rcutree.c 86.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55

56
#include "rcutree.h"
57 58 59
#include <trace/events/rcu.h>

#include "rcu.h"
60

61 62
/* Data structures. */

63
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
64

65
#define RCU_STATE_INITIALIZER(structname) { \
66
	.level = { &structname##_state.node[0] }, \
67
	.fqs_state = RCU_GP_IDLE, \
68 69
	.gpnum = -300, \
	.completed = -300, \
70
	.onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
71 72
	.orphan_nxttail = &structname##_state.orphan_nxtlist, \
	.orphan_donetail = &structname##_state.orphan_donelist, \
73
	.fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
74 75
	.n_force_qs = 0, \
	.n_force_qs_ngp = 0, \
76
	.name = #structname, \
77 78
}

79
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
80
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81

82
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
83
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84

85 86
static struct rcu_state *rcu_state;

87 88 89 90 91 92 93 94 95 96 97 98 99
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
module_param(rcu_fanout_leaf, int, 0);
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

100 101 102 103 104 105 106 107 108
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
 * optimized synchronize_sched() to a simple barrier().  When this variable
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
109 110 111
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

112 113 114 115 116 117 118 119 120 121 122 123 124 125
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

126 127
#ifdef CONFIG_RCU_BOOST

128 129 130 131 132
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
133
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
134
DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
135
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
136
DEFINE_PER_CPU(char, rcu_cpu_has_work);
137

138 139
#endif /* #ifdef CONFIG_RCU_BOOST */

140
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
141 142
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
143

144 145 146 147 148 149 150 151 152 153 154 155
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

156 157 158 159 160 161 162
/* State information for rcu_barrier() and friends. */

static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;

163 164 165 166 167 168 169 170 171 172
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

173
/*
174
 * Note a quiescent state.  Because we do not need to know
175
 * how many quiescent states passed, just if there was at least
176
 * one since the start of the grace period, this just sets a flag.
177
 * The caller must have disabled preemption.
178
 */
179
void rcu_sched_qs(int cpu)
180
{
181
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
182

183
	rdp->passed_quiesce_gpnum = rdp->gpnum;
184
	barrier();
185
	if (rdp->passed_quiesce == 0)
186
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
187
	rdp->passed_quiesce = 1;
188 189
}

190
void rcu_bh_qs(int cpu)
191
{
192
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
193

194
	rdp->passed_quiesce_gpnum = rdp->gpnum;
195
	barrier();
196
	if (rdp->passed_quiesce == 0)
197
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
198
	rdp->passed_quiesce = 1;
199
}
200

201 202 203
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
204
 * The caller must have disabled preemption.
205 206 207
 */
void rcu_note_context_switch(int cpu)
{
208
	trace_rcu_utilization("Start context switch");
209
	rcu_sched_qs(cpu);
210
	rcu_preempt_note_context_switch(cpu);
211
	trace_rcu_utilization("End context switch");
212
}
213
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
214

215
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
216
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
217
	.dynticks = ATOMIC_INIT(1),
218
};
219

220
static int blimit = 10;		/* Maximum callbacks per rcu_do_batch. */
221 222 223
static int qhimark = 10000;	/* If this many pending, ignore blimit. */
static int qlowmark = 100;	/* Once only this many pending, use blimit. */

224 225 226 227
module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);

228 229 230
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;

231
module_param(rcu_cpu_stall_suppress, int, 0644);
232
module_param(rcu_cpu_stall_timeout, int, 0644);
233

234
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
235
static int rcu_pending(int cpu);
236 237

/*
238
 * Return the number of RCU-sched batches processed thus far for debug & stats.
239
 */
240
long rcu_batches_completed_sched(void)
241
{
242
	return rcu_sched_state.completed;
243
}
244
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
245 246 247 248 249 250 251 252 253 254

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

255 256 257 258 259 260 261 262 263
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_bh_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

289 290 291 292 293 294 295 296 297
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_sched_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
}

/*
 * Does the current CPU require a yet-as-unscheduled grace period?
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
313
	return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * If the specified CPU is offline, tell the caller that it is in
 * a quiescent state.  Otherwise, whack it with a reschedule IPI.
 * Grace periods can end up waiting on an offline CPU when that
 * CPU is in the process of coming online -- it will be added to the
 * rcu_node bitmasks before it actually makes it online.  The same thing
 * can happen while a CPU is in the process of coming online.  Because this
 * race is quite rare, we check for it after detecting that the grace
 * period has been delayed rather than checking each and every CPU
 * each and every time we start a new grace period.
 */
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
{
	/*
338 339 340 341 342
	 * If the CPU is offline for more than a jiffy, it is in a quiescent
	 * state.  We can trust its state not to change because interrupts
	 * are disabled.  The reason for the jiffy's worth of slack is to
	 * handle CPUs initializing on the way up and finding their way
	 * to the idle loop on the way down.
343
	 */
344 345
	if (cpu_is_offline(rdp->cpu) &&
	    ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
346
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
347 348 349 350 351 352
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
}

353 354 355 356 357 358 359
/*
 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
360
static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
361
{
362
	trace_rcu_dyntick("Start", oldval, 0);
363
	if (!is_idle_task(current)) {
364 365
		struct task_struct *idle = idle_task(smp_processor_id());

366
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
367
		ftrace_dump(DUMP_ALL);
368 369 370
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
371
	}
372
	rcu_prepare_for_idle(smp_processor_id());
373 374 375 376 377
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
378 379 380 381 382 383 384 385 386 387 388

	/*
	 * The idle task is not permitted to enter the idle loop while
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
389
}
390 391

