hrtimer.c 46.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
Z
Zhen Lei 已提交
62
 * There are more clockids than hrtimer bases. Thus, we index
63 64 65
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182 183 184 185
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
186
		return base;
187 188 189 190 191 192 193
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
194
	return base;
195 196 197
}
#endif

198
/*
199 200 201 202 203 204 205 206 207 208
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
209
 */
210
static inline struct hrtimer_clock_base *
211 212
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
213
{
214
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215
	struct hrtimer_clock_base *new_base;
216
	int basenum = base->index;
217

218 219
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
220
again:
221
	new_base = &new_cpu_base->clock_base[basenum];
222 223 224

	if (base != new_base) {
		/*
225
		 * We are trying to move timer to new_base.
226 227 228 229 230 231 232
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
233
		if (unlikely(hrtimer_callback_running(timer)))
234 235
			return base;

236 237
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
238 239
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
240

241
		if (new_cpu_base != this_cpu_base &&
242
		    hrtimer_check_target(timer, new_base)) {
243 244
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
245
			new_cpu_base = this_cpu_base;
246 247
			timer->base = base;
			goto again;
248
		}
249
		timer->base = new_base;
250
	} else {
251
		if (new_cpu_base != this_cpu_base &&
252
		    hrtimer_check_target(timer, new_base)) {
253
			new_cpu_base = this_cpu_base;
254 255
			goto again;
		}
256 257 258 259 260 261
	}
	return new_base;
}

#else /* CONFIG_SMP */

262
static inline struct hrtimer_clock_base *
263 264
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
265
	struct hrtimer_clock_base *base = timer->base;
266

267
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 269 270 271

	return base;
}

272
# define switch_hrtimer_base(t, b, p)	(b)
273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
284
s64 __ktime_divns(const ktime_t kt, s64 div)
285 286
{
	int sft = 0;
287 288
	s64 dclc;
	u64 tmp;
289

290
	dclc = ktime_to_ns(kt);
291 292
	tmp = dclc < 0 ? -dclc : dclc;

293 294 295 296 297
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
298 299 300
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
301
}
302
EXPORT_SYMBOL_GPL(__ktime_divns);
303 304
#endif /* BITS_PER_LONG >= 64 */

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

322 323
EXPORT_SYMBOL_GPL(ktime_add_safe);

324 325 326 327
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

328 329 330 331 332
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
392
	.debug_hint	= hrtimer_debug_hint,
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
427
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
428 429 430 431 432 433 434 435 436 437 438 439

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

460
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
461 462 463 464 465 466 467 468
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

469
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
470 471 472
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
473
	unsigned int active = cpu_base->active_bases;
474

475
	hrtimer_update_next_timer(cpu_base, NULL);
476
	for (; active; base++, active >>= 1) {
477 478 479
		struct timerqueue_node *next;
		struct hrtimer *timer;

480
		if (!(active & 0x01))
481 482
			continue;

483
		next = timerqueue_getnext(&base->active);
484 485
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
486
		if (expires.tv64 < expires_next.tv64) {
487
			expires_next = expires;
488 489
			hrtimer_update_next_timer(cpu_base, timer);
		}
490 491 492 493 494 495 496 497 498 499 500 501
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

502 503 504 505 506 507
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

508 509
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
510 511
}

512 513 514 515 516 517 518
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
519 520
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
549 550 551 552 553
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

554 555
static inline int hrtimer_hres_active(void)
{
556
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
557 558 559 560 561 562 563
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
564 565
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
566
{
567 568 569 570 571 572
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
573

574 575 576 577 578
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

596
	tick_program_event(cpu_base->expires_next, 1);
597 598 599 600 601 602 603 604 605
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
606 607
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
608
{
609
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
610
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
611

612
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
613

614
	/*
615 616
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
617
	 */
618 619 620 621 622 623 624 625 626 627 628 629
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
630

631 632
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
633
	 * expiry time which is less than base->offset. Set it to 0.
634 635
	 */
	if (expires.tv64 < 0)
636
		expires.tv64 = 0;
637

638
	if (expires.tv64 >= cpu_base->expires_next.tv64)
639
		return;
640

641
	/* Update the pointer to the next expiring timer */
642
	cpu_base->next_timer = timer;
643

