- the mode in which RCU
375
 * read-side critical sections can occur.  (Though RCU read-side
376 377 378 379 380 381
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
382
 */
383
void rcu_idle_enter(void)
384 385
{
	unsigned long flags;
386
	long long oldval;
387 388 389 390
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
391
	oldval = rdtp->dynticks_nesting;
392
	rdtp->dynticks_nesting = 0;
393
	rcu_idle_enter_common(rdtp, oldval);
394 395 396
	local_irq_restore(flags);
}

397 398 399 400 401 402
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
403
 *
404 405 406 407 408 409 410 411
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
412
 */
413
void rcu_irq_exit(void)
414 415
{
	unsigned long flags;
416
	long long oldval;
417 418 419 420
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
421
	oldval = rdtp->dynticks_nesting;
422 423
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
424 425 426 427
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
428 429 430 431 432 433 434 435 436 437 438 439
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
440 441 442 443 444
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
445
	rcu_cleanup_after_idle(smp_processor_id());
446
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
447
	if (!is_idle_task(current)) {
448 449
		struct task_struct *idle = idle_task(smp_processor_id());

450 451
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
452
		ftrace_dump(DUMP_ALL);
453 454 455
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
456 457 458 459 460 461 462 463 464
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
465 466
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
 * allow for the possibility of usermode upcalls messing up our count
467 468 469 470 471 472 473 474 475 476 477 478 479
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	WARN_ON_ONCE(oldval != 0);
480
	rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
515 516 517 518
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
519 520 521 522 523 524 525 526 527 528 529 530 531 532
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

533 534
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
535
		return;
536 537 538 539 540 541
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
542 543 544 545 546 547 548 549 550 551 552 553 554
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

555 556
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
557
		return;
558 559 560 561 562
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
563 564
}

565 566
#ifdef CONFIG_PROVE_RCU

567
/**
568
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
569
 *
570
 * If the current CPU is in its idle loop and is neither in an interrupt
571
 * or NMI handler, return true.
572
 */
573
int rcu_is_cpu_idle(void)
574
{
575 576 577 578 579 580
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
581
}
582
EXPORT_SYMBOL(rcu_is_cpu_idle);
583

584 585
#endif /* #ifdef CONFIG_PROVE_RCU */

586
/**
587
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
588
 *
589 590 591
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
592
 */
593
int rcu_is_cpu_rrupt_from_idle(void)
594
{
595
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
596 597 598 599 600 601 602
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
603
 * is in dynticks idle mode, which is an extended quiescent state.
604 605 606
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
607
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
608
	return (rdp->dynticks_snap & 0x1) == 0;
609 610 611 612 613 614 615 616 617 618
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
619 620
	unsigned int curr;
	unsigned int snap;
621

622 623
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
624 625 626 627 628 629 630 631 632

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
633
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
634
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
656
	int ndetected;
657 658 659 660
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
661
	raw_spin_lock_irqsave(&rnp->lock, flags);
662
	delta = jiffies - rsp->jiffies_stall;
663
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
664
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
665 666 667
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
668 669 670 671 672

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
673
	ndetected = rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
674
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
675

676 677 678 679 680
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
681 682
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
683
	rcu_for_each_leaf_node(rsp, rnp) {
684
		raw_spin_lock_irqsave(&rnp->lock, flags);
685
		ndetected += rcu_print_task_stall(rnp);
686
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
687
		if (rnp->qsmask == 0)
688
			continue;
689
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
690
			if (rnp->qsmask & (1UL << cpu)) {
691
				printk(" %d", rnp->grplo + cpu);
692 693
				ndetected++;
			}
694
	}
695
	printk("} (detected by %d, t=%ld jiffies)\n",
696
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
697 698 699
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
700
		dump_stack();
701

702 703 704 705
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

706 707 708 709 710 711 712 713
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

714 715 716 717 718
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
719 720
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
721 722
	if (!trigger_all_cpu_backtrace())
		dump_stack();
723

P
Paul E. McKenney 已提交
724
	raw_spin_lock_irqsave(&rnp->lock, flags);
725
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
726 727
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
728
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
729

730 731 732 733 734
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
735 736
	unsigned long j;
	unsigned long js;
737 738
	struct rcu_node *rnp;

739
	if (rcu_cpu_stall_suppress)
740
		return;
741 742
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
743
	rnp = rdp->mynode;
744
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
745 746 747 748