/**
392
 * rcu_idle_enter - inform RCU that current CPU is entering idle
393
 *
394
 * Enter idle mode, in other words, -leave- the mode in which RCU
395
 * read-side critical sections can occur.  (Though RCU read-side
396 397 398 399 400 401
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
402
 */
403
void rcu_idle_enter(void)
404 405
{
	unsigned long flags;
406
	long long oldval;
407 408 409 410
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
411
	oldval = rdtp->dynticks_nesting;
412 413 414 415 416
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
417
	rcu_idle_enter_common(rdtp, oldval);
418 419
	local_irq_restore(flags);
}
420
EXPORT_SYMBOL_GPL(rcu_idle_enter);
421

422 423 424 425 426 427
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
428
 *
429 430 431 432 433 434 435 436
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
437
 */
438
void rcu_irq_exit(void)
439 440
{
	unsigned long flags;
441
	long long oldval;
442 443 444 445
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
446
	oldval = rdtp->dynticks_nesting;
447 448
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
449 450 451 452
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_enter_common(rdtp, oldval);
453 454 455 456 457 458 459 460 461 462 463 464
	local_irq_restore(flags);
}

/*
 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
{
465 466 467 468 469
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
470
	rcu_cleanup_after_idle(smp_processor_id());
471
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
472
	if (!is_idle_task(current)) {
473 474
		struct task_struct *idle = idle_task(smp_processor_id());

475 476
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
477
		ftrace_dump(DUMP_ALL);
478 479 480
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
481 482 483 484 485 486 487 488 489
	}
}

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
490
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
491
 * allow for the possibility of usermode upcalls messing up our count
492 493 494 495 496 497 498 499 500 501 502 503
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
504 505 506 507 508
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
509 510 511
	rcu_idle_exit_common(rdtp, oldval);
	local_irq_restore(flags);
}
512
EXPORT_SYMBOL_GPL(rcu_idle_exit);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
544 545 546 547
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
		rcu_idle_exit_common(rdtp, oldval);
548 549 550 551 552 553 554 555 556 557 558 559 560 561
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

562 563
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
564
		return;
565 566 567 568 569 570
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
571 572 573 574 575 576 577 578 579 580 581 582 583
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

584 585
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
586
		return;
587 588 589 590 591
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
592 593
}

594 595
#ifdef CONFIG_PROVE_RCU

596
/**
597
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
598
 *
599
 * If the current CPU is in its idle loop and is neither in an interrupt
600
 * or NMI handler, return true.
601
 */
602
int rcu_is_cpu_idle(void)
603
{
604 605 606 607 608 609
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
610
}
611
EXPORT_SYMBOL(rcu_is_cpu_idle);
612

613 614 615 616 617 618 619 620
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
621 622 623 624 625 626 627 628 629 630 631
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
632 633 634 635 636 637
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
638 639
	struct rcu_data *rdp;
	struct rcu_node *rnp;
640 641 642 643 644
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
645 646 647
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
648 649 650 651 652 653 654 655
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

656 657
#endif /* #ifdef CONFIG_PROVE_RCU */

658
/**
659
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
660
 *
661 662 663
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
664
 */
665
int rcu_is_cpu_rrupt_from_idle(void)
666
{
667
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
668 669 670 671 672
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
673
 * is in dynticks idle mode, which is an extended quiescent state.
674 675 676
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
677
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
678
	return (rdp->dynticks_snap & 0x1) == 0;
679 680 681 682 683 684 685 686 687 688
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
 * for this same CPU.
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
689 690
	unsigned int curr;
	unsigned int snap;
691

692 693
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
694 695 696 697 698 699 700 701 702

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
703
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
704
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
705 706 707 708 709 710 711 712
		rdp->dynticks_fqs++;
		return 1;
	}

	/* Go check for the CPU being offline. */
	return rcu_implicit_offline_qs(rdp);
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static int jiffies_till_stall_check(void)
{
	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);

	/*
	 * Limit check must be consistent with the Kconfig limits
	 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
	 */
	if (till_stall_check < 3) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
		till_stall_check = 3;
	} else if (till_stall_check > 300) {
		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
		till_stall_check = 300;
	}
	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
}

731 732 733
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
734
	rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
735 736 737 738 739 740 741
}

static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
742
	int ndetected;
743 744 745 746
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
747
	raw_spin_lock_irqsave(&rnp->lock, flags);
748
	delta = jiffies - rsp->jiffies_stall;
749
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
750
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
751 752
		return;
	}
753
	rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
754
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
755

756 757 758 759 760
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
761
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
762
	       rsp->name);
763
	print_cpu_stall_info_begin();
764
	rcu_for_each_leaf_node(rsp, rnp) {
765
		raw_spin_lock_irqsave(&rnp->lock, flags);
766
		ndetected += rcu_print_task_stall(rnp);
767
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
768
		if (rnp->qsmask == 0)
769
			continue;
770
		for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
771
			if (rnp->qsmask & (1UL << cpu)) {
772
				print_cpu_stall_info(rsp, rnp->grplo + cpu);
773 774
				ndetected++;
			}
775
	}
776 777 778 779 780 781 782 783 784 785 786 787

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	ndetected = rcu_print_task_stall(rnp);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
	printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
788
	       smp_processor_id(), (long)(jiffies - rsp->gp_start));
789 790 791
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
792
		dump_stack();
793

794 795 796 797
	/* If so configured, complain about tasks blocking the grace period. */

	rcu_print_detail_task_stall(rsp);

798 799 800 801 802 803 804 805
	force_quiescent_state(rsp, 0);  /* Kick them all. */
}

static void print_cpu_stall(struct rcu_state *rsp)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

806 807 808 809 810
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
811 812 813 814 815
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
	printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
816 817
	if (!trigger_all_cpu_backtrace())
		dump_stack();
818

