rcutree.c 88.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
65

66
#define RCU_STATE_INITIALIZER(sname, cr) { \
67
	.level = { &sname##_state.node[0] }, \
68
	.call = cr, \
69
	.fqs_state = RCU_GP_IDLE, \
70 71
	.gpnum = -300, \
	.completed = -300, \
72 73 74
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
75
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
76
	.name = #sname, \
77 78
}

79 80
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
81
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82

83
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
84
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85

86
static struct rcu_state *rcu_state;
87
LIST_HEAD(rcu_struct_flavors);
88

89 90
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91
module_param(rcu_fanout_leaf, int, 0444);
92 93 94 95 96 97 98 99 100 101
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

102 103 104 105 106 107 108 109 110
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
111 112 113
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

128 129
#ifdef CONFIG_RCU_BOOST

130 131 132 133 134
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
135
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
136
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
137
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
138
DEFINE_PER_CPU(char, rcu_cpu_has_work);
139

140 141
#endif /* #ifdef CONFIG_RCU_BOOST */

142
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
143 144
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
145

146 147 148 149 150 151 152 153 154 155 156 157
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

158 159 160 161 162 163 164 165 166 167
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

168
/*
169
 * Note a quiescent state.  Because we do not need to know
170
 * how many quiescent states passed, just if there was at least
171
 * one since the start of the grace period, this just sets a flag.
172
 * The caller must have disabled preemption.
173
 */
174
void rcu_sched_qs(int cpu)
175
{
176
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
177

178
	rdp->passed_quiesce_gpnum = rdp->gpnum;
179
	barrier();
180
	if (rdp->passed_quiesce == 0)
181
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
182
	rdp->passed_quiesce = 1;
183 184
}

185
void rcu_bh_qs(int cpu)
186
{
187
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
188

189
	rdp->passed_quiesce_gpnum = rdp->gpnum;
190
	barrier();
191
	if (rdp->passed_quiesce == 0)
192
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
193
	rdp->passed_quiesce = 1;
194
}
195

196 197 198
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
199
 * The caller must have disabled preemption.
200 201 202
 */
void rcu_note_context_switch(int cpu)
{
203
	trace_rcu_utilization("Start context switch");
204
	rcu_sched_qs(cpu);
205
	rcu_preempt_note_context_switch(cpu);
206
	trace_rcu_utilization("End context switch");
207
}
208
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
209

210
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
211
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
212
	.dynticks = ATOMIC_INIT(1),
213
};
214

215
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
216 217 218
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

219 220 221
module_param(blimit, int, 0444);
module_param(qhimark, int, 0444);
module_param(qlowmark, int, 0444);
222

223 224 225
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

226
module_param(rcu_cpu_stall_suppress, int, 0644);
227
module_param(rcu_cpu_stall_timeout, int, 0644);
228

229 230 231 232 233 234
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

235 236
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
static void force_quiescent_state(struct rcu_state *rsp);
237
static int rcu_pending(int cpu);
238 239

/*
240
 * Return the number of RCU-sched batches processed thus far for debug & stats.
241
 */
242
long rcu_batches_completed_sched(void)
243
{
244
	return rcu_sched_state.completed;
245
}
246
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
247 248 249 250 251 252 253 254 255 256

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

257 258 259 260 261
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
262
	force_quiescent_state(&rcu_bh_state);
263 264 265
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

291 292 293 294 295
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
296
	force_quiescent_state(&rcu_sched_state);
297 298 299
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
315 316 317
	return *rdp->nxttail[RCU_DONE_TAIL +
			     ACCESS_ONCE(rsp->completed) != rdp->completed] &&
	       !rcu_gp_in_progress(rsp);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
342 343 344 345 346
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
347
	 */
348 349
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
350
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
351 352 353 354 355 356
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

357 358 359 360 361 362 363
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
364
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
365
{
366
	trace_rcu_dyntick("Start", oldval, 0);
367
	if (!is_idle_task(current)) {
368 369
		struct task_struct *idle = idle_task(smp_processor_id());

370
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
371
		ftrace_dump(DUMP_ORIG);
372 373 374
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
375
	}
376
	rcu_prepare_for_idle(smp_processor_id());
377 378 379 380 381
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
382 383 384 385 386 387 388 389 390 391 392

