hrtimer.c 45.5 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52

53
#include <linux/uaccess.h>
54

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
Z
Zhen Lei 已提交
62
 * There are more clockids than hrtimer bases. Thus, we index
63 64 65
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
174
	return expires <= new_base->cpu_base->expires_next;
175 176 177 178 179
#else
	return 0;
#endif
}

180
#ifdef CONFIG_NO_HZ_COMMON
181 182 183 184 185
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
186
		return base;
187 188 189 190 191 192 193
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
194
	return base;
195 196 197
}
#endif

198
/*
199 200 201 202 203 204 205 206 207 208
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
209
 */
210
static inline struct hrtimer_clock_base *
211 212
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
213
{
214
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215
	struct hrtimer_clock_base *new_base;
216
	int basenum = base->index;
217

218 219
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
220
again:
221
	new_base = &new_cpu_base->clock_base[basenum];
222 223 224

	if (base != new_base) {
		/*
225
		 * We are trying to move timer to new_base.
226 227 228 229 230 231 232
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
233
		if (unlikely(hrtimer_callback_running(timer)))
234 235
			return base;

236 237
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
238 239
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
240

241
		if (new_cpu_base != this_cpu_base &&
242
		    hrtimer_check_target(timer, new_base)) {
243 244
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
245
			new_cpu_base = this_cpu_base;
246 247
			timer->base = base;
			goto again;
248
		}
249
		timer->base = new_base;
250
	} else {
251
		if (new_cpu_base != this_cpu_base &&
252
		    hrtimer_check_target(timer, new_base)) {
253
			new_cpu_base = this_cpu_base;
254 255
			goto again;
		}
256 257 258 259 260 261
	}
	return new_base;
}

#else /* CONFIG_SMP */

262
static inline struct hrtimer_clock_base *
263 264
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
265
	struct hrtimer_clock_base *base = timer->base;
266

267
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 269 270 271

	return base;
}

272
# define switch_hrtimer_base(t, b, p)	(b)
273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
284
s64 __ktime_divns(const ktime_t kt, s64 div)
285 286
{
	int sft = 0;
287 288
	s64 dclc;
	u64 tmp;
289

290
	dclc = ktime_to_ns(kt);
291 292
	tmp = dclc < 0 ? -dclc : dclc;

293 294 295 296 297
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
298 299 300
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
301
}
302
EXPORT_SYMBOL_GPL(__ktime_divns);
303 304
#endif /* BITS_PER_LONG >= 64 */

305 306 307 308 309
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
310
	ktime_t res = ktime_add_unsafe(lhs, rhs);
311 312 313 314 315

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
316
	if (res < 0 || res < lhs || res < rhs)
317 318 319 320 321
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

322 323
EXPORT_SYMBOL_GPL(ktime_add_safe);

324 325 326 327
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

328 329 330 331 332
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

333 334 335 336
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
337
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 339 340 341 342 343 344
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
345
		return true;
346
	default:
347
		return false;
348 349 350 351 352 353
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
354
 * - an unknown non-static object is activated
355
 */
356
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 358 359 360 361 362
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
363
		return false;
364 365 366 367 368 369 370
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
371
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 373 374 375 376 377 378
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
379
		return true;
380
	default:
381
		return false;
382 383 384 385 386
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
387
	.debug_hint	= hrtimer_debug_hint,
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
422
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423 424 425 426 427

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
428
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
429 430 431 432 433 434 435

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

456
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 458 459 460 461 462 463 464
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

465
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
466 467
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
468
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
469
	ktime_t expires, expires_next = KTIME_MAX;
470

471
	hrtimer_update_next_timer(cpu_base, NULL);
472
	for (; active; base++, active >>= 1) {
473 474 475
		struct timerqueue_node *next;
		struct hrtimer *timer;

476
		if (!(active & 0x01))
477 478
			continue;

479
		next = timerqueue_getnext(&base->active);
480 481
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
482
		if (expires < expires_next) {
483
			expires_next = expires;
484 485
			hrtimer_update_next_timer(cpu_base, timer);
		}
486 487 488 489 490 491
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
492 493
	if (expires_next < 0)
		expires_next = 0;
494 495 496 497
	return expires_next;
}
#endif

