hrtimer.c 45.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52

53
#include <linux/uaccess.h>
54

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
Z
Zhen Lei 已提交
62
 * There are more clockids than hrtimer bases. Thus, we index
63 64 65
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

100 101 102
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
103
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
104
};
105

106 107 108 109 110 111
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

112 113 114 115 116 117 118 119 120 121 122 123
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

124 125 126 127 128 129 130 131 132
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
133 134
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
135
 */
136 137 138
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
139
{
140
	struct hrtimer_clock_base *base;
141 142 143

	for (;;) {
		base = timer->base;
144
		if (likely(base != &migration_base)) {
145
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 147 148
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
149
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 151 152 153 154
		}
		cpu_relax();
	}
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
172
	return expires <= new_base->cpu_base->expires_next;
173 174 175 176 177
#else
	return 0;
#endif
}

178
#ifdef CONFIG_NO_HZ_COMMON
179 180 181 182 183
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
184
		return base;
185 186 187 188 189 190 191
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
192
	return base;
193 194 195
}
#endif

196
/*
197 198 199 200 201 202 203 204 205 206
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
207
 */
208
static inline struct hrtimer_clock_base *
209 210
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
211
{
212
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
213
	struct hrtimer_clock_base *new_base;
214
	int basenum = base->index;
215

216 217
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
218
again:
219
	new_base = &new_cpu_base->clock_base[basenum];
220 221 222

	if (base != new_base) {
		/*
223
		 * We are trying to move timer to new_base.
224 225 226 227 228 229 230
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
231
		if (unlikely(hrtimer_callback_running(timer)))
232 233
			return base;

234 235
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
236 237
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
238

239
		if (new_cpu_base != this_cpu_base &&
240
		    hrtimer_check_target(timer, new_base)) {
241 242
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
243
			new_cpu_base = this_cpu_base;
244 245
			timer->base = base;
			goto again;
246
		}
247
		timer->base = new_base;
248
	} else {
249
		if (new_cpu_base != this_cpu_base &&
250
		    hrtimer_check_target(timer, new_base)) {
251
			new_cpu_base = this_cpu_base;
252 253
			goto again;
		}
254 255 256 257 258 259
	}
	return new_base;
}

#else /* CONFIG_SMP */

260
static inline struct hrtimer_clock_base *
261 262
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
263
	struct hrtimer_clock_base *base = timer->base;
264

265
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
266 267 268 269

	return base;
}

270
# define switch_hrtimer_base(t, b, p)	(b)
271 272 273 274 275 276 277 278 279 280 281

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
282
s64 __ktime_divns(const ktime_t kt, s64 div)
283 284
{
	int sft = 0;
285 286
	s64 dclc;
	u64 tmp;
287

288
	dclc = ktime_to_ns(kt);
289 290
	tmp = dclc < 0 ? -dclc : dclc;

291 292 293 294 295
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
296 297 298
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
299
}
300
EXPORT_SYMBOL_GPL(__ktime_divns);
301 302
#endif /* BITS_PER_LONG >= 64 */

303 304 305 306 307
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
308
	ktime_t res = ktime_add_unsafe(lhs, rhs);
309 310 311 312 313

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
314
	if (res < 0 || res < lhs || res < rhs)
315 316 317 318 319
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

320 321
EXPORT_SYMBOL_GPL(ktime_add_safe);

322 323 324 325
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

326 327 328 329 330
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

331 332 333 334
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
335
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
336 337 338 339 340 341 342
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
343
		return true;
344
	default:
345
		return false;
346 347 348 349 350 351
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
352
 * - an unknown non-static object is activated
353
 */
354
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
355 356 357 358 359 360
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
361
		return false;
362 363 364 365 366 367 368
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
369
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
370 371 372 373 374 375 376
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
377
		return true;
378
	default:
379
		return false;
380 381 382 383 384
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
385
	.debug_hint	= hrtimer_debug_hint,
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
420
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
421 422 423 424 425