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
393
}
394 395

/**
396
 * rcu_idle_enter - inform RCU that current CPU is entering idle
397
 *
398
 * Enter idle mode, in other words, -leave- the mode in which RCU
399
 * read-side critical sections can occur.  (Though RCU read-side
400 401 402 403 404 405
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
406
 */
407
void rcu_idle_enter(void)
408 409
{
	unsigned long flags;
410
	long long oldval;
411 412 413 414
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
415
	oldval = rdtp->dynticks_nesting;
416 417 418 419 420
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
421
	rcu_idle_enter_common(rdtp, oldval);
422 423
	local_irq_restore(flags);
}
424
EXPORT_SYMBOL_GPL(rcu_idle_enter);
425

426 427 428 429 430 431
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
432
 *
433 434 435 436 437 438 439 440
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
441
 */
442
void rcu_irq_exit(void)
443 444
{
	unsigned long flags;
445
	long long oldval;
446 447 448 449
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
450
	oldval = rdtp->dynticks_nesting;
451 452
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
453 454 455 456
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
457 458 459 460 461 462 463 464 465 466 467 468
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
469 470 471 472 473
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
474
	rcu_cleanup_after_idle(smp_processor_id());
475
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
476
	if (!is_idle_task(current)) {
477 478
		struct task_struct *idle = idle_task(smp_processor_id());

479 480
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
481
		ftrace_dump(DUMP_ORIG);
482 483 484
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
485 486 487 488 489 490 491 492 493
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
494
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
495
 * allow for the possibility of usermode upcalls messing up our count
496 497 498 499 500 501 502 503 504 505 506 507
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
508 509 510 511 512
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
513 514 515
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
516
EXPORT_SYMBOL_GPL(rcu_idle_exit);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
548 549 550 551
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
552 553 554 555 556 557 558 559 560 561 562 563 564 565
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

566 567
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
568
		return;
569 570 571 572 573 574
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
575 576 577 578 579 580 581 582 583 584 585 586 587
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

588 589
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
590
		return;
591 592 593 594 595
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
596 597 598
}

/**
599
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
600
 *
601
 * If the current CPU is in its idle loop and is neither in an interrupt
602
 * or NMI handler, return true.
603
 */
604
int rcu_is_cpu_idle(void)
605
{
606 607 608 609 610 611
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
612
}
613
EXPORT_SYMBOL(rcu_is_cpu_idle);
614

615
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
616 617 618 619 620 621 622

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
623 624 625 626 627 628 629 630 631 632 633
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
634 635 636 637 638 639
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
640 641
	struct rcu_data *rdp;
	struct rcu_node *rnp;
642 643 644 645 646
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
647 648 649
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
650 651 652 653 654 655
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

656
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
657

658
/**
659
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
660
 *
661 662 663
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
664
 */
665
int rcu_is_cpu_rrupt_from_idle(void)
666
{
667
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
668 669 670 671 672
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
673
 * is in dynticks idle mode, which is an extended quiescent state.
674 675 676
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
677
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
678
	return (rdp->dynticks_snap & 0x1) == 0;
679 680 681 682 683 684 685 686 687 688
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
689 690
	unsigned int curr;
	unsigned int snap;
691

692 693
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
694 695 696 697 698 699 700 701 702

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
703
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
704
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
705 706 707 708 709 710 711 712
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

731 732 733
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
734
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
735 736 737 738 739 740 741
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
742
	int ndetected = 0;
743 744 745 746
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
747
	raw_spin_lock_irqsave(&rnp->lock, flags);
748
	delta = jiffies - rsp->jiffies_stall;
749
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
750
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
751 752
		return;
	}
753
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
754
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
755

756 757 758 759 760
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
761
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
762
	       rsp->name);
763
	print_cpu_stall_info_begin();
764
	rcu_for_each_leaf_node(rsp, rnp) {
765
		raw_spin_lock_irqsave(&rnp->lock, flags);
766
		ndetected += rcu_print_task_stall(rnp);
767
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
768
		if (rnp->qsmask == 0)
769
			continue;
770
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
771
			if (rnp->qsmask & (1UL << cpu)) {
772
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
773 774
				ndetected++;
			}
775
	}
776 777 778 779 780 781 782

