rcutree.c 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40 41 42 43 44 45 46 47 48
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53

54
#include "rcutree.h"
55 56 57
#include <trace/events/rcu.h>

#include "rcu.h"
58

59 60
/* Data structures. */

61
static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62

63
#define RCU_STATE_INITIALIZER(structname) { \
64
	.level = { &structname##_state.node[0] }, \
65 66 67 68
	.levelcnt = { \
		NUM_RCU_LVL_0,  /* root of hierarchy. */ \
		NUM_RCU_LVL_1, \
		NUM_RCU_LVL_2, \
69 70
		NUM_RCU_LVL_3, \
		NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71
	}, \
72
	.signaled = RCU_GP_IDLE, \
73 74
	.gpnum = -300, \
	.completed = -300, \
75 76
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 78
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
79
	.name = #structname, \
80 81
}

82
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88 89
static struct rcu_state *rcu_state;

90 91 92 93 94 95 96 97 98
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
99 100 101
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

116 117
#ifdef CONFIG_RCU_BOOST

118 119 120 121 122
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126
DEFINE_PER_CPU(char, rcu_cpu_has_work);
127

128 129
#endif /* #ifdef CONFIG_RCU_BOOST */

130
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131 132
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133 134 135

#define RCU_KTHREAD_PRIO 1	/* RT priority for per-CPU kthreads. */

136 137 138 139 140 141 142 143 144 145 146 147
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

148 149 150 151 152 153 154 155 156 157
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

158
/*
159
 * Note a quiescent state.  Because we do not need to know
160
 * how many quiescent states passed, just if there was at least
161
 * one since the start of the grace period, this just sets a flag.
162
 * The caller must have disabled preemption.
163
 */
164
void rcu_sched_qs(int cpu)
165
{
166
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
167

168
	rdp->passed_quiesce_gpnum = rdp->gpnum;
169
	barrier();
170
	if (rdp->passed_quiesce == 0)
171
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172
	rdp->passed_quiesce = 1;
173 174
}

175
void rcu_bh_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
178

179
	rdp->passed_quiesce_gpnum = rdp->gpnum;
180
	barrier();
181
	if (rdp->passed_quiesce == 0)
182
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183
	rdp->passed_quiesce = 1;
184
}
185

186 187 188
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
189
 * The caller must have disabled preemption.
190 191 192
 */
void rcu_note_context_switch(int cpu)
{
193
	trace_rcu_utilization("Start context switch");
194 195
	rcu_sched_qs(cpu);
	rcu_preempt_note_context_switch(cpu);
196
	trace_rcu_utilization("End context switch");
197
}
198
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
199

200
#ifdef CONFIG_NO_HZ
201 202
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = 1,
203
	.dynticks = ATOMIC_INIT(1),
204
};
205 206
#endif /* #ifdef CONFIG_NO_HZ */

207
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
208 209 210
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

211 212 213 214
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

215
int rcu_cpu_stall_suppress __read_mostly;
216
module_param(rcu_cpu_stall_suppress, int, 0644);
217

218
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
219
static int rcu_pending(int cpu);
220 221

/*
222
 * Return the number of RCU-sched batches processed thus far for debug & stats.
223
 */
224
long rcu_batches_completed_sched(void)
225
{
226
	return rcu_sched_state.completed;
227
}
228
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
229 230 231 232 233 234 235 236 237 238

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

239 240 241 242 243 244 245 246 247
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

273 274 275 276 277 278 279 280 281
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
297
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

#ifdef CONFIG_SMP

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
	 * If the CPU is offline, it is in a quiescent state.  We can
	 * trust its state not to change because interrupts are disabled.
	 */
	if (cpu_is_offline(rdp->cpu)) {
328
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
329 330 331 332
		rdp->offline_fqs++;
		return 1;
	}

P
Paul E. McKenney 已提交
333 334
	/* If preemptible RCU, no point in sending reschedule IPI. */
	if (rdp->preemptible)
335 336
		return 0;