P
Paul E. McKenney 已提交
819
	raw_spin_lock_irqsave(&rnp->lock, flags);
820
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
821 822
		rsp->jiffies_stall = jiffies +
				     3 * jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
823
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
824

825 826 827 828 829
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
830 831
	unsigned long j;
	unsigned long js;
832 833
	struct rcu_node *rnp;

834
	if (rcu_cpu_stall_suppress)
835
		return;
836 837
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
838
	rnp = rdp->mynode;
839
	if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
840 841 842 843

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

844 845
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
846

847
		/* They had a few time units to dump stack, so complain. */
848 849 850 851
		print_other_cpu_stall(rsp);
	}
}

852 853
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
854
	rcu_cpu_stall_suppress = 1;
855 856 857
	return NOTIFY_DONE;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
	rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
	rcu_preempt_stall_reset();
}

874 875 876 877 878 879 880 881 882
static struct notifier_block rcu_panic_block = {
	.notifier_call = rcu_panic,
};

static void __init check_cpu_stall_init(void)
{
	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
}

883 884 885
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
886 887 888
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
889
 */
890 891 892
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
893 894 895 896 897
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
898
		rdp->gpnum = rnp->gpnum;
899
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
900 901
		if (rnp->qsmask & rdp->grpmask) {
			rdp->qs_pending = 1;
902
			rdp->passed_quiesce = 0;
903 904
		} else
			rdp->qs_pending = 0;
905
		zero_cpu_stall_ticks(rdp);
906 907 908
	}
}

909 910
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
911 912 913 914 915 916
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
917
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
918 919 920 921
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
922
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
	if (rdp->completed != rnp->completed) {

		/* Advance callbacks.  No harm if list empty. */
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
		rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
964
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
965

966 967
		/*
		 * If we were in an extended quiescent state, we may have
968
		 * missed some grace periods that others CPUs handled on
969
		 * our behalf. Catch up with this state to avoid noting
970 971 972
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
		 * we will detect this later on.
973
		 */
974
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
975 976
			rdp->gpnum = rdp->completed;

977
		/*
978 979
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
980
		 */
981
		if ((rnp->qsmask & rdp->grpmask) == 0)
982
			rdp->qs_pending = 0;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1000
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1001 1002 1003 1004
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1005
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

	/*
	 * Because this CPU just now started the new grace period, we know
	 * that all of its callbacks will be covered by this upcoming grace
	 * period, even the ones that were registered arbitrarily recently.
	 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
	 *
	 * Other CPUs cannot be sure exactly when the grace period started.
	 * Therefore, their recently registered callbacks must pass through
	 * an additional RCU_NEXT_READY stage, so that they will be handled
	 * by the next RCU grace period.
	 */
	rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
	rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1032 1033 1034

	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1035 1036
}

1037 1038 1039 1040 1041
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1042 1043 1044 1045
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1046 1047 1048 1049 1050
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1051
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1052 1053
	struct rcu_node *rnp = rcu_get_root(rsp);

1054
	if (!rcu_scheduler_fully_active ||
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
		 * Either the scheduler hasn't yet spawned the first
		 * non-idle task or this CPU does not need another
		 * grace period.  Either way, don't start a new grace
		 * period.
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1065

1066
	if (rsp->fqs_active) {
1067
		/*
1068 1069
		 * This CPU needs a grace period, but force_quiescent_state()
		 * is running.  Tell it to start one on this CPU's behalf.
1070
		 */
1071 1072
		rsp->fqs_need_gp = 1;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1073 1074 1075 1076 1077
		return;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
1078
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1079 1080
	WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
	rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1081 1082
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
	record_gp_stall_check_time(rsp);
P
Paul E. McKenney 已提交
1083
	raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */
1084 1085

	/* Exclude any concurrent CPU-hotplug operations. */
P
Paul E. McKenney 已提交
1086
	raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */
1087 1088

	/*
1089 1090 1091 1092 1093 1094 1095 1096 1097
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first
	 * order, starting from the root rcu_node structure.  This
	 * operation relies on the layout of the hierarchy within the
	 * rsp->node[] array.  Note that other CPUs will access only
	 * the leaves of the hierarchy, which still indicate that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
1098 1099 1100 1101
	 *
	 * Note that the grace period cannot complete until we finish
	 * the initialization process, as there will be at least one
	 * qsmask bit set in the root node until that time, namely the
1102 1103
	 * one corresponding to this CPU, due to the fact that we have
	 * irqs disabled.
1104
	 */
1105
	rcu_for_each_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
1106
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
1107
		rcu_preempt_check_blocked_tasks(rnp);
1108
		rnp->qsmask = rnp->qsmaskinit;
1109
		rnp->gpnum = rsp->gpnum;
1110 1111 1112
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
1113
		rcu_preempt_boost_start_gp(rnp);
1114 1115 1116
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
P
Paul E. McKenney 已提交
1117
		raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
1118 1119
	}

1120
	rnp = rcu_get_root(rsp);
P
Paul E. McKenney 已提交
1121
	raw_spin_lock(&rnp->lock);		/* irqs already disabled. */
1122
	rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
P
Paul E. McKenney 已提交
1123 1124
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1125 1126
}

1127
/*
P
Paul E. McKenney 已提交
1128 1129 1130 1131 1132
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1133
 */
P
Paul E. McKenney 已提交
1134
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1135
	__releases(rcu_get_root(rsp)->lock)
1136
{
1137
	unsigned long gp_duration;
1138 1139
	struct rcu_node *rnp = rcu_get_root(rsp);
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1140

1141
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
P
Paul E. McKenney 已提交
1142 1143 1144 1145 1146 1147