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
783
	ndetected += rcu_print_task_stall(rnp);
784 785 786 787
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
788
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
789 790 791
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
792
		dump_stack();
793

794
	/* Complain about tasks blocking the grace period. */
795 796 797

	rcu_print_detail_task_stall(rsp);

798
	force_quiescent_state(rsp);  /* Kick them all. */
799 800 801 802 803 804 805
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

806 807 808 809 810
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
811 812 813 814 815
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
816 817
	if (!trigger_all_cpu_backtrace())
		dump_stack();
818

P
Paul E. McKenney 已提交
819
	raw_spin_lock_irqsave(&rnp->lock, flags);
820
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
821 822
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
823
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
824

825 826 827 828 829
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
830 831
	unsigned long j;
	unsigned long js;
832 833
	struct rcu_node *rnp;

834
	if (rcu_cpu_stall_suppress)
835
		return;
836 837
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
838
	rnp = rdp->mynode;
839
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
840 841 842 843

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

844 845
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
846

847
		/* They had a few time units to dump stack, so complain. */
848 849 850 851
		print_other_cpu_stall(rsp);
	}
}

852 853
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
854
	rcu_cpu_stall_suppress = 1;
855 856 857
	return NOTIFY_DONE;
}

858 859 860 861 862 863 864 865 866 867 868
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
869 870 871 872
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
873 874
}

875 876 877 878 879 880 881 882 883
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

884 885 886
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
887 888 889
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
890
 */
891 892 893
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
894 895 896 897 898
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
899
		rdp->gpnum = rnp->gpnum;
900
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
901 902
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
903
			rdp->passed_quiesce = 0;
904
		} else {
905
			rdp->qs_pending = 0;
906
		}
907
		zero_cpu_stall_ticks(rdp);
908 909 910
	}
}

911 912
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
913 914 915 916 917 918
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
919
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
920 921 922 923
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
924
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

947 948 949 950 951 952 953 954 955 956 957 958
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
978
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
979

980 981
		/*
		 * If we were in an extended quiescent state, we may have
982
		 * missed some grace periods that others CPUs handled on
983
		 * our behalf. Catch up with this state to avoid noting
984 985 986
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
987
		 */
988
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
989 990
			rdp->gpnum = rdp->completed;

991
		/*
992 993
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
994
		 */
995
		if ((rnp->qsmask & rdp->grpmask) == 0)
996
			rdp->qs_pending = 0;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1014
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1015 1016 1017 1018
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1019
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

1033 1034
	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1035 1036
}

1037
/*
1038
 * Initialize a new grace period.
1039
 */
1040
static int rcu_gp_init(struct rcu_state *rsp)
1041 1042
{
	struct rcu_data *rdp;
1043
	struct rcu_node *rnp = rcu_get_root(rsp);
1044

1045
	raw_spin_lock_irq(&rnp->lock);
1046
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	if (rcu_gp_in_progress(rsp)) {
		/* Grace period already in progress, don't start another.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
	record_gp_stall_check_time(rsp);
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
	get_online_cpus();

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1077 1078
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
	}
1092

1093 1094 1095
	put_online_cpus();
	return 1;
}
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * Do one round of quiescent-state forcing.
 */
int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
{
	int fqs_state = fqs_state_in;
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(rsp, dyntick_save_progress_counter);
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1123 1124 1125
/*
 * Clean up after the old grace period.
 */
1126
static void rcu_gp_cleanup(struct rcu_state *rsp)
1127 1128 1129 1130
{
	unsigned long gp_duration;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1131

1132 1133 1134 1135
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1136

1137 1138 1139 1140 1141 1142 1143 1144
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1145
	raw_spin_unlock_irq(&rnp->lock);
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1157
		raw_spin_lock_irq(&rnp->lock);
1158 1159 1160
		rnp->completed = rsp->gpnum;
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1161
	}
1162 1163
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1164 1165 1166 1167