644 645 646 647 648 649 650
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
651
		return;
652 653

	/*
654 655
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
656
	 */
657 658
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
659 660 661 662 663 664 665 666 667 668 669
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

670 671 672 673 674 675 676
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
677
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678

679
	if (!base->hres_active)
680 681 682
		return;

	raw_spin_lock(&base->lock);
683
	hrtimer_update_base(base);
684 685 686
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
687

688 689 690
/*
 * Switch to high resolution mode
 */
691
static void hrtimer_switch_to_hres(void)
692
{
693
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
694 695

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
696
		printk(KERN_WARNING "Could not switch to high resolution "
697
				    "mode on CPU %d\n", base->cpu);
698
		return;
699 700
	}
	base->hres_active = 1;
701
	hrtimer_resolution = HIGH_RES_NSEC;
702 703 704 705 706 707

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

708 709 710 711 712 713 714
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

715
/*
716 717
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
718 719 720
 */
void clock_was_set_delayed(void)
{
721
	schedule_work(&hrtimer_work);
722 723
}

724 725
#else

726
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
727 728
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
729
static inline void hrtimer_switch_to_hres(void) { }
730 731
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
732 733
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
734 735 736 737
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
738
static inline void retrigger_next_event(void *arg) { }
739 740 741

#endif /* CONFIG_HIGH_RES_TIMERS */

742 743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
755
#ifdef CONFIG_HIGH_RES_TIMERS
756 757
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
758 759
#endif
	timerfd_clock_was_set();
760 761 762 763
}

/*
 * During resume we might have to reprogram the high resolution timer
764 765
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
766
 * must be deferred.
767 768 769 770 771 772
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

773
	/* Retrigger on the local CPU */
774
	retrigger_next_event(NULL);
775 776
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
777 778
}

779
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
780
{
781
#ifdef CONFIG_TIMER_STATS
782 783
	if (timer->start_site)
		return;
784
	timer->start_site = __builtin_return_address(0);
785 786
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
787 788 789 790 791 792 793 794
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
795
}
796 797 798 799 800 801 802 803

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
804
#endif
805
}
806

807
/*
808
 * Counterpart to lock_hrtimer_base above:
809 810 811 812
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
813
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
814 815 816 817 818
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
819
 * @now:	forward past this time
820 821 822
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
823
 * Returns the number of overruns.
824 825 826 827 828 829 830 831
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
832
 */
D
Davide Libenzi 已提交
833
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
834
{
D
Davide Libenzi 已提交
835
	u64 orun = 1;
836
	ktime_t delta;
837

838
	delta = ktime_sub(now, hrtimer_get_expires(timer));
839 840 841 842

	if (delta.tv64 < 0)
		return 0;

843 844 845
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

846 847
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
848

849
	if (unlikely(delta.tv64 >= interval.tv64)) {
850
		s64 incr = ktime_to_ns(interval);
851 852

		orun = ktime_divns(delta, incr);
853 854
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
855 856 857 858 859 860 861
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
862
	hrtimer_add_expires(timer, interval);
863 864 865

	return orun;
}
S
Stas Sergeev 已提交
866
EXPORT_SYMBOL_GPL(hrtimer_forward);
867 868 869 870 871 872

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
873 874
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
875
 */
876 877
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
878
{
879
	debug_activate(timer);
880

881
	base->cpu_base->active_bases |= 1 << base->index;
882

883
	timer->state = HRTIMER_STATE_ENQUEUED;
884

885
	return timerqueue_add(&base->active, &timer->node);
886
}
887 888 889 890 891

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
892 893 894 895 896
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
897
 */
898
static void __remove_hrtimer(struct hrtimer *timer,
899
			     struct hrtimer_clock_base *base,
900
			     u8 newstate, int reprogram)
901
{
902
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
903
	u8 state = timer->state;
904

905 906 907
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
908

909
	if (!timerqueue_del(&base->active, &timer->node))
910
		cpu_base->active_bases &= ~(1 << base->index);
911 912