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

749 750
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
751

752
		/* They had a few time units to dump stack, so complain. */
753 754 755 756
		print_other_cpu_stall(rsp);
	}
}

757 758
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
759
	rcu_cpu_stall_suppress = 1;
760 761 762
	return NOTIFY_DONE;
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

779 780 781 782 783 784 785 786 787
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

788 789 790
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
791 792 793
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
794
 */
795 796 797
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
798 799 800 801 802
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
803
		rdp->gpnum = rnp->gpnum;
804
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
805 806
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
807
			rdp->passed_quiesce = 0;
808 809
		} else
			rdp->qs_pending = 0;
810 811 812
	}
}

813 814
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
815 816 817 818 819 820
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
821
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
822 823 824 825
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
826
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
868
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
869

870 871
		/*
		 * If we were in an extended quiescent state, we may have
872
		 * missed some grace periods that others CPUs handled on
873
		 * our behalf. Catch up with this state to avoid noting
874 875 876
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
877
		 */
878
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
879 880
			rdp->gpnum = rdp->completed;

881
		/*
882 883
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
884
		 */
885
		if ((rnp->qsmask & rdp->grpmask) == 0)
886
			rdp->qs_pending = 0;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
904
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
905 906 907 908
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
909
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
936 937 938

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
939 940
}

941 942 943 944 945
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
946 947 948 949
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
950 951 952 953 954
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
955
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
956 957
	struct rcu_node *rnp = rcu_get_root(rsp);

958
	if (!rcu_scheduler_fully_active ||
959 960 961 962 963 964 965 966 967 968
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
969

970
	if (rsp->fqs_active) {
971
		/*
972 973
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
974
		 */
975 976
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
977 978 979 980 981
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
982
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
983 984
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
985 986
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
987
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
988 989

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
990
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
991 992

	/*
993 994 995 996 997 998 999 1000 1001
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1002 1003 1004 1005
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1006 1007
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1008
	 */
1009
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1010
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1011
		rcu_preempt_check_blocked_tasks(rnp);
1012
		rnp->qsmask = rnp->qsmaskinit;
1013
		rnp->gpnum = rsp->gpnum;
1014 1015 1016
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1017
		rcu_preempt_boost_start_gp(rnp);
1018 1019 1020
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1021
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1022 1023
	}

1024
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1025
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1026
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1027 1028
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1029 1030
}

1031
/*
P
Paul E. McKenney 已提交
1032 1033 1034 1035 1036
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1037
 */
P
Paul E. McKenney 已提交
1038
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1039
	__releases(rcu_get_root(rsp)->lock)
1040
{
1041
	unsigned long gp_duration;
1042 1043
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1044

1045
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1046 1047 1048 1049 1050 1051

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1052 1053 1054
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1089
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1090
	rsp->fqs_state = RCU_GP_IDLE;
1091 1092 1093
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1094
/*
P
Paul E. McKenney 已提交
1095 1096 1097 1098 1099 1100
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1101 1102
 */
static void
P
Paul E. McKenney 已提交
1103 1104
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1105 1106
	__releases(rnp->lock)
{
1107 1108
	struct rcu_node *rnp_c;

1109 1110 1111 1112 1113
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1114
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1115 1116 1117
			return;
		}
		rnp->qsmask &= ~mask;
1118 1119 1120 1121
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1122
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1123 1124

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1125
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1126 1127 1128 1129 1130 1131 1132 1133 1134
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1135
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1136
		rnp_c = rnp;
1137
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1138
		raw_spin_lock_irqsave(&rnp->lock, flags);
1139
		WARN_ON_ONCE(rnp_c->qsmask);
1140 1141 1142 1143
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1144
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1145
	 * to clean up and start the next grace period if one is needed.
1146
	 */
P
Paul E. McKenney 已提交
1147
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1148 1149 1150
}

/*
P
Paul E. McKenney 已提交
1151 1152 1153 1154 1155 1156 1157
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1158 1159
 */
static void
1160
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1161 1162 1163 1164 1165 1166
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1167
	raw_spin_lock_irqsave(&rnp->lock, flags);
1168
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1169 1170

		/*
1171 1172 1173 1174
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1175
		 */
1176
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1177
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1178 1179 1180 1181
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1182
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1183 1184 1185 1186 1187 1188 1189 1190 1191
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1192
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1220
	if (!rdp->passed_quiesce)
1221 1222
		return;