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
	rsp->fqs_state = RCU_GP_IDLE;
1168
	rdp = this_cpu_ptr(rsp->rda);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	if (cpu_needs_another_gp(rsp, rdp))
		rsp->gp_flags = 1;
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1179
	int fqs_state;
1180
	unsigned long j;
1181
	int ret;
1182 1183 1184 1185 1186 1187 1188
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1189 1190 1191 1192 1193
			wait_event_interruptible(rsp->gp_wq,
						 rsp->gp_flags &
						 RCU_GP_FLAG_INIT);
			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
			    rcu_gp_init(rsp))
1194 1195 1196 1197
				break;
			cond_resched();
			flush_signals(current);
		}
1198

1199 1200
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1201 1202 1203 1204 1205
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1206
		for (;;) {
1207
			rsp->jiffies_force_qs = jiffies + j;
1208 1209 1210 1211
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1212
					j);
1213
			/* If grace period done, leave loop. */
1214
			if (!ACCESS_ONCE(rnp->qsmask) &&
1215
			    !rcu_preempt_blocked_readers_cgp(rnp))
1216
				break;
1217 1218 1219 1220 1221 1222 1223 1224 1225
			/* If time for quiescent-state forcing, do it. */
			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
			}
1226 1227 1228 1229 1230 1231 1232 1233
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1234
		}
1235 1236 1237

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1238 1239 1240
	}
}

1241 1242 1243 1244 1245
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1246 1247 1248 1249
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1250 1251 1252 1253 1254
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1255
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1256 1257
	struct rcu_node *rnp = rcu_get_root(rsp);

1258
	if (!rsp->gp_kthread ||
1259 1260
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
1261 1262 1263
		 * Either we have not yet spawned the grace-period
		 * task or this CPU does not need another grace period.
		 * Either way, don't start a new grace period.
1264 1265 1266 1267
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1268

1269
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1270 1271
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	wake_up(&rsp->gp_wq);
1272 1273
}

1274
/*
P
Paul E. McKenney 已提交
1275 1276 1277 1278 1279
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1280
 */
P
Paul E. McKenney 已提交
1281
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1282
	__releases(rcu_get_root(rsp)->lock)
1283
{
1284
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1285 1286
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1287 1288
}

1289
/*
P
Paul E. McKenney 已提交
1290 1291 1292 1293 1294 1295
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1296 1297
 */
static void
P
Paul E. McKenney 已提交
1298 1299
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1300 1301
	__releases(rnp->lock)
{
1302 1303
	struct rcu_node *rnp_c;

1304 1305 1306 1307 1308
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1309
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1310 1311 1312
			return;
		}
		rnp->qsmask &= ~mask;
1313 1314 1315 1316
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1317
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1318 1319

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1320
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1321 1322 1323 1324 1325 1326 1327 1328 1329
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1330
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1331
		rnp_c = rnp;
1332
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1333
		raw_spin_lock_irqsave(&rnp->lock, flags);
1334
		WARN_ON_ONCE(rnp_c->qsmask);
1335 1336 1337 1338
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1339
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1340
	 * to clean up and start the next grace period if one is needed.
1341
	 */
P
Paul E. McKenney 已提交
1342
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1343 1344 1345
}

/*
P
Paul E. McKenney 已提交
1346 1347 1348 1349 1350 1351 1352
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1353 1354
 */
static void
1355
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1356 1357 1358 1359 1360 1361
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1362
	raw_spin_lock_irqsave(&rnp->lock, flags);
1363
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1364 1365

		/*
1366 1367 1368 1369
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1370
		 */
1371
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1372
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1373 1374 1375 1376
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1377
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1378 1379 1380 1381 1382 1383 1384 1385 1386
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1387
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1415
	if (!rdp->passed_quiesce)
1416 1417
		return;

P
Paul E. McKenney 已提交
1418 1419 1420 1421
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1422
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1423 1424 1425 1426
}

#ifdef CONFIG_HOTPLUG_CPU

1427
/*
1428 1429 1430
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1431
 */
1432 1433 1434
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1435
{
1436 1437 1438 1439 1440
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1441
	if (rdp->nxtlist != NULL) {
1442 1443 1444
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1445
		rdp->qlen_lazy = 0;
1446
		ACCESS_ONCE(rdp->qlen) = 0;
1447 1448 1449
	}