	/*
	 * Ensure that all grace-period and pre-grace-period activity
	 * is seen before the assignment to rsp->completed.
	 */
	smp_mb(); /* See above block comment. */
1148 1149 1150
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 *
	 * But if this CPU needs another grace period, it will take
	 * care of this while initializing the next grace period.
	 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
	 * because the callbacks have not yet been advanced: Those
	 * callbacks are waiting on the grace period that just now
	 * completed.
	 */
	if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
		raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */

		/*
		 * Propagate new ->completed value to rcu_node structures
		 * so that other CPUs don't have to wait until the start
		 * of the next grace period to process their callbacks.
		 */
		rcu_for_each_node_breadth_first(rsp, rnp) {
			raw_spin_lock(&rnp->lock); /* irqs already disabled. */
			rnp->completed = rsp->gpnum;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		rnp = rcu_get_root(rsp);
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
	}

	rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */
1185
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1186
	rsp->fqs_state = RCU_GP_IDLE;
1187 1188 1189
	rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */
}

1190
/*
P
Paul E. McKenney 已提交
1191 1192 1193 1194 1195 1196
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1197 1198
 */
static void
P
Paul E. McKenney 已提交
1199 1200
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1201 1202
	__releases(rnp->lock)
{
1203 1204
	struct rcu_node *rnp_c;

1205 1206 1207 1208 1209
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1210
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1211 1212 1213
			return;
		}
		rnp->qsmask &= ~mask;
1214 1215 1216 1217
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1218
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1219 1220

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1221
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1222 1223 1224 1225 1226 1227 1228 1229 1230
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1231
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1232
		rnp_c = rnp;
1233
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1234
		raw_spin_lock_irqsave(&rnp->lock, flags);
1235
		WARN_ON_ONCE(rnp_c->qsmask);
1236 1237 1238 1239
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1240
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1241
	 * to clean up and start the next grace period if one is needed.
1242
	 */
P
Paul E. McKenney 已提交
1243
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1244 1245 1246
}

/*
P
Paul E. McKenney 已提交
1247 1248 1249 1250 1251 1252 1253
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1254 1255
 */
static void
1256
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1257 1258 1259 1260 1261 1262
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1263
	raw_spin_lock_irqsave(&rnp->lock, flags);
1264
	if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1265 1266

		/*
1267 1268 1269 1270
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1271
		 */
1272
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1273
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1274 1275 1276 1277
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1278
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1279 1280 1281 1282 1283 1284 1285 1286 1287
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
		rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];

P
Paul E. McKenney 已提交
1288
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1316
	if (!rdp->passed_quiesce)
1317 1318
		return;

P
Paul E. McKenney 已提交
1319 1320 1321 1322
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1323
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1324 1325 1326 1327
}

#ifdef CONFIG_HOTPLUG_CPU

1328
/*
1329 1330 1331
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
 * ->onofflock.
1332
 */
1333 1334 1335
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1336 1337
{
	int i;
1338

1339 1340 1341 1342 1343
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
	 * because ->onofflock excludes _rcu_barrier()'s adoption of
	 * the callbacks, thus no memory barrier is required.
	 */
1344
	if (rdp->nxtlist != NULL) {
1345 1346 1347
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1348 1349 1350 1351 1352
		rdp->qlen_lazy = 0;
		rdp->qlen = 0;
	}

	/*
1353 1354 1355 1356 1357 1358 1359
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1360
	 */
1361 1362 1363 1364
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1365 1366 1367
	}

	/*
1368 1369 1370
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1371
	 */
1372
	if (rdp->nxtlist != NULL) {
1373 1374
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1375
	}
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	/* Finally, initialize the rcu_data structure's list to empty.  */
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
 * orphanage.  The caller must hold the ->onofflock.
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

1392
	/*
1393 1394 1395 1396 1397
	 * If there is an rcu_barrier() operation in progress, then
	 * only the task doing that operation is permitted to adopt
	 * callbacks.  To do otherwise breaks rcu_barrier() and friends
	 * by causing them to fail to wait for the callbacks in the
	 * orphanage.
1398
	 */
1399 1400 1401 1402 1403 1404 1405 1406
	if (rsp->rcu_barrier_in_progress &&
	    rsp->rcu_barrier_in_progress != current)
		return;

	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1407 1408
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1448 1449 1450
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1451 1452 1453
}

/*
1454
 * The CPU has been completely removed, and some other CPU is reporting
1455 1456 1457
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
 * adopting them, if there is no _rcu_barrier() instance running.
1458 1459
 * There can only be one CPU hotplug operation at a time, so no other
 * CPU can be attempting to update rcu_cpu_kthread_task.
1460
 */
1461
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1462
{
1463 1464 1465
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1466
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1467
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1468

1469
	/* Adjust any no-longer-needed kthreads. */
1470 1471
	rcu_stop_cpu_kthread(cpu);
	rcu_node_kthread_setaffinity(rnp, -1);
1472

1473
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1474 1475 1476 1477

	/* Exclude any attempts to start a new grace period. */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);

1478 1479 1480 1481
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
	 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
	 * held leads to deadlock.
	 */
	raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1514 1515 1516 1517
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1518 1519 1520 1521
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
}

1522
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1523 1524 1525
{
}

1526
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1527 1528 1529 1530 1531 1532 1533 1534 1535
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1536
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1537 1538 1539
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
1540
	int bl, count, count_lazy, i;
1541 1542

	/* If no callbacks are ready, just return.*/
1543
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1544
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1545 1546 1547
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1548
		return;
1549
	}
1550 1551 1552 1553 1554 1555

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1556
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1557
	bl = rdp->blimit;
1558
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1559 1560 1561 1562
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1563 1564 1565
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1566 1567 1568
	local_irq_restore(flags);