P
Paul E. McKenney 已提交
1223 1224 1225 1226
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1227
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1228 1229 1230 1231
}

#ifdef CONFIG_HOTPLUG_CPU

1232
/*
1233
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1234 1235 1236 1237 1238 1239 1240 1241 1242
 * Also record a quiescent state for this CPU for the current grace period.
 * Synchronization and interrupt disabling are not required because
 * this function executes in stop_machine() context.  Therefore, cleanup
 * operations that might block must be done later from the CPU_DEAD
 * notifier.
 *
 * Note that the outgoing CPU's bit has already been cleared in the
 * cpu_online_mask.  This allows us to randomly pick a callback
 * destination from the bits set in that mask.
1243
 */
1244
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1245
{
1246
	unsigned long flags;
1247
	int i;
1248 1249
	unsigned long mask;
	int need_report;
1250
	int receive_cpu = cpumask_any(cpu_online_mask);
1251
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1252
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1253 1254
	struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	/* First, adjust the counts. */
	if (rdp->nxtlist != NULL) {
		receive_rdp->qlen_lazy += rdp->qlen_lazy;
		receive_rdp->qlen += rdp->qlen;
		rdp->qlen_lazy = 0;
		rdp->qlen = 0;
	}

	/*
	 * Next, move ready-to-invoke callbacks to be invoked on some
	 * other CPU.  These will not be required to pass through another
	 * grace period:  They are done, regardless of CPU.
	 */
	if (rdp->nxtlist != NULL &&
	    rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
		struct rcu_head *oldhead;
		struct rcu_head **oldtail;
		struct rcu_head **newtail;

		oldhead = rdp->nxtlist;
		oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
		rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
		*receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
		newtail = rdp->nxttail[RCU_DONE_TAIL];
		for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
			if (receive_rdp->nxttail[i] == oldtail)
				receive_rdp->nxttail[i] = newtail;
			if (rdp->nxttail[i] == newtail)
				rdp->nxttail[i] = &rdp->nxtlist;
		}
	}

	/*
	 * Finally, put the rest of the callbacks at the end of the list.
	 * The ones that made it partway through get to start over:  We
	 * cannot assume that grace periods are synchronized across CPUs.
	 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
	 * this does not seem compelling.  Not yet, anyway.)
	 */
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (rdp->nxtlist != NULL) {
		*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
		receive_rdp->nxttail[RCU_NEXT_TAIL] =
				rdp->nxttail[RCU_NEXT_TAIL];
		receive_rdp->n_cbs_adopted += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;

		rdp->nxtlist = NULL;
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			rdp->nxttail[i] = &rdp->nxtlist;
	}
1306

1307 1308 1309 1310 1311 1312
	/*
	 * Record a quiescent state for the dying CPU.  This is safe
	 * only because we have already cleared out the callbacks.
	 * (Otherwise, the RCU core might try to schedule the invocation
	 * of callbacks on this now-offline CPU, which would be bad.)
	 */
1313
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
	rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
	/* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */

	/*
	 * Remove the dying CPU from the bitmasks in the rcu_node
	 * hierarchy.  Because we are in stop_machine() context, we
	 * automatically exclude ->onofflock critical sections.
	 */
1325
	do {
1326
		raw_spin_lock_irqsave(&rnp->lock, flags);
1327 1328
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1329
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330 1331
			break;
		}
1332
		if (rnp == rdp->mynode) {
1333
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1334 1335 1336 1337 1338 1339
			if (need_report & RCU_OFL_TASKS_NORM_GP)
				rcu_report_unblock_qs_rnp(rnp, flags);
			else
				raw_spin_unlock_irqrestore(&rnp->lock, flags);
			if (need_report & RCU_OFL_TASKS_EXP_GP)
				rcu_report_exp_rnp(rsp, rnp, true);
1340
		} else
1341
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1342 1343 1344 1345 1346 1347
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);
}

/*
1348 1349 1350 1351
 * The CPU has been completely removed, and some other CPU is reporting
 * this fact from process context.  Do the remainder of the cleanup.
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1352
 */
1353
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1354
{
1355 1356 1357 1358 1359
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1360 1361 1362 1363
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1364
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1365 1366 1367
{
}