	/*
1450 1451 1452 1453 1454 1455 1456
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1457
	 */
1458 1459 1460 1461
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1462 1463 1464
	}

	/*
1465 1466 1467
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1468
	 */
1469
	if (rdp->nxtlist != NULL) {
1470 1471
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1472
	}
1473

1474
	/* Finally, initialize the rcu_data structure's list to empty.  */
1475
	init_callback_list(rdp);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1487
	/*
1488 1489 1490 1491 1492
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1493
	 */
1494 1495 1496 1497 1498 1499 1500 1501
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1502 1503
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1543 1544 1545
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1546 1547 1548
}

/*
1549
 * The CPU has been completely removed, and some other CPU is reporting
1550 1551 1552
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1553 1554
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1555
 */
1556
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1557
{
1558 1559 1560
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1561
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1562
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1563

1564
	/* Adjust any no-longer-needed kthreads. */
1565 1566
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1567

1568
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1569 1570 1571 1572

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1573 1574 1575 1576
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1609 1610 1611
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1612 1613 1614 1615
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1616 1617 1618 1619
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1620
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1621 1622 1623
{
}

1624
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1625 1626 1627 1628 1629 1630 1631 1632 1633
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1634
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1635 1636 1637
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1638
	int bl, count, count_lazy, i;
1639 1640

	/* If no callbacks are ready, just return.*/
1641
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1642
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1643 1644 1645
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1646
		return;
1647
	}
1648 1649 1650 1651 1652 1653

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1654
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1655
	bl = rdp->blimit;
1656
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1657 1658 1659 1660
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1661 1662 1663
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1664 1665 1666
	local_irq_restore(flags);

	/* Invoke callbacks. */
1667
	count = count_lazy = 0;
1668 1669 1670
	while (list) {
		next = list->next;
		prefetch(next);
1671
		debug_rcu_head_unqueue(list);
1672 1673
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1674
		list = next;
1675 1676 1677 1678
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1679 1680 1681 1682
			break;
	}

	local_irq_save(flags);
1683 1684 1685
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1686 1687 1688 1689 1690

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1691 1692 1693
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1694 1695 1696
			else
				break;
	}
1697 1698
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1699
	ACCESS_ONCE(rdp->qlen) -= count;
1700
	rdp->n_cbs_invoked += count;
1701 1702 1703 1704 1705

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1706 1707 1708 1709 1710 1711
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1712
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1713

1714 1715
	local_irq_restore(flags);

1716
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1717
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1718
		invoke_rcu_core();
1719 1720 1721 1722 1723
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1724
 * Also schedule RCU core processing.
1725
 *
1726
 * This function must be called from hardirq context.  It is normally
1727 1728 1729 1730 1731
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1732
	trace_rcu_utilization("Start scheduler-tick");
1733
	increment_cpu_stall_ticks();
1734
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1735 1736 1737 1738 1739

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1740
		 * a quiescent state, so note it.
1741 1742
		 *
		 * No memory barrier is required here because both
1743 1744 1745
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1746 1747
		 */

1748 1749
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1750 1751 1752 1753 1754 1755 1756

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1757
		 * critical section, so note it.
1758 1759
		 */

1760
		rcu_bh_qs(cpu);
1761
	}
1762
	rcu_preempt_check_callbacks(cpu);
1763
	if (rcu_pending(cpu))
1764
		invoke_rcu_core();
1765
	trace_rcu_utilization("End scheduler-tick");
1766 1767 1768 1769 1770
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1771 1772
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1773
 * The caller must have suppressed start of new grace periods.
1774
 */
1775
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1776 1777 1778 1779 1780
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1781
	struct rcu_node *rnp;
1782

1783
	rcu_for_each_leaf_node(rsp, rnp) {
1784
		cond_resched();
1785
		mask = 0;
P
Paul E. McKenney 已提交
1786
		raw_spin_lock_irqsave(&rnp->lock, flags);
1787
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1788
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1789
			return;
1790
		}
1791
		if (rnp->qsmask == 0) {
1792
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1793 1794
			continue;
		}
1795
		cpu = rnp->grplo;
1796
		bit = 1;
1797
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1798 1799
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1800 1801
				mask |= bit;
		}
1802
		if (mask != 0) {
1803