#ifdef CONFIG_HIGH_RES_TIMERS
913 914 915 916 917 918 919 920 921 922
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
923
#endif
924 925 926 927 928 929
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
930
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
931
{
932
	if (hrtimer_is_queued(timer)) {
933
		u8 state = timer->state;
934 935 936 937 938 939 940 941 942 943
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
944
		debug_deactivate(timer);
945
		timer_stats_hrtimer_clear_start_info(timer);
946
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
947

948 949 950
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

951
		__remove_hrtimer(timer, base, state, reprogram);
952 953 954 955 956
		return 1;
	}
	return 0;
}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
#endif
	return tim;
}

973 974 975 976 977 978 979 980
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
981
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
982
			    u64 delta_ns, const enum hrtimer_mode mode)
983
{
984
	struct hrtimer_clock_base *base, *new_base;
985
	unsigned long flags;
986
	int leftmost;
987 988 989 990

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
991
	remove_hrtimer(timer, base, true);
992

993
	if (mode & HRTIMER_MODE_REL)
994
		tim = ktime_add_safe(tim, base->get_time());
995 996

	tim = hrtimer_update_lowres(timer, tim, mode);
997

998
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
999

1000 1001 1002
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1003 1004
	timer_stats_hrtimer_set_start_info(timer);

1005
	leftmost = enqueue_hrtimer(timer, new_base);
1006 1007
	if (!leftmost)
		goto unlock;
1008 1009 1010 1011 1012 1013

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
1014 1015
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1016 1017
	} else {
		hrtimer_reprogram(timer, new_base);
1018
	}
1019
unlock:
1020
	unlock_hrtimer_base(timer, &flags);
1021
}
1022 1023
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1024 1025 1026 1027 1028 1029 1030 1031
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1032
 *    cannot be stopped
1033 1034 1035
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1036
	struct hrtimer_clock_base *base;
1037 1038 1039
	unsigned long flags;
	int ret = -1;

1040 1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1049 1050
	base = lock_hrtimer_base(timer, &flags);

1051
	if (!hrtimer_callback_running(timer))
1052
		ret = remove_hrtimer(timer, base, false);
1053 1054 1055 1056 1057 1058

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1059
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1076
		cpu_relax();
1077 1078
	}
}
1079
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1080 1081 1082 1083

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1084
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1085
 */
1086
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1087 1088 1089 1090
{
	unsigned long flags;
	ktime_t rem;

1091
	lock_hrtimer_base(timer, &flags);
1092 1093 1094 1095
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1096 1097 1098 1099
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1100
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1101

1102
#ifdef CONFIG_NO_HZ_COMMON
1103 1104 1105
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1106
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1107
 */
1108
u64 hrtimer_get_next_event(void)
1109
{
1110
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1111
	u64 expires = KTIME_MAX;
1112 1113
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1115

1116
	if (!__hrtimer_hres_active(cpu_base))
1117
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1118

1119
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1120

1121
	return expires;
1122 1123 1124
}
#endif

1125 1126
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1127
{
1128
	struct hrtimer_cpu_base *cpu_base;
1129
	int base;
1130

1131 1132
	memset(timer, 0, sizeof(struct hrtimer));

1133
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1134

1135
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1136 1137
		clock_id = CLOCK_MONOTONIC;

1138 1139
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1140
	timerqueue_init(&timer->node);
1141 1142 1143 1144 1145 1146

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1147
}
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1158
	debug_init(timer, clock_id, mode);
1159 1160
	__hrtimer_init(timer, clock_id, mode);
}
1161
EXPORT_SYMBOL_GPL(hrtimer_init);
1162

1163 1164 1165 1166
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1167
 *
1168
 * It is important for this function to not return a false negative.
1169
 */
1170
bool hrtimer_active(const struct hrtimer *timer)
1171
{
1172
	struct hrtimer_cpu_base *cpu_base;
1173
	unsigned int seq;
1174

1175 1176 1177
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1178

1179 1180 1181 1182 1183 1184 1185 1186
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1187
}
1188
EXPORT_SYMBOL_GPL(hrtimer_active);
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1208 1209 1210
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1211 1212 1213 1214
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1215
	lockdep_assert_held(&cpu_base->lock);
1216

1217
	debug_deactivate(timer);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1230 1231
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1232