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	/* The CPU is online, so send it a reschedule IPI. */
	if (rdp->cpu != smp_processor_id())
		smp_send_reschedule(rdp->cpu);
	else
		set_need_resched();
	rdp->resched_ipi++;
	return 0;
}

#endif /* #ifdef CONFIG_SMP */

#ifdef CONFIG_NO_HZ

/**
 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
 *
 * Enter nohz mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in nohz mode, a possibility
 * handled by rcu_irq_enter() and rcu_irq_exit()).
 */
void rcu_enter_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
365 366 367 368
	if (--rdtp->dynticks_nesting) {
		local_irq_restore(flags);
		return;
	}
369
	trace_rcu_dyntick("Start");
370 371 372 373 374
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	local_irq_restore(flags);
}

/*
 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
 *
 * Exit nohz mode, in other words, -enter- the mode in which RCU
 * read-side critical sections normally occur.
 */
void rcu_exit_nohz(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
391 392 393 394 395 396 397 398 399
	if (rdtp->dynticks_nesting++) {
		local_irq_restore(flags);
		return;
	}
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
400
	trace_rcu_dyntick("End");
401 402 403 404 405 406 407 408 409 410 411 412 413 414
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

415 416
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
417
		return;
418 419 420 421 422 423
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
424 425 426 427 428 429 430 431 432 433 434 435 436
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

437 438
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
439
		return;
440 441 442 443 444
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
445 446 447 448 449 450 451 452 453 454
}

/**
 * rcu_irq_enter - inform RCU of entry to hard irq context
 *
 * If the CPU was idle with dynamic ticks active, this updates the
 * rdtp->dynticks to let the RCU handling know that the CPU is active.
 */
void rcu_irq_enter(void)
{
455
	rcu_exit_nohz();
456 457 458 459 460 461 462 463 464 465 466
}

/**
 * rcu_irq_exit - inform RCU of exit from hard irq context
 *
 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
 * to put let the RCU handling be aware that the CPU is going back to idle
 * with no ticks.
 */
void rcu_irq_exit(void)
{
467
	rcu_enter_nohz();
468 469 470 471 472 473 474
}

#ifdef CONFIG_SMP

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
475
 * is in dynticks idle mode, which is an extended quiescent state.
476 477 478
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
479 480
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
	return 0;
481 482 483 484 485 486 487 488 489 490
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
491 492
	unsigned int curr;
	unsigned int snap;
493

494 495
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
496 497 498 499 500 501 502 503 504

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
505
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
506
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#else /* #ifdef CONFIG_NO_HZ */

#ifdef CONFIG_SMP

static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
	return 0;
}

static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
	return rcu_implicit_offline_qs(rdp);
}

#endif /* #ifdef CONFIG_SMP */

#endif /* #else #ifdef CONFIG_NO_HZ */

535
int rcu_cpu_stall_suppress __read_mostly;
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
552
	raw_spin_lock_irqsave(&rnp->lock, flags);
553
	delta = jiffies - rsp->jiffies_stall;
554
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
555
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
556 557 558
		return;
	}
	rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
559 560 561 562 563 564

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rcu_print_task_stall(rnp);
P
Paul E. McKenney 已提交
565
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
566

567 568 569 570 571
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
572 573
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
	       rsp->name);
574
	rcu_for_each_leaf_node(rsp, rnp) {
575
		raw_spin_lock_irqsave(&rnp->lock, flags);
576
		rcu_print_task_stall(rnp);
577
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
578
		if (rnp->qsmask == 0)
579
			continue;
580 581 582
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
			if (rnp->qsmask & (1UL << cpu))
				printk(" %d", rnp->grplo + cpu);
583
	}
584
	printk("} (detected by %d, t=%ld jiffies)\n",
585
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
586 587
	if (!trigger_all_cpu_backtrace())
		dump_stack();
588

589 590 591 592
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

593 594 595 596 597 598 599 600
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

601 602 603 604 605
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
606 607
	printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
	       rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
608 609
	if (!trigger_all_cpu_backtrace())
		dump_stack();
610