P
Paul E. McKenney 已提交
1804 1805
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1806 1807
			continue;
		}
P
Paul E. McKenney 已提交
1808
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1809
	}
1810
	rnp = rcu_get_root(rsp);
1811 1812 1813 1814
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1815 1816 1817 1818 1819 1820
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
1821
static void force_quiescent_state(struct rcu_state *rsp)
1822 1823
{
	unsigned long flags;
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
1842

1843 1844 1845 1846 1847 1848
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1849
		return;  /* Someone beat us to it. */
1850
	}
1851
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
1852
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
1853
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1854 1855 1856
}

/*
1857 1858 1859
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1860 1861
 */
static void
1862
__rcu_process_callbacks(struct rcu_state *rsp)
1863 1864
{
	unsigned long flags;
1865
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1866

1867 1868
	WARN_ON_ONCE(rdp->beenonline == 0);

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1880
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1881 1882 1883 1884
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1885
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1886
		invoke_rcu_callbacks(rsp, rdp);
1887 1888
}

1889
/*
1890
 * Do RCU core processing for the current CPU.
1891
 */
1892
static void rcu_process_callbacks(struct softirq_action *unused)
1893
{
1894 1895
	struct rcu_state *rsp;

1896 1897
	if (cpu_is_offline(smp_processor_id()))
		return;
1898
	trace_rcu_utilization("Start RCU core");
1899 1900
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
1901
	trace_rcu_utilization("End RCU core");
1902 1903
}

1904
/*
1905 1906 1907 1908 1909
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1910
 */
1911
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1912
{
1913 1914
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1915 1916
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1917 1918
		return;
	}
1919
	invoke_rcu_callbacks_kthread();
1920 1921
}

1922
static void invoke_rcu_core(void)
1923 1924 1925 1926
{
	raise_softirq(RCU_SOFTIRQ);
}

1927 1928 1929 1930 1931
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
1932
{
1933 1934 1935 1936
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
1937
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
1938 1939
		invoke_rcu_core();

1940
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
1941
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
1942
		return;
1943

1944 1945 1946 1947 1948 1949 1950
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1951
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
1969
				force_quiescent_state(rsp);
1970 1971 1972
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1973
	}
1974 1975
}

1976 1977
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1978
	   struct rcu_state *rsp, bool lazy)
1979 1980 1981 1982
{
	unsigned long flags;
	struct rcu_data *rdp;

1983
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1984
	debug_rcu_head_queue(head);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1997
	rdp = this_cpu_ptr(rsp->rda);
1998 1999

	/* Add the callback to our list. */
2000
	ACCESS_ONCE(rdp->qlen)++;
2001 2002
	if (lazy)
		rdp->qlen_lazy++;
2003 2004
	else
		rcu_idle_count_callbacks_posted();
2005 2006 2007
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2008

2009 2010
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2011
					 rdp->qlen_lazy, rdp->qlen);
2012
	else
2013
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2014

2015 2016
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2017 2018 2019 2020
	local_irq_restore(flags);
}

/*
2021
 * Queue an RCU-sched callback for invocation after a grace period.
2022
 */
2023
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2024
{
2025
	__call_rcu(head, func, &rcu_sched_state, 0);
2026
}
2027
EXPORT_SYMBOL_GPL(call_rcu_sched);
2028 2029

/*
2030
 * Queue an RCU callback for invocation after a quicker grace period.
2031 2032 2033
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
2034
	__call_rcu(head, func, &rcu_bh_state, 0);
2035 2036 2037
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2049 2050
	int ret;

2051
	might_sleep();  /* Check for RCU read-side critical section. */
2052 2053 2054 2055
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2056 2057
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2083 2084 2085 2086
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2087 2088
	if (rcu_blocking_is_gp())
		return;
2089
	wait_rcu_gp(call_rcu_sched);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2104 2105 2106 2107
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2108 2109
	if (rcu_blocking_is_gp())
		return;
2110
	wait_rcu_gp(call_rcu_bh);
2111 2112 2113
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2144
 *
2145 2146 2147 2148
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2178
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
2190
		if (trycount++ < 10) {
2191
			udelay(trycount * num_online_cpus());
2192
		} else {
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2235 2236 2237 2238 2239 2240 2241 2242 2243
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2244 2245
	struct rcu_node *rnp = rdp->mynode;