1233 1234 1235 1236 1237 1238 1239 1240
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1241 1242 1243 1244 1245
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1246
	raw_spin_unlock(&cpu_base->lock);
1247
	trace_hrtimer_expire_entry(timer, now);
1248
	restart = fn(timer);
1249
	trace_hrtimer_expire_exit(timer);
1250
	raw_spin_lock(&cpu_base->lock);
1251 1252

	/*
1253
	 * Note: We clear the running state after enqueue_hrtimer and
T
Thomas Gleixner 已提交
1254 1255
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1256 1257 1258 1259
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1260
	 */
1261 1262
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1263
		enqueue_hrtimer(timer, base);
1264

1265 1266 1267 1268 1269 1270 1271 1272
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1273

1274 1275
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1276 1277
}

1278
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1279
{
1280 1281
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1282

1283
	for (; active; base++, active >>= 1) {
1284
		struct timerqueue_node *node;
1285 1286
		ktime_t basenow;

1287
		if (!(active & 0x01))
1288
			continue;
1289 1290 1291

		basenow = ktime_add(now, base->offset);

1292
		while ((node = timerqueue_getnext(&base->active))) {
1293 1294
			struct hrtimer *timer;

1295
			timer = container_of(node, struct hrtimer, node);
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1309
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1310 1311
				break;

1312
			__run_hrtimer(cpu_base, base, timer, &basenow);
1313 1314
		}
	}
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1348 1349
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1350 1351 1352 1353
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1354
	cpu_base->expires_next = expires_next;
1355
	cpu_base->in_hrtirq = 0;
1356
	raw_spin_unlock(&cpu_base->lock);
1357 1358

	/* Reprogramming necessary ? */
1359
	if (!tick_program_event(expires_next, 0)) {
1360 1361
		cpu_base->hang_detected = 0;
		return;
1362
	}
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1373 1374 1375
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1376
	 */
1377
	raw_spin_lock(&cpu_base->lock);
1378
	now = hrtimer_update_base(cpu_base);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1390
	raw_spin_unlock(&cpu_base->lock);
1391
	delta = ktime_sub(now, entry_time);
1392 1393
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1405 1406
}

1407 1408 1409 1410
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1411
static inline void __hrtimer_peek_ahead_timers(void)
1412 1413 1414 1415 1416 1417
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1418
	td = this_cpu_ptr(&tick_cpu_device);
1419 1420 1421 1422
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1423 1424 1425 1426 1427
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1428

1429
/*
1430
 * Called from run_local_timers in hardirq context every jiffy
1431
 */
1432
void hrtimer_run_queues(void)
1433
{
1434
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1435
	ktime_t now;
1436

1437
	if (__hrtimer_hres_active(cpu_base))
1438
		return;
1439

1440
	/*
1441 1442 1443 1444 1445
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1446
	 */
1447
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1448
		hrtimer_switch_to_hres();
1449
		return;
1450
	}
1451

1452 1453 1454 1455
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1456 1457
}

1458 1459 1460
/*
 * Sleep related functions:
 */
1461
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1474
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1475 1476 1477 1478
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1479
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1480

1481
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1482
{
1483
	hrtimer_init_sleeper(t, current);
1484

1485 1486
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1487
		hrtimer_start_expires(&t->timer, mode);
1488

1489
		if (likely(t->task))
1490
			freezable_schedule();
1491

1492
		hrtimer_cancel(&t->timer);
1493
		mode = HRTIMER_MODE_ABS;
1494 1495

	} while (t->task && !signal_pending(current));
1496

1497 1498
	__set_current_state(TASK_RUNNING);

1499
	return t->task == NULL;
1500 1501
}

1502 1503 1504 1505 1506
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1507
	rem = hrtimer_expires_remaining(timer);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1518
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1519
{
1520
	struct hrtimer_sleeper t;
1521
	struct timespec __user  *rmtp;
1522
	int ret = 0;
1523

1524
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1525
				HRTIMER_MODE_ABS);
1526
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1527

1528
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1529
		goto out;
1530

1531
	rmtp = restart->nanosleep.rmtp;
1532
	if (rmtp) {
1533
		ret = update_rmtp(&t.timer, rmtp);
1534
		if (ret <= 0)
1535
			goto out;
1536
	}
1537 1538

	/* The other values in restart are already filled in */
1539 1540 1541 1542
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1543 1544
}