	/* Invoke callbacks. */
1569
	count = count_lazy = 0;
1570 1571 1572
	while (list) {
		next = list->next;
		prefetch(next);
1573
		debug_rcu_head_unqueue(list);
1574 1575
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1576
		list = next;
1577 1578 1579 1580
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1581 1582 1583 1584
			break;
	}

	local_irq_save(flags);
1585 1586 1587
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1588 1589 1590 1591 1592

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1593 1594 1595
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1596 1597 1598
			else
				break;
	}
1599 1600 1601 1602
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
	rdp->qlen -= count;
	rdp->n_cbs_invoked += count;
1603 1604 1605 1606 1607

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1608 1609 1610 1611 1612 1613 1614
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;

1615 1616
	local_irq_restore(flags);

1617
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1618
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1619
		invoke_rcu_core();
1620 1621 1622 1623 1624
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1625
 * Also schedule RCU core processing.
1626
 *
1627
 * This function must be called from hardirq context.  It is normally
1628 1629 1630 1631 1632
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1633
	trace_rcu_utilization("Start scheduler-tick");
1634
	increment_cpu_stall_ticks();
1635
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1636 1637 1638 1639 1640

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1641
		 * a quiescent state, so note it.
1642 1643
		 *
		 * No memory barrier is required here because both
1644 1645 1646
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1647 1648
		 */

1649 1650
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1651 1652 1653 1654 1655 1656 1657

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
1658
		 * critical section, so note it.
1659 1660
		 */

1661
		rcu_bh_qs(cpu);
1662
	}
1663
	rcu_preempt_check_callbacks(cpu);
1664
	if (rcu_pending(cpu))
1665
		invoke_rcu_core();
1666
	trace_rcu_utilization("End scheduler-tick");
1667 1668 1669 1670 1671
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
1672 1673
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
1674
 * The caller must have suppressed start of new grace periods.
1675
 */
1676
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1677 1678 1679 1680 1681
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
1682
	struct rcu_node *rnp;
1683

1684
	rcu_for_each_leaf_node(rsp, rnp) {
1685
		mask = 0;
P
Paul E. McKenney 已提交
1686
		raw_spin_lock_irqsave(&rnp->lock, flags);
1687
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1688
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1689
			return;
1690
		}
1691
		if (rnp->qsmask == 0) {
1692
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1693 1694
			continue;
		}
1695
		cpu = rnp->grplo;
1696
		bit = 1;
1697
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1698 1699
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
1700 1701
				mask |= bit;
		}
1702
		if (mask != 0) {
1703

P
Paul E. McKenney 已提交
1704 1705
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
1706 1707
			continue;
		}
P
Paul E. McKenney 已提交
1708
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1709
	}
1710
	rnp = rcu_get_root(rsp);
1711 1712 1713 1714
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
{
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);

1726 1727 1728
	trace_rcu_utilization("Start fqs");
	if (!rcu_gp_in_progress(rsp)) {
		trace_rcu_utilization("End fqs");
1729
		return;  /* No grace period in progress, nothing to force. */
1730
	}
P
Paul E. McKenney 已提交
1731
	if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1732
		rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */
1733
		trace_rcu_utilization("End fqs");
1734 1735
		return;	/* Someone else is already on the job. */
	}
1736
	if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1737
		goto unlock_fqs_ret; /* no emergency and done recently. */
1738
	rsp->n_force_qs++;
P
Paul E. McKenney 已提交
1739
	raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1740
	rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1741
	if(!rcu_gp_in_progress(rsp)) {
1742
		rsp->n_force_qs_ngp++;
P
Paul E. McKenney 已提交
1743
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1744
		goto unlock_fqs_ret;  /* no GP in progress, time updated. */
1745
	}
1746
	rsp->fqs_active = 1;
1747
	switch (rsp->fqs_state) {
1748
	case RCU_GP_IDLE:
1749 1750
	case RCU_GP_INIT:

1751
		break; /* grace period idle or initializing, ignore. */
1752 1753 1754 1755 1756

	case RCU_SAVE_DYNTICK:
		if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
			break; /* So gcc recognizes the dead code. */

L
Lai Jiangshan 已提交
1757 1758
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */

1759
		/* Record dyntick-idle state. */
1760
		force_qs_rnp(rsp, dyntick_save_progress_counter);
P
Paul E. McKenney 已提交
1761
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1762
		if (rcu_gp_in_progress(rsp))
1763
			rsp->fqs_state = RCU_FORCE_QS;
1764
		break;
1765 1766 1767 1768

	case RCU_FORCE_QS:

		/* Check dyntick-idle state, send IPI to laggarts. */
P
Paul E. McKenney 已提交
1769
		raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1770
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1771 1772 1773

		/* Leave state in case more forcing is required. */

P
Paul E. McKenney 已提交
1774
		raw_spin_lock(&rnp->lock);  /* irqs already disabled */
1775
		break;
1776
	}
1777
	rsp->fqs_active = 0;
1778
	if (rsp->fqs_need_gp) {
P
Paul E. McKenney 已提交
1779
		raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1780 1781
		rsp->fqs_need_gp = 0;
		rcu_start_gp(rsp, flags); /* releases rnp->lock */
1782
		trace_rcu_utilization("End fqs");
1783 1784
		return;
	}
P
Paul E. McKenney 已提交
1785
	raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */
1786
unlock_fqs_ret:
P
Paul E. McKenney 已提交
1787
	raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1788
	trace_rcu_utilization("End fqs");
1789 1790 1791
}

/*
1792 1793 1794
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
1795 1796 1797 1798 1799 1800
 */
static void
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;