1368
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1369 1370 1371 1372 1373 1374 1375 1376 1377
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1378
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1379 1380 1381
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1382
	int bl, count, count_lazy;
1383 1384

	/* If no callbacks are ready, just return.*/
1385
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1386
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1387 1388 1389
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1390
		return;
1391
	}
1392 1393 1394 1395 1396 1397

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1398
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1399
	bl = rdp->blimit;
1400
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
1411
	count = count_lazy = 0;
1412 1413 1414
	while (list) {
		next = list->next;
		prefetch(next);
1415
		debug_rcu_head_unqueue(list);
1416 1417
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1418
		list = next;
1419 1420 1421 1422
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1423 1424 1425 1426
			break;
	}

	local_irq_save(flags);
1427 1428 1429
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1430 1431

	/* Update count, and requeue any remaining callbacks. */
1432
	rdp->qlen_lazy -= count_lazy;
1433
	rdp->qlen -= count;
1434
	rdp->n_cbs_invoked += count;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1449 1450 1451 1452 1453 1454 1455
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1456 1457
	local_irq_restore(flags);

1458
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1459
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1460
		invoke_rcu_core();
1461 1462 1463 1464 1465
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1466
 * Also schedule RCU core processing.
1467
 *
1468
 * This function must be called from hardirq context.  It is normally
1469 1470 1471 1472 1473
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1474
	trace_rcu_utilization("Start scheduler-tick");
1475
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1476 1477 1478 1479 1480

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1481
		 * a quiescent state, so note it.
1482 1483
		 *
		 * No memory barrier is required here because both
1484 1485 1486
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1487 1488
		 */

1489 1490
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1491 1492 1493 1494 1495 1496 1497

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1498
		 * critical section, so note it.
1499 1500
		 */

1501
		rcu_bh_qs(cpu);
1502
	}
1503
	rcu_preempt_check_callbacks(cpu);
1504
	if (rcu_pending(cpu))
1505
		invoke_rcu_core();
1506
	trace_rcu_utilization("End scheduler-tick");
1507 1508 1509 1510 1511 1512 1513
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1514 1515
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1516
 * The caller must have suppressed start of new grace periods.
1517
 */
1518
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1519 1520 1521 1522 1523
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1524
	struct rcu_node *rnp;
1525

1526
	rcu_for_each_leaf_node(rsp, rnp) {
1527
		mask = 0;
P
Paul E. McKenney 已提交
1528
		raw_spin_lock_irqsave(&rnp->lock, flags);
1529
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1530
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1531
			return;
1532
		}
1533
		if (rnp->qsmask == 0) {
1534
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1535 1536
			continue;
		}
1537
		cpu = rnp->grplo;
1538
		bit = 1;
1539
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1540 1541
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1542 1543
				mask |= bit;
		}
1544
		if (mask != 0) {
1545

P
Paul E. McKenney 已提交
1546 1547
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1548 1549
			continue;
		}
P
Paul E. McKenney 已提交
1550
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1551
	}
1552
	rnp = rcu_get_root(rsp);
1553 1554 1555 1556
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1568 1569 1570
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1571
		return;  /* No grace period in progress, nothing to force. */
1572
	}
P
Paul E. McKenney 已提交
1573
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1574
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1575
		trace_rcu_utilization("End fqs");
1576 1577
		return;	/* Someone else is already on the job. */
	}
1578
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1579
		goto unlock_fqs_ret; /* no emergency and done recently. */
1580
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1581
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1582
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1583
	if(!rcu_gp_in_progress(rsp)) {
1584
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1585
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1586
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1587
	}
1588
	rsp->fqs_active = 1;
1589
	switch (rsp->fqs_state) {
1590
	case RCU_GP_IDLE:
1591 1592
	case RCU_GP_INIT:

1593
		break; /* grace period idle or initializing, ignore. */
1594 1595 1596 1597 1598

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1599 1600
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1601
		/* Record dyntick-idle state. */
1602
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1603
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1604
		if (rcu_gp_in_progress(rsp))
1605
			rsp->fqs_state = RCU_FORCE_QS;
1606
		break;
1607 1608 1609 1610

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1611
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1612
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1613 1614 1615