P
Paul E. McKenney 已提交
611
	raw_spin_lock_irqsave(&rnp->lock, flags);
612
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
613 614
		rsp->jiffies_stall =
			jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
P
Paul E. McKenney 已提交
615
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
616

617 618 619 620 621
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
622 623
	unsigned long j;
	unsigned long js;
624 625
	struct rcu_node *rnp;

626
	if (rcu_cpu_stall_suppress)
627
		return;
628 629
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
630
	rnp = rdp->mynode;
631
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
632 633 634 635

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

636 637
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
638

639
		/* They had a few time units to dump stack, so complain. */
640 641 642 643
		print_other_cpu_stall(rsp);
	}
}

644 645
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
646
	rcu_cpu_stall_suppress = 1;
647 648 649
	return NOTIFY_DONE;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

666 667 668 669 670 671 672 673 674
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

675 676 677
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
678 679 680
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
681
 */
682 683 684
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
685 686 687 688 689
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
690
		rdp->gpnum = rnp->gpnum;
691
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
692 693
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
694
			rdp->passed_quiesce = 0;
695 696
		} else
			rdp->qs_pending = 0;
697 698 699
	}
}

700 701
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
702 703 704 705 706 707
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
708
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
709 710 711 712
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
713
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
755
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
756

757 758
		/*
		 * If we were in an extended quiescent state, we may have
759
		 * missed some grace periods that others CPUs handled on
760
		 * our behalf. Catch up with this state to avoid noting
761 762 763
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
764
		 */
765
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
766 767
			rdp->gpnum = rdp->completed;

768
		/*
769 770
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
771
		 */
772
		if ((rnp->qsmask & rdp->grpmask) == 0)
773
			rdp->qs_pending = 0;
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
791
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
792 793 794 795
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
796
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
823 824 825

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
826 827
}

828 829 830 831 832 833 834 835 836 837
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
838
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
839 840
	struct rcu_node *rnp = rcu_get_root(rsp);

841 842 843 844 845
	if (!rcu_scheduler_fully_active ||
	    !cpu_needs_another_gp(rsp, rdp) ||
	    rsp->fqs_active) {
		if (rcu_scheduler_fully_active &&
		    cpu_needs_another_gp(rsp, rdp))
846
			rsp->fqs_need_gp = 1;
847
		if (rnp->completed == rsp->completed) {
P
Paul E. McKenney 已提交
848
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
849 850
			return;
		}
P
Paul E. McKenney 已提交
851
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */
852 853 854 855 856 857 858

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
859
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
860
			rnp->completed = rsp->completed;
P
Paul E. McKenney 已提交
861
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
862 863
		}
		local_irq_restore(flags);
864 865 866 867 868
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
869
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
870
	WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
871 872 873 874 875 876
	rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);

	/* Special-case the common single-level case. */
	if (NUM_RCU_NODES == 1) {
877
		rcu_preempt_check_blocked_tasks(rnp);
878
		rnp->qsmask = rnp->qsmaskinit;
879
		rnp->gpnum = rsp->gpnum;
880
		rnp->completed = rsp->completed;
881
		rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
882
		rcu_start_gp_per_cpu(rsp, rnp, rdp);
883
		rcu_preempt_boost_start_gp(rnp);
884 885 886
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
887
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
888 889 890
		return;
	}

P
Paul E. McKenney 已提交
891
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
892 893 894


	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
895
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
896 897

	/*
898 899 900 901 902 903 904 905 906
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
907 908 909 910
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
911 912
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
913
	 */
914
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
915
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
916
		rcu_preempt_check_blocked_tasks(rnp);
917
		rnp->qsmask = rnp->qsmaskinit;
918
		rnp->gpnum = rsp->gpnum;
919 920 921
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
922
		rcu_preempt_boost_start_gp(rnp);
923 924 925
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
926
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
927 928
	}

929
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
930
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
931
	rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
932 933
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
934 935
}

936
/*
P
Paul E. McKenney 已提交
937 938 939 940 941
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
942
 */
P
Paul E. McKenney 已提交
943
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
944
	__releases(rcu_get_root(rsp)->lock)
945
{
946 947
	unsigned long gp_duration;