1801 1802
	WARN_ON_ONCE(rdp->beenonline == 0);

1803 1804 1805 1806
	/*
	 * If an RCU GP has gone long enough, go check for dyntick
	 * idle CPUs and, if needed, send resched IPIs.
	 */
1807
	if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		force_quiescent_state(rsp, 1);

	/*
	 * Advance callbacks in response to end of earlier grace
	 * period that some other CPU ended.
	 */
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
	if (cpu_needs_another_gp(rsp, rdp)) {
P
Paul E. McKenney 已提交
1821
		raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1822 1823 1824 1825
		rcu_start_gp(rsp, flags);  /* releases above lock */
	}

	/* If there are callbacks ready, invoke them. */
1826
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1827
		invoke_rcu_callbacks(rsp, rdp);
1828 1829
}

1830
/*
1831
 * Do RCU core processing for the current CPU.
1832
 */
1833
static void rcu_process_callbacks(struct softirq_action *unused)
1834
{
1835
	trace_rcu_utilization("Start RCU core");
1836 1837
	__rcu_process_callbacks(&rcu_sched_state,
				&__get_cpu_var(rcu_sched_data));
1838
	__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1839
	rcu_preempt_process_callbacks();
1840
	trace_rcu_utilization("End RCU core");
1841 1842
}

1843
/*
1844 1845 1846 1847 1848
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
1849
 */
1850
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1851
{
1852 1853
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
1854 1855
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
1856 1857
		return;
	}
1858
	invoke_rcu_callbacks_kthread();
1859 1860
}

1861
static void invoke_rcu_core(void)
1862 1863 1864 1865
{
	raise_softirq(RCU_SOFTIRQ);
}

1866 1867
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1868
	   struct rcu_state *rsp, bool lazy)
1869 1870 1871 1872
{
	unsigned long flags;
	struct rcu_data *rdp;

1873
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1874
	debug_rcu_head_queue(head);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	head->func = func;
	head->next = NULL;

	smp_mb(); /* Ensure RCU update seen before callback registry. */

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
1887
	rdp = this_cpu_ptr(rsp->rda);
1888 1889

	/* Add the callback to our list. */
1890
	rdp->qlen++;
1891 1892
	if (lazy)
		rdp->qlen_lazy++;
1893 1894
	else
		rcu_idle_count_callbacks_posted();
1895 1896 1897
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1898

1899 1900
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1901
					 rdp->qlen_lazy, rdp->qlen);
1902
	else
1903
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1904

1905 1906 1907 1908 1909
	/* If interrupts were disabled, don't dive into RCU core. */
	if (irqs_disabled_flags(flags)) {
		local_irq_restore(flags);
		return;
	}
1910

1911 1912 1913 1914 1915 1916 1917
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
1918
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
				force_quiescent_state(rsp, 0);
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
1940
	} else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1941 1942 1943 1944 1945
		force_quiescent_state(rsp, 1);
	local_irq_restore(flags);
}

/*
1946
 * Queue an RCU-sched callback for invocation after a grace period.
1947
 */
1948
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1949
{
1950
	__call_rcu(head, func, &rcu_sched_state, 0);
1951
}
1952
EXPORT_SYMBOL_GPL(call_rcu_sched);
1953 1954

/*
1955
 * Queue an RCU callback for invocation after a quicker grace period.
1956 1957 1958
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
1959
	__call_rcu(head, func, &rcu_bh_state, 0);
1960 1961 1962
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 *
 * Of course, sampling num_online_cpus() with preemption enabled can
 * give erroneous results if there are concurrent CPU-hotplug operations.
 * For example, given a demonic sequence of preemptions in num_online_cpus()
 * and CPU-hotplug operations, there could be two or more CPUs online at
 * all times, but num_online_cpus() might well return one (or even zero).
 *
 * However, all such demonic sequences require at least one CPU-offline
 * operation.  Furthermore, rcu_blocking_is_gp() giving the wrong answer
 * is only a problem if there is an RCU read-side critical section executing
 * throughout.  But RCU-sched and RCU-bh read-side critical sections
 * disable either preemption or bh, which prevents a CPU from going offline.
 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
 * that there is only one CPU when in fact there was more than one throughout
 * is when there were no RCU readers in the system.  If there are no
 * RCU readers, the grace period by definition can be of zero length,
 * regardless of the number of online CPUs.
 */
static inline int rcu_blocking_is_gp(void)
{
	might_sleep();  /* Check for RCU read-side critical section. */
	return num_online_cpus() <= 1;
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
 * hardware-interrupt handlers, in progress on entry will have completed
 * before this primitive returns.  However, this does not guarantee that
 * softirq handlers will have completed, since in some kernels, these
 * handlers can run in process context, and can block.
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2020 2021 2022 2023
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2024 2025
	if (rcu_blocking_is_gp())
		return;
2026
	wait_rcu_gp(call_rcu_sched);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
 */
void synchronize_rcu_bh(void)
{
2041 2042 2043 2044
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2045 2046
	if (rcu_blocking_is_gp())
		return;
2047
	wait_rcu_gp(call_rcu_bh);
2048 2049 2050
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2081
 *
2082 2083 2084 2085
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
	int firstsnap, s, snap, trycount = 0;

	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
	get_online_cpus();
2115
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();

		/* No joy, try again later.  Or just synchronize_sched(). */
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
		get_online_cpus();
		snap = atomic_read(&sync_sched_expedited_started);
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2172 2173 2174 2175 2176 2177 2178 2179 2180
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2181 2182
	struct rcu_node *rnp = rdp->mynode;

2183 2184 2185 2186 2187 2188
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2189 2190
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2191 2192 2193 2194 2195 2196