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
426
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
427 428 429 430 431 432 433

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

454
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
455 456 457 458 459 460 461 462
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

463
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
464 465
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
466
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
467
	ktime_t expires, expires_next = KTIME_MAX;
468

469
	hrtimer_update_next_timer(cpu_base, NULL);
470
	for (; active; base++, active >>= 1) {
471 472 473
		struct timerqueue_node *next;
		struct hrtimer *timer;

474
		if (!(active & 0x01))
475 476
			continue;

477
		next = timerqueue_getnext(&base->active);
478 479
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
480
		if (expires < expires_next) {
481
			expires_next = expires;
482 483
			hrtimer_update_next_timer(cpu_base, timer);
		}
484 485 486 487 488 489
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
490 491
	if (expires_next < 0)
		expires_next = 0;
492 493 494 495
	return expires_next;
}
#endif

496 497 498 499 500 501
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

502 503
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
504 505
}

506 507 508 509 510 511
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
512
static bool hrtimer_hres_enabled __read_mostly  = true;
513 514
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
515 516 517 518 519 520

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
521
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
537 538 539 540 541
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

542 543
static inline int hrtimer_hres_active(void)
{
544
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
545 546 547 548 549 550 551
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
552 553
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
554
{
555 556 557 558 559 560
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
561

T
Thomas Gleixner 已提交
562
	if (skip_equal && expires_next == cpu_base->expires_next)
563 564
		return;

T
Thomas Gleixner 已提交
565
	cpu_base->expires_next = expires_next;
566

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

584
	tick_program_event(cpu_base->expires_next, 1);
585 586 587 588 589 590 591 592 593
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
594 595
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
596
{
597
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
598
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
599

600
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
601

602
	/*
603 604
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
605
	 */
606 607 608 609 610 611 612 613 614 615 616 617
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
618

619 620
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
621
	 * expiry time which is less than base->offset. Set it to 0.
622
	 */
T
Thomas Gleixner 已提交
623 624
	if (expires < 0)
		expires = 0;
625

T
Thomas Gleixner 已提交
626
	if (expires >= cpu_base->expires_next)
627
		return;
628

629
	/* Update the pointer to the next expiring timer */
630
	cpu_base->next_timer = timer;
631

632 633 634 635 636 637 638
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
639
		return;
640 641

	/*
642 643
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
644
	 */
645 646
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
647 648 649 650 651 652 653
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
654
	base->expires_next = KTIME_MAX;
655 656 657
	base->hres_active = 0;
}

658 659 660 661 662 663 664
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
665
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
666

667
	if (!base->hres_active)
668 669 670
		return;

	raw_spin_lock(&base->lock);
671
	hrtimer_update_base(base);
672 673 674
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
675

676 677 678
/*
 * Switch to high resolution mode
 */
679
static void hrtimer_switch_to_hres(void)
680
{
681
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
682 683

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
684
		printk(KERN_WARNING "Could not switch to high resolution "
685
				    "mode on CPU %d\n", base->cpu);
686
		return;
687 688
	}
	base->hres_active = 1;
689
	hrtimer_resolution = HIGH_RES_NSEC;
690 691 692 693 694 695

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

696 697 698 699 700 701 702
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

703
/*
P
Pratyush Patel 已提交
704
 * Called from timekeeping and resume code to reprogram the hrtimer
705
 * interrupt device on all cpus.
706 707 708
 */
void clock_was_set_delayed(void)
{
709
	schedule_work(&hrtimer_work);
710 711
}

712 713
#else

714
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
715 716
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
717
static inline void hrtimer_switch_to_hres(void) { }
718 719
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
720 721
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
722 723 724 725
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
726
static inline void retrigger_next_event(void *arg) { }
727 728 729

#endif /* CONFIG_HIGH_RES_TIMERS */

730 731 732 733 734 735 736 737 738 739 740 741 742
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
743
#ifdef CONFIG_HIGH_RES_TIMERS
744 745
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
746 747
#endif
	timerfd_clock_was_set();
748 749 750 751
}