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1616
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1617
		break;
1618
	}
1619
	rsp->fqs_active = 0;
1620
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1621
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1622 1623
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1624
		trace_rcu_utilization("End fqs");
1625 1626
		return;
	}
P
Paul E. McKenney 已提交
1627
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1628
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1629
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1630
	trace_rcu_utilization("End fqs");
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
1643 1644 1645
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1646 1647 1648 1649 1650 1651
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1652 1653
	WARN_ON_ONCE(rdp->beenonline == 0);

1654 1655 1656 1657
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1658
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1672
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1673 1674 1675 1676
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1677
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1678
		invoke_rcu_callbacks(rsp, rdp);
1679 1680
}

1681
/*
1682
 * Do RCU core processing for the current CPU.
1683
 */
1684
static void rcu_process_callbacks(struct softirq_action *unused)
1685
{
1686
	trace_rcu_utilization("Start RCU core");
1687 1688
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1689
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1690
	rcu_preempt_process_callbacks();
1691
	trace_rcu_utilization("End RCU core");
1692 1693
}

1694
/*
1695 1696 1697 1698 1699
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1700
 */
1701
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1702
{
1703 1704
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1705 1706
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1707 1708
		return;
	}
1709
	invoke_rcu_callbacks_kthread();
1710 1711
}

1712
static void invoke_rcu_core(void)
1713 1714 1715 1716
{
	raise_softirq(RCU_SOFTIRQ);
}

1717 1718
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1719
	   struct rcu_state *rsp, bool lazy)
1720 1721 1722 1723
{
	unsigned long flags;
	struct rcu_data *rdp;

1724
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1725
	debug_rcu_head_queue(head);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1738
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1739
	rdp = this_cpu_ptr(rsp->rda);
1740 1741 1742 1743

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1744
	rdp->qlen++;
1745 1746
	if (lazy)
		rdp->qlen_lazy++;
1747

1748 1749
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1750
					 rdp->qlen_lazy, rdp->qlen);
1751
	else
1752
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1753

1754 1755 1756 1757 1758
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1759

1760 1761 1762 1763 1764 1765 1766
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1767
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1789
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1790 1791 1792 1793 1794
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1795
 * Queue an RCU-sched callback for invocation after a grace period.
1796
 */
1797
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1798
{
1799
	__call_rcu(head, func, &rcu_sched_state, 0);
1800
}
1801
EXPORT_SYMBOL_GPL(call_rcu_sched);
1802 1803

/*
1804
 * Queue an RCU callback for invocation after a quicker grace period.
1805 1806 1807
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1808
	__call_rcu(head, func, &rcu_bh_state, 0);
1809 1810 1811
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
1837 1838 1839 1840
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
1841 1842
	if (rcu_blocking_is_gp())
		return;
1843
	wait_rcu_gp(call_rcu_sched);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
1858 1859 1860 1861
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1862 1863
	if (rcu_blocking_is_gp())
		return;
1864
	wait_rcu_gp(call_rcu_bh);
1865 1866 1867
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1868 1869 1870 1871 1872 1873 1874 1875 1876
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1877 1878
	struct rcu_node *rnp = rdp->mynode;

1879 1880 1881 1882 1883 1884
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1885 1886
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
1887 1888 1889 1890 1891 1892

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1893
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1894
		if (!rdp->preemptible &&
1895 1896 1897
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1898
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
1899
		rdp->n_rp_report_qs++;
1900
		return 1;
1901
	}
1902 1903

	/* Does this CPU have callbacks ready to invoke? */
1904 1905
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1906
		return 1;
1907
	}
1908 1909

	/* Has RCU gone idle with this CPU needing another grace period? */
1910 1911
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1912
		return 1;
1913
	}
1914 1915

	/* Has another RCU grace period completed?  */
1916
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1917
		rdp->n_rp_gp_completed++;
1918
		return 1;
1919
	}
1920 1921

	/* Has a new RCU grace period started? */
1922
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1923
		rdp->n_rp_gp_started++;
1924
		return 1;
1925
	}
1926 1927

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1928
	if (rcu_gp_in_progress(rsp) &&
1929
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1930
		rdp->n_rp_need_fqs++;
1931
		return 1;
1932
	}
1933 1934