		/*
		 * If force_quiescent_state() coming soon and this CPU
		 * needs a quiescent state, and this is either RCU-sched
		 * or RCU-bh, force a local reschedule.
		 */
2197
		rdp->n_rp_qs_pending++;
P
Paul E. McKenney 已提交
2198
		if (!rdp->preemptible &&
2199 2200 2201
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
				 jiffies))
			set_need_resched();
2202
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2203
		rdp->n_rp_report_qs++;
2204
		return 1;
2205
	}
2206 2207

	/* Does this CPU have callbacks ready to invoke? */
2208 2209
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2210
		return 1;
2211
	}
2212 2213

	/* Has RCU gone idle with this CPU needing another grace period? */
2214 2215
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2216
		return 1;
2217
	}
2218 2219

	/* Has another RCU grace period completed?  */
2220
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2221
		rdp->n_rp_gp_completed++;
2222
		return 1;
2223
	}
2224 2225

	/* Has a new RCU grace period started? */
2226
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2227
		rdp->n_rp_gp_started++;
2228
		return 1;
2229
	}
2230 2231

	/* Has an RCU GP gone long enough to send resched IPIs &c? */
2232
	if (rcu_gp_in_progress(rsp) &&
2233
	    ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2234
		rdp->n_rp_need_fqs++;
2235
		return 1;
2236
	}
2237 2238

	/* nothing to do */
2239
	rdp->n_rp_need_nothing++;
2240 2241 2242 2243 2244 2245 2246 2247
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2248
static int rcu_pending(int cpu)
2249
{
2250
	return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2251 2252
	       __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_pending(cpu);
2253 2254 2255 2256 2257
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2258
 * 1 if so.
2259
 */
2260
static int rcu_cpu_has_callbacks(int cpu)
2261 2262
{
	/* RCU callbacks either ready or pending? */
2263
	return per_cpu(rcu_sched_data, cpu).nxtlist ||
2264
	       per_cpu(rcu_bh_data, cpu).nxtlist ||
2265
	       rcu_preempt_cpu_has_callbacks(cpu);
2266 2267
}

2268 2269 2270 2271
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static void rcu_barrier_callback(struct rcu_head *notused)
{
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
	int cpu = smp_processor_id();
	struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
	void (*call_rcu_func)(struct rcu_head *head,
			      void (*func)(struct rcu_head *head));

	atomic_inc(&rcu_barrier_cpu_count);
	call_rcu_func = type;
	call_rcu_func(head, rcu_barrier_callback);
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2297 2298
static void _rcu_barrier(struct rcu_state *rsp,
			 void (*call_rcu_func)(struct rcu_head *head,
2299 2300
					       void (*func)(struct rcu_head *head)))
{
2301 2302 2303 2304 2305 2306 2307
	int cpu;
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_head rh;

	init_rcu_head_on_stack(&rh);

2308
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2309
	mutex_lock(&rcu_barrier_mutex);
2310 2311 2312

	smp_mb();  /* Prevent any prior operations from leaking in. */

2313
	/*
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
	 * (or preemption of this task).  Also flag this task as doing
	 * an rcu_barrier().  This will prevent anyone else from adopting
	 * orphaned callbacks, which could cause otherwise failure if a
	 * CPU went offline and quickly came back online.  To see this,
	 * consider the following sequence of events:
	 *
	 * 1.	We cause CPU 0 to post an rcu_barrier_callback() callback.
	 * 2.	CPU 1 goes offline, orphaning its callbacks.
	 * 3.	CPU 0 adopts CPU 1's orphaned callbacks.
	 * 4.	CPU 1 comes back online.
	 * 5.	We cause CPU 1 to post an rcu_barrier_callback() callback.
	 * 6.	Both rcu_barrier_callback() callbacks are invoked, awakening
	 *	us -- but before CPU 1's orphaned callbacks are invoked!!!
2329
	 */
2330
	init_completion(&rcu_barrier_completion);
2331
	atomic_set(&rcu_barrier_cpu_count, 1);
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rsp->rcu_barrier_in_progress = current;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);

	/*
	 * Force every CPU with callbacks to register a new callback
	 * that will tell us when all the preceding callbacks have
	 * been invoked.  If an offline CPU has callbacks, wait for
	 * it to either come back online or to finish orphaning those
	 * callbacks.
	 */
	for_each_possible_cpu(cpu) {
		preempt_disable();
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (cpu_is_offline(cpu)) {
			preempt_enable();
			while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
				schedule_timeout_interruptible(1);
		} else if (ACCESS_ONCE(rdp->qlen)) {
			smp_call_function_single(cpu, rcu_barrier_func,
						 (void *)call_rcu_func, 1);
			preempt_enable();
		} else {
			preempt_enable();
		}
	}

	/*
	 * Now that all online CPUs have rcu_barrier_callback() callbacks
	 * posted, we can adopt all of the orphaned callbacks and place
	 * an rcu_barrier_callback() callback after them.  When that is done,
	 * we are guaranteed to have an rcu_barrier_callback() callback
	 * following every callback that could possibly have been
	 * registered before _rcu_barrier() was called.
	 */
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
	rcu_adopt_orphan_cbs(rsp);
	rsp->rcu_barrier_in_progress = NULL;
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
	atomic_inc(&rcu_barrier_cpu_count);
	smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
	call_rcu_func(&rh, rcu_barrier_callback);

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2379 2380
	if (atomic_dec_and_test(&rcu_barrier_cpu_count))
		complete(&rcu_barrier_completion);
2381 2382

	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2383
	wait_for_completion(&rcu_barrier_completion);
2384 2385