2246 2247 2248 2249 2250 2251
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2252 2253
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2254
		rdp->n_rp_qs_pending++;
2255
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2256
		rdp->n_rp_report_qs++;
2257
		return 1;
2258
	}
2259 2260

	/* Does this CPU have callbacks ready to invoke? */
2261 2262
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2263
		return 1;
2264
	}
2265 2266

	/* Has RCU gone idle with this CPU needing another grace period? */
2267 2268
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2269
		return 1;
2270
	}
2271 2272

	/* Has another RCU grace period completed?  */
2273
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2274
		rdp->n_rp_gp_completed++;
2275
		return 1;
2276
	}
2277 2278

	/* Has a new RCU grace period started? */
2279
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2280
		rdp->n_rp_gp_started++;
2281
		return 1;
2282
	}
2283 2284

	/* nothing to do */
2285
	rdp->n_rp_need_nothing++;
2286 2287 2288 2289 2290 2291 2292 2293
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2294
static int rcu_pending(int cpu)
2295
{
2296 2297 2298 2299 2300 2301
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2302 2303 2304 2305 2306
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2307
 * 1 if so.
2308
 */
2309
static int rcu_cpu_has_callbacks(int cpu)
2310
{
2311 2312
	struct rcu_state *rsp;

2313
	/* RCU callbacks either ready or pending? */
2314 2315 2316 2317
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2318 2319
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2331 2332 2333 2334
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2335
static void rcu_barrier_callback(struct rcu_head *rhp)
2336
{
2337 2338 2339
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2340 2341
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2342
		complete(&rsp->barrier_completion);
2343 2344 2345
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2346 2347 2348 2349 2350 2351 2352
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2353
	struct rcu_state *rsp = type;
2354
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2355

2356
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2357
	atomic_inc(&rsp->barrier_cpu_count);
2358
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2359 2360 2361 2362 2363 2364
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2365
static void _rcu_barrier(struct rcu_state *rsp)
2366
{
2367 2368 2369
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
2370
	struct rcu_data rd;
2371 2372
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2373

2374
	init_rcu_head_on_stack(&rd.barrier_head);
2375
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2376

2377
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2378
	mutex_lock(&rsp->barrier_mutex);
2379

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2393
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2394
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2395
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2408
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2409
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2410

2411
	/*
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2427
	 */
2428
	init_completion(&rsp->barrier_completion);
2429
	atomic_set(&rsp->barrier_cpu_count, 1);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
2445 2446
			_rcu_barrier_trace(rsp, "Offline", cpu,
					   rsp->n_barrier_done);
2447 2448 2449 2450
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2451 2452
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2453
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2454 2455
			preempt_enable();
		} else {
2456 2457
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2474
	atomic_inc(&rsp->barrier_cpu_count);
2475
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2476 2477
	rd.rsp = rsp;
	rsp->call(&rd.barrier_head, rcu_barrier_callback);
2478 2479 2480 2481 2482

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2483
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2484
		complete(&rsp->barrier_completion);
2485

2486 2487 2488 2489
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2490
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2491 2492
	smp_mb(); /* Keep increment before caller's subsequent code. */

2493
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2494
	wait_for_completion(&rsp->barrier_completion);
2495 2496

	/* Other rcu_barrier() invocations can now safely proceed. */
2497
	mutex_unlock(&rsp->barrier_mutex);
2498