/*
 * During resume we might have to reprogram the high resolution timer
752 753
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
754
 * must be deferred.
755 756 757 758 759 760
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

761
	/* Retrigger on the local CPU */
762
	retrigger_next_event(NULL);
763 764
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
765 766
}

767
/*
768
 * Counterpart to lock_hrtimer_base above:
769 770 771 772
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
773
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
774 775 776 777 778
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
779
 * @now:	forward past this time
780 781 782
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
783
 * Returns the number of overruns.
784 785 786 787 788 789 790 791
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
792
 */
D
Davide Libenzi 已提交
793
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
794
{
D
Davide Libenzi 已提交
795
	u64 orun = 1;
796
	ktime_t delta;
797

798
	delta = ktime_sub(now, hrtimer_get_expires(timer));
799

T
Thomas Gleixner 已提交
800
	if (delta < 0)
801 802
		return 0;

803 804 805
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
806 807
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
808

T
Thomas Gleixner 已提交
809
	if (unlikely(delta >= interval)) {
810
		s64 incr = ktime_to_ns(interval);
811 812

		orun = ktime_divns(delta, incr);
813
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
814
		if (hrtimer_get_expires_tv64(timer) > now)
815 816 817 818 819 820 821
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
822
	hrtimer_add_expires(timer, interval);
823 824 825

	return orun;
}
S
Stas Sergeev 已提交
826
EXPORT_SYMBOL_GPL(hrtimer_forward);
827 828 829 830 831 832

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
833 834
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
835
 */
836 837
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
838
{
839
	debug_activate(timer);
840

841
	base->cpu_base->active_bases |= 1 << base->index;
842

843
	timer->state = HRTIMER_STATE_ENQUEUED;
844

845
	return timerqueue_add(&base->active, &timer->node);
846
}
847 848 849 850 851

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
852 853 854 855 856
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
857
 */
858
static void __remove_hrtimer(struct hrtimer *timer,
859
			     struct hrtimer_clock_base *base,
860
			     u8 newstate, int reprogram)
861
{
862
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
863
	u8 state = timer->state;
864

865 866 867
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
868

869
	if (!timerqueue_del(&base->active, &timer->node))
870
		cpu_base->active_bases &= ~(1 << base->index);
871 872

#ifdef CONFIG_HIGH_RES_TIMERS
873 874 875 876 877 878 879 880 881 882
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
883
#endif
884 885 886 887 888 889
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
890
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
891
{
892
	if (hrtimer_is_queued(timer)) {
893
		u8 state = timer->state;
894 895 896 897 898 899 900 901 902 903
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
904
		debug_deactivate(timer);
905
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
906

907 908 909
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

910
		__remove_hrtimer(timer, base, state, reprogram);
911 912 913 914 915
		return 1;
	}
	return 0;
}

916 917 918 919 920 921 922 923 924 925 926
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
927
		tim = ktime_add_safe(tim, hrtimer_resolution);
928 929 930 931
#endif
	return tim;
}

932 933 934 935 936 937 938 939
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
940
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
941
			    u64 delta_ns, const enum hrtimer_mode mode)
942
{
943
	struct hrtimer_clock_base *base, *new_base;
944
	unsigned long flags;
945
	int leftmost;
946 947 948 949

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
950
	remove_hrtimer(timer, base, true);
951

952
	if (mode & HRTIMER_MODE_REL)
953
		tim = ktime_add_safe(tim, base->get_time());
954 955

	tim = hrtimer_update_lowres(timer, tim, mode);
956

957
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
958

959 960 961
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

962
	leftmost = enqueue_hrtimer(timer, new_base);
963 964
	if (!leftmost)
		goto unlock;
965 966 967 968 969 970