498 499 500 501 502 503
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

504 505
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
506 507
}

508 509 510 511 512 513
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
514
static bool hrtimer_hres_enabled __read_mostly  = true;
515 516
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
517 518 519 520 521 522

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
523
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
539 540 541 542 543
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

544 545
static inline int hrtimer_hres_active(void)
{
546
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
547 548 549 550 551 552 553
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
554 555
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
556
{
557 558 559 560 561 562
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
563

T
Thomas Gleixner 已提交
564
	if (skip_equal && expires_next == cpu_base->expires_next)
565 566
		return;

T
Thomas Gleixner 已提交
567
	cpu_base->expires_next = expires_next;
568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

586
	tick_program_event(cpu_base->expires_next, 1);
587 588 589 590 591 592 593 594 595
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
596 597
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
598
{
599
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
600
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
601

602
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
603

604
	/*
605 606
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
607
	 */
608 609 610 611 612 613 614 615 616 617 618 619
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
620

621 622
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
623
	 * expiry time which is less than base->offset. Set it to 0.
624
	 */
T
Thomas Gleixner 已提交
625 626
	if (expires < 0)
		expires = 0;
627

T
Thomas Gleixner 已提交
628
	if (expires >= cpu_base->expires_next)
629
		return;
630

631
	/* Update the pointer to the next expiring timer */
632
	cpu_base->next_timer = timer;
633

634 635 636 637 638 639 640
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
641
		return;
642 643

	/*
644 645
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
646
	 */
647 648
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
649 650 651 652 653 654 655
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
T
Thomas Gleixner 已提交
656
	base->expires_next = KTIME_MAX;
657 658 659
	base->hres_active = 0;
}

660 661 662 663 664 665 666
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
667
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668

669
	if (!base->hres_active)
670 671 672
		return;

	raw_spin_lock(&base->lock);
673
	hrtimer_update_base(base);
674 675 676
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
677

678 679 680
/*
 * Switch to high resolution mode
 */
681
static void hrtimer_switch_to_hres(void)
682
{
683
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684 685

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
686
		printk(KERN_WARNING "Could not switch to high resolution "
687
				    "mode on CPU %d\n", base->cpu);
688
		return;
689 690
	}
	base->hres_active = 1;
691
	hrtimer_resolution = HIGH_RES_NSEC;
692 693 694 695 696 697

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

698 699 700 701 702 703 704
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

705
/*
P
Pratyush Patel 已提交
706
 * Called from timekeeping and resume code to reprogram the hrtimer
707
 * interrupt device on all cpus.
708 709 710
 */
void clock_was_set_delayed(void)
{
711
	schedule_work(&hrtimer_work);
712 713
}

714 715
#else

716
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 718
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
719
static inline void hrtimer_switch_to_hres(void) { }
720 721
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 723
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
724 725 726 727
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728
static inline void retrigger_next_event(void *arg) { }
729 730 731

#endif /* CONFIG_HIGH_RES_TIMERS */

732 733 734 735 736 737 738 739 740 741 742 743 744
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
745
#ifdef CONFIG_HIGH_RES_TIMERS
746 747
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
748 749
#endif
	timerfd_clock_was_set();
750 751 752 753
}

/*
 * During resume we might have to reprogram the high resolution timer
754 755
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
756
 * must be deferred.
757 758 759 760 761 762
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

763
	/* Retrigger on the local CPU */
764
	retrigger_next_event(NULL);
765 766
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
767 768
}

769
/*
770
 * Counterpart to lock_hrtimer_base above:
771 772 773 774
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
775
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
776 777 778 779 780
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
781
 * @now:	forward past this time
782 783 784
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
785
 * Returns the number of overruns.
786 787 788 789 790 791 792 793
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
794
 */
D
Davide Libenzi 已提交
795
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
796
{
D
Davide Libenzi 已提交
797
	u64 orun = 1;
798
	ktime_t delta;
799

800
	delta = ktime_sub(now, hrtimer_get_expires(timer));
801

T
Thomas Gleixner 已提交
802
	if (delta < 0)
803 804
		return 0;

805 806 807
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
808 809
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
810