948
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
949 950 951 952 953 954

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
955 956 957
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
958
	rsp->completed = rsp->gpnum;
959
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
960
	rsp->signaled = RCU_GP_IDLE;
961 962 963
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

964
/*
P
Paul E. McKenney 已提交
965 966 967 968 969 970
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
971 972
 */
static void
P
Paul E. McKenney 已提交
973 974
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
975 976
	__releases(rnp->lock)
{
977 978
	struct rcu_node *rnp_c;

979 980 981 982 983
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
984
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
985 986 987
			return;
		}
		rnp->qsmask &= ~mask;
988 989 990 991
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
992
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
993 994

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
995
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
996 997 998 999 1000 1001 1002 1003 1004
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1005
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006
		rnp_c = rnp;
1007
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1008
		raw_spin_lock_irqsave(&rnp->lock, flags);
1009
		WARN_ON_ONCE(rnp_c->qsmask);
1010 1011 1012 1013
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1014
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1015
	 * to clean up and start the next grace period if one is needed.
1016
	 */
P
Paul E. McKenney 已提交
1017
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1018 1019 1020
}

/*
P
Paul E. McKenney 已提交
1021 1022 1023 1024 1025 1026 1027
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1028 1029
 */
static void
1030
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1031 1032 1033 1034 1035 1036
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1037
	raw_spin_lock_irqsave(&rnp->lock, flags);
1038
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1039 1040

		/*
1041 1042 1043 1044
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1045
		 */
1046
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1047
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1048 1049 1050 1051
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1052
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1053 1054 1055 1056 1057 1058 1059 1060 1061
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1062
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1090
	if (!rdp->passed_quiesce)
1091 1092
		return;

P
Paul E. McKenney 已提交
1093 1094 1095 1096
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1097
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1098 1099 1100 1101
}

#ifdef CONFIG_HOTPLUG_CPU

1102
/*
1103 1104 1105
 * Move a dying CPU's RCU callbacks to online CPU's callback list.
 * Synchronization is not required because this function executes
 * in stop_machine() context.
1106
 */
1107
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1108 1109
{
	int i;
1110 1111
	/* current DYING CPU is cleared in the cpu_online_mask */
	int receive_cpu = cpumask_any(cpu_online_mask);
1112
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1113
	struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1114 1115 1116

	if (rdp->nxtlist == NULL)
		return;  /* irqs disabled, so comparison is stable. */
1117 1118 1119 1120 1121 1122 1123

	*receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
	receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	receive_rdp->qlen += rdp->qlen;
	receive_rdp->n_cbs_adopted += rdp->qlen;
	rdp->n_cbs_orphaned += rdp->qlen;

1124 1125 1126 1127 1128 1129
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
}

1130 1131 1132
/*
 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
 * and move all callbacks from the outgoing CPU to the current one.
1133 1134
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1135 1136 1137 1138 1139
 */
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
{
	unsigned long flags;
	unsigned long mask;
1140
	int need_report = 0;
1141
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1142
	struct rcu_node *rnp;
1143

1144
	rcu_stop_cpu_kthread(cpu);
1145 1146

	/* Exclude any attempts to start a new grace period. */
P
Paul E. McKenney 已提交
1147
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
1148 1149

	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1150
	rnp = rdp->mynode;	/* this is the outgoing CPU's rnp. */
1151 1152
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
P
Paul E. McKenney 已提交
1153
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1154 1155
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
1156
			if (rnp != rdp->mynode)
P
Paul E. McKenney 已提交
1157
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1158 1159 1160 1161 1162
			else
				trace_rcu_grace_period(rsp->name,
						       rnp->gpnum + 1 -
						       !!(rnp->qsmask & mask),
						       "cpuofl");
1163 1164
			break;
		}
1165 1166 1167 1168 1169
		if (rnp == rdp->mynode) {
			trace_rcu_grace_period(rsp->name,
					       rnp->gpnum + 1 -
					       !!(rnp->qsmask & mask),
					       "cpuofl");
1170
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1171
		} else
P
Paul E. McKenney 已提交
1172
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1173 1174 1175 1176
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