1545
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1546 1547 1548
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1549
	struct hrtimer_sleeper t;
1550
	int ret = 0;
1551
	u64 slack;
1552 1553

	slack = current->timer_slack_ns;
1554
	if (dl_task(current) || rt_task(current))
1555
		slack = 0;
1556

1557
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1558
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1559
	if (do_nanosleep(&t, mode))
1560
		goto out;
1561

1562
	/* Absolute timers do not update the rmtp value and restart: */
1563 1564 1565 1566
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1567

1568
	if (rmtp) {
1569
		ret = update_rmtp(&t.timer, rmtp);
1570
		if (ret <= 0)
1571
			goto out;
1572
	}
1573

1574
	restart = &current->restart_block;
1575
	restart->fn = hrtimer_nanosleep_restart;
1576
	restart->nanosleep.clockid = t.timer.base->clockid;
1577
	restart->nanosleep.rmtp = rmtp;
1578
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1579

1580 1581 1582 1583
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1584 1585
}

1586 1587
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1588
{
1589
	struct timespec tu;
1590 1591 1592 1593 1594 1595 1596

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1597
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1598 1599
}

1600 1601 1602
/*
 * Functions related to boot-time initialization:
 */
1603
static void init_hrtimers_cpu(int cpu)
1604
{
1605
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1606 1607
	int i;

1608
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1609
		cpu_base->clock_base[i].cpu_base = cpu_base;
1610 1611
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1612

1613
	cpu_base->cpu = cpu;
1614
	hrtimer_init_hres(cpu_base);
1615 1616 1617 1618
}

#ifdef CONFIG_HOTPLUG_CPU

1619
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1620
				struct hrtimer_clock_base *new_base)
1621 1622
{
	struct hrtimer *timer;
1623
	struct timerqueue_node *node;
1624

1625 1626
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1627
		BUG_ON(hrtimer_callback_running(timer));
1628
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1629 1630

		/*
1631
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1632 1633 1634
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1635
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1636
		timer->base = new_base;
1637
		/*
T
Thomas Gleixner 已提交
1638 1639 1640 1641 1642 1643
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1644
		 */
1645
		enqueue_hrtimer(timer, new_base);
1646 1647 1648
	}
}

1649
static void migrate_hrtimers(int scpu)
1650
{
1651
	struct hrtimer_cpu_base *old_base, *new_base;
1652
	int i;
1653

1654 1655
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1656 1657 1658

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1659
	new_base = this_cpu_ptr(&hrtimer_bases);
1660 1661 1662 1663
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1664 1665
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1666

1667
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1668
		migrate_hrtimer_list(&old_base->clock_base[i],
1669
				     &new_base->clock_base[i]);
1670 1671
	}

1672 1673
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1674

1675 1676 1677
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1678
}
1679

1680 1681
#endif /* CONFIG_HOTPLUG_CPU */

1682
static int hrtimer_cpu_notify(struct notifier_block *self,
1683 1684
					unsigned long action, void *hcpu)
{
1685
	int scpu = (long)hcpu;
1686 1687 1688 1689

	switch (action) {

	case CPU_UP_PREPARE:
1690
	case CPU_UP_PREPARE_FROZEN:
1691
		init_hrtimers_cpu(scpu);
1692 1693 1694 1695
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1696
	case CPU_DEAD_FROZEN:
1697
		migrate_hrtimers(scpu);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1708
static struct notifier_block hrtimers_nb = {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1719
/**
1720
 * schedule_hrtimeout_range_clock - sleep until timeout
1721
 * @expires:	timeout value (ktime_t)
1722
 * @delta:	slack in expires timeout (ktime_t)
1723
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1724
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1725
 */
1726
int __sched
1727
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1728
			       const enum hrtimer_mode mode, int clock)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1742
	 * A NULL parameter means "infinite"
1743 1744 1745 1746 1747 1748
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1749
	hrtimer_init_on_stack(&t.timer, clock, mode);
1750
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1751 1752 1753

	hrtimer_init_sleeper(&t, current);

1754
	hrtimer_start_expires(&t.timer, mode);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1795
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1796 1797 1798 1799 1800
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1830
EXPORT_SYMBOL_GPL(schedule_hrtimeout);