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
971 972
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
973 974
	} else {
		hrtimer_reprogram(timer, new_base);
975
	}
976
unlock:
977
	unlock_hrtimer_base(timer, &flags);
978
}
979 980
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

981 982 983 984 985 986 987 988
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
989
 *    cannot be stopped
990 991 992
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
993
	struct hrtimer_clock_base *base;
994 995 996
	unsigned long flags;
	int ret = -1;

997 998 999 1000 1001 1002 1003 1004 1005
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1006 1007
	base = lock_hrtimer_base(timer, &flags);

1008
	if (!hrtimer_callback_running(timer))
1009
		ret = remove_hrtimer(timer, base, false);
1010 1011 1012 1013 1014 1015

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1016
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1033
		cpu_relax();
1034 1035
	}
}
1036
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1037 1038 1039 1040

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1041
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1042
 */
1043
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1044 1045 1046 1047
{
	unsigned long flags;
	ktime_t rem;

1048
	lock_hrtimer_base(timer, &flags);
1049 1050 1051 1052
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1053 1054 1055 1056
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1057
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1058

1059
#ifdef CONFIG_NO_HZ_COMMON
1060 1061 1062
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1063
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1064
 */
1065
u64 hrtimer_get_next_event(void)
1066
{
1067
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1068
	u64 expires = KTIME_MAX;
1069 1070
	unsigned long flags;

1071
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1072

1073
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1074
		expires = __hrtimer_get_next_event(cpu_base);
1075

1076
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1077

1078
	return expires;
1079 1080 1081
}
#endif

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1094 1095
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1096
{
1097
	struct hrtimer_cpu_base *cpu_base;
1098
	int base;
1099

1100 1101
	memset(timer, 0, sizeof(struct hrtimer));

1102
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1103

1104
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1105 1106
		clock_id = CLOCK_MONOTONIC;

1107 1108
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1109
	timerqueue_init(&timer->node);
1110
}
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1121
	debug_init(timer, clock_id, mode);
1122 1123
	__hrtimer_init(timer, clock_id, mode);
}
1124
EXPORT_SYMBOL_GPL(hrtimer_init);
1125

1126 1127 1128 1129
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1130
 *
1131
 * It is important for this function to not return a false negative.
1132
 */
1133
bool hrtimer_active(const struct hrtimer *timer)
1134
{
1135
	struct hrtimer_cpu_base *cpu_base;
1136
	unsigned int seq;
1137

1138 1139 1140
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1141

1142 1143 1144 1145 1146 1147 1148 1149
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1150
}
1151
EXPORT_SYMBOL_GPL(hrtimer_active);
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1171 1172 1173
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1174 1175 1176 1177
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1178
	lockdep_assert_held(&cpu_base->lock);
1179

1180
	debug_deactivate(timer);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1193
	fn = timer->function;
1194

1195 1196 1197 1198 1199 1200 1201 1202
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1203 1204 1205 1206 1207
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1208
	raw_spin_unlock(&cpu_base->lock);
1209
	trace_hrtimer_expire_entry(timer, now);
1210
	restart = fn(timer);
1211
	trace_hrtimer_expire_exit(timer);
1212
	raw_spin_lock(&cpu_base->lock);
1213 1214

	/*
1215
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1216
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1217
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1218 1219 1220 1221
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1222
	 */
1223 1224
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1225
		enqueue_hrtimer(timer, base);
1226

1227 1228 1229 1230 1231 1232 1233 1234
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1235

1236 1237
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1238 1239
}

1240
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1241
{
1242 1243
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1244

1245
	for (; active; base++, active >>= 1) {
1246
		struct timerqueue_node *node;
1247 1248
		ktime_t basenow;

1249
		if (!(active & 0x01))
1250
			continue;
1251 1252 1253

		basenow = ktime_add(now, base->offset);

1254
		while ((node = timerqueue_getnext(&base->active))) {
1255 1256
			struct hrtimer *timer;

1257
			timer = container_of(node, struct hrtimer, node);
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1271
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1272 1273
				break;