T
Thomas Gleixner 已提交
811
	if (unlikely(delta >= interval)) {
812
		s64 incr = ktime_to_ns(interval);
813 814

		orun = ktime_divns(delta, incr);
815
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
816
		if (hrtimer_get_expires_tv64(timer) > now)
817 818 819 820 821 822 823
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
824
	hrtimer_add_expires(timer, interval);
825 826 827

	return orun;
}
S
Stas Sergeev 已提交
828
EXPORT_SYMBOL_GPL(hrtimer_forward);
829 830 831 832 833 834

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
835 836
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
837
 */
838 839
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
840
{
841
	debug_activate(timer);
842

843
	base->cpu_base->active_bases |= 1 << base->index;
844

845
	timer->state = HRTIMER_STATE_ENQUEUED;
846

847
	return timerqueue_add(&base->active, &timer->node);
848
}
849 850 851 852 853

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
854 855 856 857 858
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
859
 */
860
static void __remove_hrtimer(struct hrtimer *timer,
861
			     struct hrtimer_clock_base *base,
862
			     u8 newstate, int reprogram)
863
{
864
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
865
	u8 state = timer->state;
866

867 868 869
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
870

871
	if (!timerqueue_del(&base->active, &timer->node))
872
		cpu_base->active_bases &= ~(1 << base->index);
873 874

#ifdef CONFIG_HIGH_RES_TIMERS
875 876 877 878 879 880 881 882 883 884
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
885
#endif
886 887 888 889 890 891
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
892
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
893
{
894
	if (hrtimer_is_queued(timer)) {
895
		u8 state = timer->state;
896 897 898 899 900 901 902 903 904 905
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
906
		debug_deactivate(timer);
907
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
908

909 910 911
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

912
		__remove_hrtimer(timer, base, state, reprogram);
913 914 915 916 917
		return 1;
	}
	return 0;
}

918 919 920 921 922 923 924 925 926 927 928
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
929
		tim = ktime_add_safe(tim, hrtimer_resolution);
930 931 932 933
#endif
	return tim;
}

934 935 936 937 938 939 940 941
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
942
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
943
			    u64 delta_ns, const enum hrtimer_mode mode)
944
{
945
	struct hrtimer_clock_base *base, *new_base;
946
	unsigned long flags;
947
	int leftmost;
948 949 950 951

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
952
	remove_hrtimer(timer, base, true);
953

954
	if (mode & HRTIMER_MODE_REL)
955
		tim = ktime_add_safe(tim, base->get_time());
956 957

	tim = hrtimer_update_lowres(timer, tim, mode);
958

959
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
960

961 962 963
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

964
	leftmost = enqueue_hrtimer(timer, new_base);
965 966
	if (!leftmost)
		goto unlock;
967 968 969 970 971 972

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
973 974
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
975 976
	} else {
		hrtimer_reprogram(timer, new_base);
977
	}
978
unlock:
979
	unlock_hrtimer_base(timer, &flags);
980
}
981 982
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

983 984 985 986 987 988 989 990
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
991
 *    cannot be stopped
992 993 994
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
995
	struct hrtimer_clock_base *base;
996 997 998
	unsigned long flags;
	int ret = -1;

999 1000 1001 1002 1003 1004 1005 1006 1007
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1008 1009
	base = lock_hrtimer_base(timer, &flags);

1010
	if (!hrtimer_callback_running(timer))
1011
		ret = remove_hrtimer(timer, base, false);
1012 1013 1014 1015 1016 1017

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1018
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1035
		cpu_relax();
1036 1037
	}
}
1038
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1039 1040 1041 1042

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1043
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1044
 */
1045
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1046 1047 1048 1049
{
	unsigned long flags;
	ktime_t rem;

1050
	lock_hrtimer_base(timer, &flags);
1051 1052 1053 1054
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1055 1056 1057 1058
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1059
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1060

1061
#ifdef CONFIG_NO_HZ_COMMON
1062 1063 1064
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1065
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1066
 */
1067
u64 hrtimer_get_next_event(void)
1068
{
1069
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1070
	u64 expires = KTIME_MAX;
1071 1072
	unsigned long flags;

1073
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1074

1075
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1076
		expires = __hrtimer_get_next_event(cpu_base);
1077

1078
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1079

1080
	return expires;
1081 1082 1083
}
#endif

1084 1085
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1086
{
1087
	struct hrtimer_cpu_base *cpu_base;
1088
	int base;
1089

1090 1091
	memset(timer, 0, sizeof(struct hrtimer));