1177 1178 1179
	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
P
Paul E. McKenney 已提交
1180 1181
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
1182
	 */
P
Paul E. McKenney 已提交
1183
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1184
	rnp = rdp->mynode;
1185
	if (need_report & RCU_OFL_TASKS_NORM_GP)
P
Paul E. McKenney 已提交
1186
		rcu_report_unblock_qs_rnp(rnp, flags);
1187
	else
P
Paul E. McKenney 已提交
1188
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1189 1190
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp);
1191
	rcu_node_kthread_setaffinity(rnp, -1);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
}

/*
 * Remove the specified CPU from the RCU hierarchy and move any pending
 * callbacks that it might have to the current CPU.  This code assumes
 * that at least one CPU in the system will remain running at all times.
 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
 */
static void rcu_offline_cpu(int cpu)
{
1202
	__rcu_offline_cpu(cpu, &rcu_sched_state);
1203
	__rcu_offline_cpu(cpu, &rcu_bh_state);
1204
	rcu_preempt_offline_cpu(cpu);
1205 1206 1207 1208
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1209
static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1210 1211 1212
{
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static void rcu_offline_cpu(int cpu)
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1223
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1224 1225 1226
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1227
	int bl, count;
1228 1229

	/* If no callbacks are ready, just return.*/
1230
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1231 1232
		trace_rcu_batch_start(rsp->name, 0, 0);
		trace_rcu_batch_end(rsp->name, 0);
1233
		return;
1234
	}
1235 1236 1237 1238 1239 1240

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1241
	bl = rdp->blimit;
1242
	trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
	for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
		if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[count] = &rdp->nxtlist;
	local_irq_restore(flags);

	/* Invoke callbacks. */
	count = 0;
	while (list) {
		next = list->next;
		prefetch(next);
1257
		debug_rcu_head_unqueue(list);
1258
		__rcu_reclaim(rsp->name, list);
1259
		list = next;
1260
		if (++count >= bl)
1261 1262 1263 1264
			break;
	}

	local_irq_save(flags);
1265
	trace_rcu_batch_end(rsp->name, count);
1266 1267 1268

	/* Update count, and requeue any remaining callbacks. */
	rdp->qlen -= count;
1269
	rdp->n_cbs_invoked += count;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
		for (count = 0; count < RCU_NEXT_SIZE; count++)
			if (&rdp->nxtlist == rdp->nxttail[count])
				rdp->nxttail[count] = tail;
			else
				break;
	}

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1284 1285 1286 1287 1288 1289 1290
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1291 1292
	local_irq_restore(flags);

1293
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1294
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1295
		invoke_rcu_core();
1296 1297 1298 1299 1300
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1301
 * Also schedule RCU core processing.
1302 1303 1304 1305 1306 1307 1308
 *
 * This function must be called with hardirqs disabled.  It is normally
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1309
	trace_rcu_utilization("Start scheduler-tick");
1310
	if (user ||
1311 1312
	    (idle_cpu(cpu) && rcu_scheduler_active &&
	     !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1313 1314 1315 1316 1317

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1318
		 * a quiescent state, so note it.
1319 1320
		 *
		 * No memory barrier is required here because both
1321 1322 1323
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1324 1325
		 */

1326 1327
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1328 1329 1330 1331 1332 1333 1334

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1335
		 * critical section, so note it.
1336 1337
		 */

1338
		rcu_bh_qs(cpu);
1339
	}
1340
	rcu_preempt_check_callbacks(cpu);
1341
	if (rcu_pending(cpu))
1342
		invoke_rcu_core();
1343
	trace_rcu_utilization("End scheduler-tick");
1344 1345 1346 1347 1348 1349 1350
}

#ifdef CONFIG_SMP

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1351 1352
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1353
 * The caller must have suppressed start of new grace periods.
1354
 */
1355
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1356 1357 1358 1359 1360
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1361
	struct rcu_node *rnp;
1362