2499
	destroy_rcu_head_on_stack(&rd.barrier_head);
2500 2501 2502 2503 2504 2505 2506
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2507
	_rcu_barrier(&rcu_bh_state);
2508 2509 2510 2511 2512 2513 2514 2515
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2516
	_rcu_barrier(&rcu_sched_state);
2517 2518 2519
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2520
/*
2521
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2522
 */
2523 2524
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2525 2526
{
	unsigned long flags;
2527
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2528 2529 2530
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2531
	raw_spin_lock_irqsave(&rnp->lock, flags);
2532
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2533
	init_callback_list(rdp);
2534
	rdp->qlen_lazy = 0;
2535
	ACCESS_ONCE(rdp->qlen) = 0;
2536
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2537
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2538
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2539
	rdp->cpu = cpu;
2540
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2541
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2542 2543 2544 2545 2546 2547 2548
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2549
 */
2550
static void __cpuinit
P
Paul E. McKenney 已提交
2551
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2552 2553 2554
{
	unsigned long flags;
	unsigned long mask;
2555
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2556 2557 2558
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2559
	raw_spin_lock_irqsave(&rnp->lock, flags);
2560
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2561
	rdp->preemptible = preemptible;
2562 2563
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2564
	rdp->blimit = blimit;
2565
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2566 2567
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2568
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2569
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2570 2571 2572 2573 2574 2575 2576

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2577
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2578 2579 2580 2581 2582 2583

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2584
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2585 2586
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2587
		if (rnp == rdp->mynode) {
2588 2589 2590 2591 2592 2593
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2594
			rdp->completed = rnp->completed;
2595 2596
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2597
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2598
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2599
		}
P
Paul E. McKenney 已提交
2600
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2601 2602 2603
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2604
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2605 2606
}

P
Peter Zijlstra 已提交
2607
static void __cpuinit rcu_prepare_cpu(int cpu)
2608
{
2609 2610 2611 2612 2613
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2614 2615 2616
}

/*
2617
 * Handle CPU online/offline notification events.
2618
 */
2619 2620
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2621 2622
{
	long cpu = (long)hcpu;
2623
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2624
	struct rcu_node *rnp = rdp->mynode;
2625
	struct rcu_state *rsp;
2626

2627
	trace_rcu_utilization("Start CPU hotplug");
2628 2629 2630
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2631 2632
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2633 2634
		break;
	case CPU_ONLINE:
2635 2636
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2637
		rcu_cpu_kthread_setrt(cpu, 1);
2638 2639 2640
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2641
		rcu_cpu_kthread_setrt(cpu, 0);
2642
		break;
2643 2644 2645
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2646 2647 2648
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2649
		 */
2650 2651
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2652
		rcu_cleanup_after_idle(cpu);
2653
		break;
2654 2655 2656 2657
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2658 2659
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2660 2661 2662 2663
		break;
	default:
		break;
	}
2664
	trace_rcu_utilization("End CPU hotplug");
2665 2666 2667
	return NOTIFY_OK;
}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2705 2706 2707 2708 2709 2710 2711 2712 2713
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2714
	for (i = rcu_num_lvls - 1; i > 0; i--)
2715
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2716
	rsp->levelspread[0] = rcu_fanout_leaf;
2717 2718 2719 2720 2721 2722 2723 2724 2725
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
2726
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2737 2738
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2739
{
2740 2741 2742 2743 2744 2745 2746 2747
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
2748 2749 2750 2751 2752
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2753 2754
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2755 2756
	/* Initialize the level-tracking arrays. */

2757 2758 2759
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2760 2761 2762 2763 2764
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2765
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2766 2767 2768
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2769
			raw_spin_lock_init(&rnp->lock);
2770 2771
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2772 2773 2774
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
2775
			rnp->gpnum = 0;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2793
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2794 2795
		}
	}
2796

2797
	rsp->rda = rda;
2798
	init_waitqueue_head(&rsp->gp_wq);
2799
	rnp = rsp->level[rcu_num_lvls - 1];
2800
	for_each_possible_cpu(i) {
2801
		while (i > rnp->grphi)
2802
			rnp++;
2803
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2804 2805
		rcu_boot_init_percpu_data(i, rsp);
	}
2806
	list_add(&rsp->flavors, &rcu_struct_flavors);
2807 2808
}

2809 2810 2811 2812 2813 2814 2815 2816 2817
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
2818
	int n = nr_cpu_ids;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2869
void __init rcu_init(void)
2870
{
P
Paul E. McKenney 已提交
2871
	int cpu;
2872

2873
	rcu_bootup_announce();
2874
	rcu_init_geometry();
2875 2876
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2877
	__rcu_init_preempt();
2878
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2879 2880 2881 2882 2883 2884 2885

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2886 2887
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2888
	check_cpu_stall_init();
2889 2890
}

2891
#include "rcutree_plugin.h"