1092
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1093

1094
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1095 1096
		clock_id = CLOCK_MONOTONIC;

1097 1098
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1099
	timerqueue_init(&timer->node);
1100
}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1111
	debug_init(timer, clock_id, mode);
1112 1113
	__hrtimer_init(timer, clock_id, mode);
}
1114
EXPORT_SYMBOL_GPL(hrtimer_init);
1115

1116 1117 1118 1119
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1120
 *
1121
 * It is important for this function to not return a false negative.
1122
 */
1123
bool hrtimer_active(const struct hrtimer *timer)
1124
{
1125
	struct hrtimer_cpu_base *cpu_base;
1126
	unsigned int seq;
1127

1128 1129 1130
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1131

1132 1133 1134 1135 1136 1137 1138 1139
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1140
}
1141
EXPORT_SYMBOL_GPL(hrtimer_active);
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1161 1162 1163
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1164 1165 1166 1167
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1168
	lockdep_assert_held(&cpu_base->lock);
1169

1170
	debug_deactivate(timer);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1183
	fn = timer->function;
1184

1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1193 1194 1195 1196 1197
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1198
	raw_spin_unlock(&cpu_base->lock);
1199
	trace_hrtimer_expire_entry(timer, now);
1200
	restart = fn(timer);
1201
	trace_hrtimer_expire_exit(timer);
1202
	raw_spin_lock(&cpu_base->lock);
1203 1204

	/*
1205
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1206
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1207
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1208 1209 1210 1211
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1212
	 */
1213 1214
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1215
		enqueue_hrtimer(timer, base);
1216

1217 1218 1219 1220 1221 1222 1223 1224
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1225

1226 1227
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1228 1229
}

1230
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1231
{
1232 1233
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1234

1235
	for (; active; base++, active >>= 1) {
1236
		struct timerqueue_node *node;
1237 1238
		ktime_t basenow;

1239
		if (!(active & 0x01))
1240
			continue;
1241 1242 1243

		basenow = ktime_add(now, base->offset);

1244
		while ((node = timerqueue_getnext(&base->active))) {
1245 1246
			struct hrtimer *timer;

1247
			timer = container_of(node, struct hrtimer, node);
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1261
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1262 1263
				break;

1264
			__run_hrtimer(cpu_base, base, timer, &basenow);
1265 1266
		}
	}
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1283
	dev->next_event = KTIME_MAX;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1296
	cpu_base->expires_next = KTIME_MAX;
1297 1298 1299

	__hrtimer_run_queues(cpu_base, now);

1300 1301
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1302 1303 1304 1305
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1306
	cpu_base->expires_next = expires_next;
1307
	cpu_base->in_hrtirq = 0;
1308
	raw_spin_unlock(&cpu_base->lock);
1309 1310

	/* Reprogramming necessary ? */
1311
	if (!tick_program_event(expires_next, 0)) {
1312 1313
		cpu_base->hang_detected = 0;
		return;
1314
	}
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1325 1326 1327
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1328
	 */
1329
	raw_spin_lock(&cpu_base->lock);
1330
	now = hrtimer_update_base(cpu_base);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1342
	raw_spin_unlock(&cpu_base->lock);
1343
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1344 1345
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1346 1347 1348 1349
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1350
	if (delta > 100 * NSEC_PER_MSEC)
1351 1352 1353 1354 1355 1356
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1357 1358
}

1359 1360 1361 1362
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1363
static inline void __hrtimer_peek_ahead_timers(void)
1364 1365 1366 1367 1368 1369
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1370
	td = this_cpu_ptr(&tick_cpu_device);
1371 1372 1373 1374
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1375 1376 1377 1378 1379
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1380

1381
/*
1382
 * Called from run_local_timers in hardirq context every jiffy
1383
 */
1384
void hrtimer_run_queues(void)
1385
{
1386
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1387
	ktime_t now;
1388

1389
	if (__hrtimer_hres_active(cpu_base))
1390
		return;
1391

1392
	/*
1393 1394 1395 1396 1397
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1398
	 */
1399
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1400
		hrtimer_switch_to_hres();
1401
		return;
1402
	}
1403

1404 1405 1406 1407
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1408 1409
}