1363
	rcu_for_each_leaf_node(rsp, rnp) {
1364
		mask = 0;
P
Paul E. McKenney 已提交
1365
		raw_spin_lock_irqsave(&rnp->lock, flags);
1366
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1367
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1368
			return;
1369
		}
1370
		if (rnp->qsmask == 0) {
1371
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1372 1373
			continue;
		}
1374
		cpu = rnp->grplo;
1375
		bit = 1;
1376
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1377 1378
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1379 1380
				mask |= bit;
		}
1381
		if (mask != 0) {
1382

P
Paul E. McKenney 已提交
1383 1384
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1385 1386
			continue;
		}
P
Paul E. McKenney 已提交
1387
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1388
	}
1389
	rnp = rcu_get_root(rsp);
1390 1391 1392 1393
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1405 1406 1407
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1408
		return;  /* No grace period in progress, nothing to force. */
1409
	}
P
Paul E. McKenney 已提交
1410
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1411
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1412
		trace_rcu_utilization("End fqs");
1413 1414
		return;	/* Someone else is already on the job. */
	}
1415
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1416
		goto unlock_fqs_ret; /* no emergency and done recently. */
1417
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1418
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1419
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1420
	if(!rcu_gp_in_progress(rsp)) {
1421
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1422
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1423
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1424
	}
1425
	rsp->fqs_active = 1;
1426
	switch (rsp->signaled) {
1427
	case RCU_GP_IDLE:
1428 1429
	case RCU_GP_INIT:

1430
		break; /* grace period idle or initializing, ignore. */
1431 1432 1433 1434 1435

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1436 1437
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1438
		/* Record dyntick-idle state. */
1439
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1440
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1441
		if (rcu_gp_in_progress(rsp))
1442
			rsp->signaled = RCU_FORCE_QS;
1443
		break;
1444 1445 1446 1447

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1448
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1449
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1450 1451 1452

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1453
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1454
		break;
1455
	}
1456
	rsp->fqs_active = 0;
1457
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1458
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1459 1460
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1461
		trace_rcu_utilization("End fqs");
1462 1463
		return;
	}
P
Paul E. McKenney 已提交
1464
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1465
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1466
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1467
	trace_rcu_utilization("End fqs");
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
}

#else /* #ifdef CONFIG_SMP */

static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	set_need_resched();
}

#endif /* #else #ifdef CONFIG_SMP */

/*
1480 1481 1482
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1483 1484 1485 1486 1487 1488
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1489 1490
	WARN_ON_ONCE(rdp->beenonline == 0);

1491 1492 1493 1494
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1495
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1509
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1510 1511 1512 1513
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1514
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1515
		invoke_rcu_callbacks(rsp, rdp);
1516 1517
}

1518
/*
1519
 * Do RCU core processing for the current CPU.
1520
 */
1521
static void rcu_process_callbacks(struct softirq_action *unused)
1522
{
1523
	trace_rcu_utilization("Start RCU core");
1524 1525
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1526
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1527
	rcu_preempt_process_callbacks();
1528 1529 1530

	/* If we are last CPU on way to dyntick-idle mode, accelerate it. */
	rcu_needs_cpu_flush();
1531
	trace_rcu_utilization("End RCU core");
1532 1533
}

1534
/*
1535 1536 1537 1538 1539
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1540
 */
1541
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1542
{
1543 1544
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1545 1546
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1547 1548
		return;
	}
1549
	invoke_rcu_callbacks_kthread();
1550 1551
}

1552
static void invoke_rcu_core(void)
1553 1554 1555 1556
{
	raise_softirq(RCU_SOFTIRQ);
}

1557 1558 1559 1560 1561 1562 1563
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
	   struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_data *rdp;

1564
	debug_rcu_head_queue(head);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1577
	rdp = this_cpu_ptr(rsp->rda);
1578 1579 1580 1581

	/* Add the callback to our list. */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1582 1583
	rdp->qlen++;

1584 1585 1586 1587 1588 1589
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
					 rdp->qlen);
	else
		trace_rcu_callback(rsp->name, head, rdp->qlen);

1590 1591 1592 1593 1594
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1595