	/* Other rcu_barrier() invocations can now safely proceed. */
2386
	mutex_unlock(&rcu_barrier_mutex);
2387 2388

	destroy_rcu_head_on_stack(&rh);
2389 2390 2391 2392 2393 2394 2395
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2396
	_rcu_barrier(&rcu_bh_state, call_rcu_bh);
2397 2398 2399 2400 2401 2402 2403 2404
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2405
	_rcu_barrier(&rcu_sched_state, call_rcu_sched);
2406 2407 2408
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2409
/*
2410
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2411
 */
2412 2413
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2414 2415 2416
{
	unsigned long flags;
	int i;
2417
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2418 2419 2420
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2421
	raw_spin_lock_irqsave(&rnp->lock, flags);
2422 2423 2424 2425
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
2426
	rdp->qlen_lazy = 0;
2427 2428
	rdp->qlen = 0;
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2429
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2430
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2431
	rdp->cpu = cpu;
2432
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2433
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2434 2435 2436 2437 2438 2439 2440
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2441
 */
2442
static void __cpuinit
P
Paul E. McKenney 已提交
2443
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2444 2445 2446
{
	unsigned long flags;
	unsigned long mask;
2447
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2448 2449 2450
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2451
	raw_spin_lock_irqsave(&rnp->lock, flags);
2452
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2453
	rdp->preemptible = preemptible;
2454 2455
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2456
	rdp->blimit = blimit;
2457
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2458 2459
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2460
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2461
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2462 2463 2464 2465 2466 2467 2468

	/*
	 * A new grace period might start here.  If so, we won't be part
	 * of it, but that is OK, as we are currently in a quiescent state.
	 */

	/* Exclude any attempts to start a new GP on large systems. */
P
Paul E. McKenney 已提交
2469
	raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */
2470 2471 2472 2473 2474 2475

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2476
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2477 2478
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2479
		if (rnp == rdp->mynode) {
2480 2481 2482 2483 2484 2485
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2486
			rdp->completed = rnp->completed;
2487 2488
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2489
			rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2490
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2491
		}
P
Paul E. McKenney 已提交
2492
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2493 2494 2495
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));

P
Paul E. McKenney 已提交
2496
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2497 2498
}

P
Peter Zijlstra 已提交
2499
static void __cpuinit rcu_prepare_cpu(int cpu)
2500
{
2501 2502 2503
	rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
	rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
	rcu_preempt_init_percpu_data(cpu);
2504 2505 2506
}

/*
2507
 * Handle CPU online/offline notification events.
2508
 */
2509 2510
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2511 2512
{
	long cpu = (long)hcpu;
2513
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2514
	struct rcu_node *rnp = rdp->mynode;
2515

2516
	trace_rcu_utilization("Start CPU hotplug");
2517 2518 2519
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2520 2521
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2522 2523
		break;
	case CPU_ONLINE:
2524 2525
	case CPU_DOWN_FAILED:
		rcu_node_kthread_setaffinity(rnp, -1);
2526
		rcu_cpu_kthread_setrt(cpu, 1);
2527 2528 2529
		break;
	case CPU_DOWN_PREPARE:
		rcu_node_kthread_setaffinity(rnp, cpu);
2530
		rcu_cpu_kthread_setrt(cpu, 0);
2531
		break;
2532 2533 2534
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2535 2536 2537
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2538
		 */
2539 2540 2541
		rcu_cleanup_dying_cpu(&rcu_bh_state);
		rcu_cleanup_dying_cpu(&rcu_sched_state);
		rcu_preempt_cleanup_dying_cpu();
2542
		rcu_cleanup_after_idle(cpu);
2543
		break;
2544 2545 2546 2547
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2548 2549 2550
		rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
		rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
		rcu_preempt_cleanup_dead_cpu(cpu);
2551 2552 2553 2554
		break;
	default:
		break;
	}
2555
	trace_rcu_utilization("End CPU hotplug");
2556 2557 2558
	return NOTIFY_OK;
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2574 2575 2576 2577 2578 2579 2580 2581 2582
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

2583
	for (i = rcu_num_lvls - 1; i > 0; i--)
2584
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2585
	rsp->levelspread[0] = rcu_fanout_leaf;
2586 2587 2588 2589 2590 2591 2592 2593 2594
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

	cprv = NR_CPUS;
2595
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
2606 2607
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
2608
{
2609 2610 2611 2612
	static char *buf[] = { "rcu_node_level_0",
			       "rcu_node_level_1",
			       "rcu_node_level_2",
			       "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */
2613 2614 2615 2616 2617
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

2618 2619
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

2620 2621
	/* Initialize the level-tracking arrays. */

2622 2623 2624
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
2625 2626 2627 2628 2629
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

2630
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
2631 2632 2633
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
2634
			raw_spin_lock_init(&rnp->lock);
2635 2636
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
2637
			rnp->gpnum = 0;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
2655
			INIT_LIST_HEAD(&rnp->blkd_tasks);
2656 2657
		}
	}
2658

2659
	rsp->rda = rda;
2660
	rnp = rsp->level[rcu_num_lvls - 1];
2661
	for_each_possible_cpu(i) {
2662
		while (i > rnp->grphi)
2663
			rnp++;
2664
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2665 2666
		rcu_boot_init_percpu_data(i, rsp);
	}
2667 2668
}

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
	int n = NR_CPUS;
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

2729
void __init rcu_init(void)
2730
{
P
Paul E. McKenney 已提交
2731
	int cpu;
2732

2733
	rcu_bootup_announce();
2734
	rcu_init_geometry();
2735 2736
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2737
	__rcu_init_preempt();
2738
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2739 2740 2741 2742 2743 2744 2745

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
2746 2747
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2748
	check_cpu_stall_init();
2749 2750
}

2751
#include "rcutree_plugin.h"