1274
			__run_hrtimer(cpu_base, base, timer, &basenow);
1275 1276
		}
	}
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1293
	dev->next_event = KTIME_MAX;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1306
	cpu_base->expires_next = KTIME_MAX;
1307 1308 1309

	__hrtimer_run_queues(cpu_base, now);

1310 1311
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1312 1313 1314 1315
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1316
	cpu_base->expires_next = expires_next;
1317
	cpu_base->in_hrtirq = 0;
1318
	raw_spin_unlock(&cpu_base->lock);
1319 1320

	/* Reprogramming necessary ? */
1321
	if (!tick_program_event(expires_next, 0)) {
1322 1323
		cpu_base->hang_detected = 0;
		return;
1324
	}
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1335 1336 1337
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1338
	 */
1339
	raw_spin_lock(&cpu_base->lock);
1340
	now = hrtimer_update_base(cpu_base);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1352
	raw_spin_unlock(&cpu_base->lock);
1353
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1354 1355
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1356 1357 1358 1359
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1360
	if (delta > 100 * NSEC_PER_MSEC)
1361 1362 1363 1364 1365 1366
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1367 1368
}

1369 1370 1371 1372
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1373
static inline void __hrtimer_peek_ahead_timers(void)
1374 1375 1376 1377 1378 1379
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1380
	td = this_cpu_ptr(&tick_cpu_device);
1381 1382 1383 1384
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1385 1386 1387 1388 1389
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1390

1391
/*
1392
 * Called from run_local_timers in hardirq context every jiffy
1393
 */
1394
void hrtimer_run_queues(void)
1395
{
1396
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1397
	ktime_t now;
1398

1399
	if (__hrtimer_hres_active(cpu_base))
1400
		return;
1401

1402
	/*
1403 1404 1405 1406 1407
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1408
	 */
1409
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1410
		hrtimer_switch_to_hres();
1411
		return;
1412
	}
1413

1414 1415 1416 1417
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1418 1419
}

1420 1421 1422
/*
 * Sleep related functions:
 */
1423
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1436
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1437 1438 1439 1440
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1441
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1442

1443
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1444
{
1445
	hrtimer_init_sleeper(t, current);
1446

1447 1448
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1449
		hrtimer_start_expires(&t->timer, mode);
1450

1451
		if (likely(t->task))
1452
			freezable_schedule();
1453

1454
		hrtimer_cancel(&t->timer);
1455
		mode = HRTIMER_MODE_ABS;
1456 1457

	} while (t->task && !signal_pending(current));
1458

1459 1460
	__set_current_state(TASK_RUNNING);

1461
	return t->task == NULL;
1462 1463
}

1464 1465 1466 1467 1468
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1469
	rem = hrtimer_expires_remaining(timer);
T
Thomas Gleixner 已提交
1470
	if (rem <= 0)
1471 1472 1473 1474 1475 1476 1477 1478 1479
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1480
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1481
{
1482
	struct hrtimer_sleeper t;
1483
	struct timespec __user  *rmtp;
1484
	int ret = 0;
1485

1486
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1487
				HRTIMER_MODE_ABS);
1488
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1489

1490
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1491
		goto out;
1492

1493
	rmtp = restart->nanosleep.rmtp;
1494
	if (rmtp) {
1495
		ret = update_rmtp(&t.timer, rmtp);
1496
		if (ret <= 0)
1497
			goto out;
1498
	}
1499 1500

	/* The other values in restart are already filled in */
1501 1502 1503 1504
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1505 1506
}

1507
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1508 1509 1510
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1511
	struct hrtimer_sleeper t;
1512
	int ret = 0;
1513
	u64 slack;
1514 1515

	slack = current->timer_slack_ns;
1516
	if (dl_task(current) || rt_task(current))
1517
		slack = 0;
1518

1519
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1520
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1521
	if (do_nanosleep(&t, mode))
1522
		goto out;
1523