1596 1597 1598 1599 1600 1601 1602
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1603
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1625
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1626 1627 1628 1629 1630
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1631
 * Queue an RCU-sched callback for invocation after a grace period.
1632
 */
1633
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1634
{
1635
	__call_rcu(head, func, &rcu_sched_state);
1636
}
1637
EXPORT_SYMBOL_GPL(call_rcu_sched);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

/*
 * Queue an RCU for invocation after a quicker grace period.
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_bh_state);
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
	if (rcu_blocking_is_gp())
		return;
1675
	wait_rcu_gp(call_rcu_sched);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
	if (rcu_blocking_is_gp())
		return;
1692
	wait_rcu_gp(call_rcu_bh);
1693 1694 1695
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

1696 1697 1698 1699 1700 1701 1702 1703 1704
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
1705 1706
	struct rcu_node *rnp = rdp->mynode;

1707 1708 1709 1710 1711 1712
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
1713 1714
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
1715 1716 1717 1718 1719 1720

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
1721
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
1722
		if (!rdp->preemptible &&
1723 1724 1725
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
1726
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
1727
		rdp->n_rp_report_qs++;
1728
		return 1;
1729
	}
1730 1731

	/* Does this CPU have callbacks ready to invoke? */
1732 1733
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
1734
		return 1;
1735
	}
1736 1737

	/* Has RCU gone idle with this CPU needing another grace period? */
1738 1739
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
1740
		return 1;
1741
	}
1742 1743

	/* Has another RCU grace period completed?  */
1744
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1745
		rdp->n_rp_gp_completed++;
1746
		return 1;
1747
	}
1748 1749

	/* Has a new RCU grace period started? */
1750
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1751
		rdp->n_rp_gp_started++;
1752
		return 1;
1753
	}
1754 1755

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
1756
	if (rcu_gp_in_progress(rsp) &&
1757
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1758
		rdp->n_rp_need_fqs++;
1759
		return 1;
1760
	}
1761 1762

	/* nothing to do */
1763
	rdp->n_rp_need_nothing++;
1764 1765 1766 1767 1768 1769 1770 1771
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
1772
static int rcu_pending(int cpu)
1773
{
1774
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1775 1776
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
1777 1778 1779 1780 1781
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
1782
 * 1 if so.
1783
 */
1784
static int rcu_needs_cpu_quick_check(int cpu)
1785 1786
{
	/* RCU callbacks either ready or pending? */
1787
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
1788 1789
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
	       rcu_preempt_needs_cpu(cpu);
1790 1791
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
1822 1823
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
1824 1825 1826
					       void (*func)(struct rcu_head *head)))
{
	BUG_ON(in_interrupt());
1827
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
1828 1829 1830 1831 1832 1833 1834 1835 1836
	mutex_lock(&rcu_barrier_mutex);
	init_completion(&rcu_barrier_completion);
	/*
	 * Initialize rcu_barrier_cpu_count to 1, then invoke
	 * rcu_barrier_func() on each CPU, so that each CPU also has
	 * incremented rcu_barrier_cpu_count.  Only then is it safe to
	 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
	 * might complete its grace period before all of the other CPUs
	 * did their increment, causing this function to return too
1837 1838 1839
	 * early.  Note that on_each_cpu() disables irqs, which prevents
	 * any CPUs from coming online or going offline until each online
	 * CPU has queued its RCU-barrier callback.
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	 */
	atomic_set(&rcu_barrier_cpu_count, 1);
	on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
	wait_for_completion(&rcu_barrier_completion);
	mutex_unlock(&rcu_barrier_mutex);
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
1854
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
1855 1856 1857 1858 1859 1860 1861 1862
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
1863
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
1864 1865 1866
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