	/* nothing to do */
1935
	rdp->n_rp_need_nothing++;
1936 1937 1938 1939 1940 1941 1942 1943
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1944
static int rcu_pending(int cpu)
1945
{
1946
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1947 1948
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1949 1950 1951 1952 1953
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
1954
 * 1 if so.
1955
 */
1956
static int rcu_cpu_has_callbacks(int cpu)
1957 1958
{
	/* RCU callbacks either ready or pending? */
1959
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1960
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
1961
	       rcu_preempt_cpu_has_callbacks(cpu);
1962 1963
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
1994 1995
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
1996 1997 1998
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
1999
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2000 2001 2002 2003 2004 2005 2006 2007 2008
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
2009 2010 2011
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2026
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2027 2028 2029 2030 2031 2032 2033 2034
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2035
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2036 2037 2038
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2039
/*
2040
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2041
 */
2042 2043
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2044 2045 2046
{
	unsigned long flags;
	int i;
2047
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2048 2049 2050
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2051
	raw_spin_lock_irqsave(&rnp->lock, flags);
2052 2053 2054 2055
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
2056
	rdp->qlen_lazy = 0;
2057 2058
	rdp->qlen = 0;
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2059
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2060
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2061
	rdp->cpu = cpu;
2062
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2063
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2064 2065 2066 2067 2068 2069 2070
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2071
 */
2072
static void __cpuinit
P
Paul E. McKenney 已提交
2073
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2074 2075 2076
{
	unsigned long flags;
	unsigned long mask;
2077
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2078 2079 2080
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2081
	raw_spin_lock_irqsave(&rnp->lock, flags);
2082
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2083
	rdp->preemptible = preemptible;
2084 2085
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2086
	rdp->blimit = blimit;
2087 2088 2089
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2090
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2091
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2092 2093 2094 2095 2096 2097 2098

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2099
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2100 2101 2102 2103 2104 2105

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2106
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2107 2108
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2109
		if (rnp == rdp->mynode) {
2110 2111 2112 2113 2114 2115
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2116
			rdp->completed = rnp->completed;
2117 2118
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2119
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2120
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2121
		}
P
Paul E. McKenney 已提交
2122
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2123 2124 2125
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2126
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2127 2128
}

P
Peter Zijlstra 已提交
2129
static void __cpuinit rcu_prepare_cpu(int cpu)
2130
{
2131 2132 2133
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2134 2135 2136
}

/*
2137
 * Handle CPU online/offline notification events.
2138
 */
2139 2140
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2141 2142
{
	long cpu = (long)hcpu;
2143
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2144
	struct rcu_node *rnp = rdp->mynode;
2145

2146
	trace_rcu_utilization("Start CPU hotplug");
2147 2148 2149
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2150 2151
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2152 2153
		break;
	case CPU_ONLINE:
2154 2155
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2156
		rcu_cpu_kthread_setrt(cpu, 1);
2157 2158 2159
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2160
		rcu_cpu_kthread_setrt(cpu, 0);
2161
		break;
2162 2163 2164
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2165 2166 2167
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2168
		 */
2169 2170 2171
		rcu_cleanup_dying_cpu(&rcu_bh_state);
		rcu_cleanup_dying_cpu(&rcu_sched_state);
		rcu_preempt_cleanup_dying_cpu();
2172
		rcu_cleanup_after_idle(cpu);
2173
		break;
2174 2175 2176 2177
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2178 2179 2180
		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
		rcu_preempt_cleanup_dead_cpu(cpu);
2181 2182 2183 2184
		break;
	default:
		break;
	}
2185
	trace_rcu_utilization("End CPU hotplug");
2186 2187 2188
	return NOTIFY_OK;
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2204 2205 2206 2207 2208 2209 2210 2211 2212
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2213
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2214
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2215
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2236 2237
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2238
{
2239 2240 2241 2242
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2243 2244 2245 2246 2247
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2248 2249
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2262
			raw_spin_lock_init(&rnp->lock);
2263 2264
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2265
			rnp->gpnum = 0;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2283
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2284 2285
		}
	}
2286

2287
	rsp->rda = rda;
2288 2289
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2290
		while (i > rnp->grphi)
2291
			rnp++;
2292
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2293 2294
		rcu_boot_init_percpu_data(i, rsp);
	}
2295 2296
}

2297
void __init rcu_init(void)
2298
{
P
Paul E. McKenney 已提交
2299
	int cpu;
2300

2301
	rcu_bootup_announce();
2302 2303
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2304
	__rcu_init_preempt();
2305
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2306 2307 2308 2309 2310 2311 2312

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2313 2314
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2315
	check_cpu_stall_init();
2316 2317
}

2318
#include "rcutree_plugin.h"