1524
	/* Absolute timers do not update the rmtp value and restart: */
1525 1526 1527 1528
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1529

1530
	if (rmtp) {
1531
		ret = update_rmtp(&t.timer, rmtp);
1532
		if (ret <= 0)
1533
			goto out;
1534
	}
1535

1536
	restart = &current->restart_block;
1537
	restart->fn = hrtimer_nanosleep_restart;
1538
	restart->nanosleep.clockid = t.timer.base->clockid;
1539
	restart->nanosleep.rmtp = rmtp;
1540
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1541

1542 1543 1544 1545
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1546 1547
}

1548 1549
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1550
{
1551
	struct timespec tu;
1552 1553 1554 1555 1556 1557 1558

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1559
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1560 1561
}

1562 1563 1564
/*
 * Functions related to boot-time initialization:
 */
1565
int hrtimers_prepare_cpu(unsigned int cpu)
1566
{
1567
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1568 1569
	int i;

1570
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1571
		cpu_base->clock_base[i].cpu_base = cpu_base;
1572 1573
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1574

1575
	cpu_base->cpu = cpu;
1576
	hrtimer_init_hres(cpu_base);
1577
	return 0;
1578 1579 1580 1581
}

#ifdef CONFIG_HOTPLUG_CPU

1582
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1583
				struct hrtimer_clock_base *new_base)
1584 1585
{
	struct hrtimer *timer;
1586
	struct timerqueue_node *node;
1587

1588 1589
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1590
		BUG_ON(hrtimer_callback_running(timer));
1591
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1592 1593

		/*
1594
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1595 1596 1597
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1598
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1599
		timer->base = new_base;
1600
		/*
T
Thomas Gleixner 已提交
1601 1602 1603 1604 1605 1606
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1607
		 */
1608
		enqueue_hrtimer(timer, new_base);
1609 1610 1611
	}
}

1612
int hrtimers_dead_cpu(unsigned int scpu)
1613
{
1614
	struct hrtimer_cpu_base *old_base, *new_base;
1615
	int i;
1616

1617 1618
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1619 1620 1621

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1622
	new_base = this_cpu_ptr(&hrtimer_bases);
1623 1624 1625 1626
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1627 1628
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1629

1630
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1631
		migrate_hrtimer_list(&old_base->clock_base[i],
1632
				     &new_base->clock_base[i]);
1633 1634
	}

1635 1636
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1637

1638 1639 1640
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1641
	return 0;
1642
}
1643

1644 1645 1646 1647
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1648
	hrtimers_prepare_cpu(smp_processor_id());
1649 1650
}

1651
/**
1652
 * schedule_hrtimeout_range_clock - sleep until timeout
1653
 * @expires:	timeout value (ktime_t)
1654
 * @delta:	slack in expires timeout (ktime_t)
1655
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1656
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1657
 */
1658
int __sched
1659
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1660
			       const enum hrtimer_mode mode, int clock)
1661 1662 1663 1664 1665 1666 1667
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1668
	if (expires && *expires == 0) {
1669 1670 1671 1672 1673
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1674
	 * A NULL parameter means "infinite"
1675 1676 1677 1678 1679 1680
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1681
	hrtimer_init_on_stack(&t.timer, clock, mode);
1682
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1683 1684 1685

	hrtimer_init_sleeper(&t, current);

1686
	hrtimer_start_expires(&t.timer, mode);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1717 1718
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1719 1720
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1721 1722
 * delivered to the current task or the current task is explicitly woken
 * up.
1723 1724 1725 1726
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1727 1728 1729
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1730
 */
1731
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1732 1733 1734 1735 1736
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1751 1752
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1753 1754
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1755 1756
 * delivered to the current task or the current task is explicitly woken
 * up.
1757 1758 1759 1760
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1761 1762 1763
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1764 1765 1766 1767 1768 1769
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1770
EXPORT_SYMBOL_GPL(schedule_hrtimeout);