1867
/*
1868
 * Do boot-time initialization of a CPU's per-CPU RCU data.
1869
 */
1870 1871
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1872 1873 1874
{
	unsigned long flags;
	int i;
1875
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1876 1877 1878
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1879
	raw_spin_lock_irqsave(&rnp->lock, flags);
1880 1881 1882 1883 1884 1885 1886 1887 1888
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
	rdp->qlen = 0;
#ifdef CONFIG_NO_HZ
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
#endif /* #ifdef CONFIG_NO_HZ */
	rdp->cpu = cpu;
1889
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
1890
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1891 1892 1893 1894 1895 1896 1897
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1898
 */
1899
static void __cpuinit
P
Paul E. McKenney 已提交
1900
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
1901 1902 1903
{
	unsigned long flags;
	unsigned long mask;
1904
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1905 1906 1907
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
1908
	raw_spin_lock_irqsave(&rnp->lock, flags);
1909
	rdp->passed_quiesce = 0;  /* We could be racing with new GP, */
1910 1911
	rdp->qs_pending = 1;	 /*  so set up to respond to current GP. */
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
1912
	rdp->preemptible = preemptible;
1913 1914
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
1915
	rdp->blimit = blimit;
P
Paul E. McKenney 已提交
1916
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
1917 1918 1919 1920 1921 1922 1923

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
1924
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
1925 1926 1927 1928 1929 1930

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
1931
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1932 1933
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
1934 1935 1936
		if (rnp == rdp->mynode) {
			rdp->gpnum = rnp->completed; /* if GP in progress... */
			rdp->completed = rnp->completed;
1937
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
1938
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
1939
		}
P
Paul E. McKenney 已提交
1940
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1941 1942 1943
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
1944
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1945 1946
}

P
Peter Zijlstra 已提交
1947
static void __cpuinit rcu_prepare_cpu(int cpu)
1948
{
1949 1950 1951
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
1952 1953 1954
}

/*
1955
 * Handle CPU online/offline notification events.
1956
 */
1957 1958
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
1959 1960
{
	long cpu = (long)hcpu;
1961
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1962
	struct rcu_node *rnp = rdp->mynode;
1963

1964
	trace_rcu_utilization("Start CPU hotplug");
1965 1966 1967
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
1968 1969
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
1970 1971
		break;
	case CPU_ONLINE:
1972 1973
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
1974
		rcu_cpu_kthread_setrt(cpu, 1);
1975 1976 1977
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
1978
		rcu_cpu_kthread_setrt(cpu, 0);
1979
		break;
1980 1981 1982
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
1983 1984 1985
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1986
		 */
1987 1988 1989
		rcu_send_cbs_to_online(&rcu_bh_state);
		rcu_send_cbs_to_online(&rcu_sched_state);
		rcu_preempt_send_cbs_to_online();
1990
		break;
1991 1992 1993 1994 1995 1996 1997 1998 1999
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		rcu_offline_cpu(cpu);
		break;
	default:
		break;
	}
2000
	trace_rcu_utilization("End CPU hotplug");
2001 2002 2003
	return NOTIFY_OK;
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2019 2020 2021 2022 2023 2024 2025 2026 2027
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2028
	for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2029
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2030
	rsp->levelspread[0] = RCU_FANOUT_LEAF;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2051 2052
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2053
{
2054 2055 2056 2057
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2058 2059 2060 2061 2062
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2063 2064
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	/* Initialize the level-tracking arrays. */

	for (i = 1; i < NUM_RCU_LVLS; i++)
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

	for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2077
			raw_spin_lock_init(&rnp->lock);
2078 2079
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2080
			rnp->gpnum = 0;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2098
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2099 2100
		}
	}
2101

2102
	rsp->rda = rda;
2103 2104
	rnp = rsp->level[NUM_RCU_LVLS - 1];
	for_each_possible_cpu(i) {
2105
		while (i > rnp->grphi)
2106
			rnp++;
2107
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2108 2109
		rcu_boot_init_percpu_data(i, rsp);
	}
2110 2111
}

2112
void __init rcu_init(void)
2113
{
P
Paul E. McKenney 已提交
2114
	int cpu;
2115

2116
	rcu_bootup_announce();
2117 2118
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2119
	__rcu_init_preempt();
2120
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2121 2122 2123 2124 2125 2126 2127

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2128 2129
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2130
	check_cpu_stall_init();
2131 2132
}

2133
#include "rcutree_plugin.h"