1410 1411 1412
/*
 * Sleep related functions:
 */
1413
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1426
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1427 1428 1429 1430
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1431
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1432

1433
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1434
{
1435
	hrtimer_init_sleeper(t, current);
1436

1437 1438
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1439
		hrtimer_start_expires(&t->timer, mode);
1440

1441
		if (likely(t->task))
1442
			freezable_schedule();
1443

1444
		hrtimer_cancel(&t->timer);
1445
		mode = HRTIMER_MODE_ABS;
1446 1447

	} while (t->task && !signal_pending(current));
1448

1449 1450
	__set_current_state(TASK_RUNNING);

1451
	return t->task == NULL;
1452 1453
}

1454 1455 1456 1457 1458
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1459
	rem = hrtimer_expires_remaining(timer);
T
Thomas Gleixner 已提交
1460
	if (rem <= 0)
1461 1462 1463 1464 1465 1466 1467 1468 1469
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1470
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1471
{
1472
	struct hrtimer_sleeper t;
1473
	struct timespec __user  *rmtp;
1474
	int ret = 0;
1475

1476
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1477
				HRTIMER_MODE_ABS);
1478
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1479

1480
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1481
		goto out;
1482

1483
	rmtp = restart->nanosleep.rmtp;
1484
	if (rmtp) {
1485
		ret = update_rmtp(&t.timer, rmtp);
1486
		if (ret <= 0)
1487
			goto out;
1488
	}
1489 1490

	/* The other values in restart are already filled in */
1491 1492 1493 1494
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1495 1496
}

1497
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1498 1499 1500
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1501
	struct hrtimer_sleeper t;
1502
	int ret = 0;
1503
	u64 slack;
1504 1505

	slack = current->timer_slack_ns;
1506
	if (dl_task(current) || rt_task(current))
1507
		slack = 0;
1508

1509
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1510
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1511
	if (do_nanosleep(&t, mode))
1512
		goto out;
1513

1514
	/* Absolute timers do not update the rmtp value and restart: */
1515 1516 1517 1518
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1519

1520
	if (rmtp) {
1521
		ret = update_rmtp(&t.timer, rmtp);
1522
		if (ret <= 0)
1523
			goto out;
1524
	}
1525

1526
	restart = &current->restart_block;
1527
	restart->fn = hrtimer_nanosleep_restart;
1528
	restart->nanosleep.clockid = t.timer.base->clockid;
1529
	restart->nanosleep.rmtp = rmtp;
1530
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1531

1532 1533 1534 1535
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1536 1537
}

1538 1539
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1540
{
1541
	struct timespec tu;
1542 1543 1544 1545 1546 1547 1548

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1549
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1550 1551
}

1552 1553 1554
/*
 * Functions related to boot-time initialization:
 */
1555
int hrtimers_prepare_cpu(unsigned int cpu)
1556
{
1557
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1558 1559
	int i;

1560
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1561
		cpu_base->clock_base[i].cpu_base = cpu_base;
1562 1563
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1564

1565
	cpu_base->cpu = cpu;
1566
	hrtimer_init_hres(cpu_base);
1567
	return 0;
1568 1569 1570 1571
}

#ifdef CONFIG_HOTPLUG_CPU

1572
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1573
				struct hrtimer_clock_base *new_base)
1574 1575
{
	struct hrtimer *timer;
1576
	struct timerqueue_node *node;
1577

1578 1579
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1580
		BUG_ON(hrtimer_callback_running(timer));
1581
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1582 1583

		/*
1584
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1585 1586 1587
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1588
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1589
		timer->base = new_base;
1590
		/*
T
Thomas Gleixner 已提交
1591 1592 1593 1594 1595 1596
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1597
		 */
1598
		enqueue_hrtimer(timer, new_base);
1599 1600 1601
	}
}

1602
int hrtimers_dead_cpu(unsigned int scpu)
1603
{
1604
	struct hrtimer_cpu_base *old_base, *new_base;
1605
	int i;
1606

1607 1608
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1609 1610 1611

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1612
	new_base = this_cpu_ptr(&hrtimer_bases);
1613 1614 1615 1616
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1617 1618
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1619

1620
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1621
		migrate_hrtimer_list(&old_base->clock_base[i],
1622
				     &new_base->clock_base[i]);
1623 1624
	}

1625 1626
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1627

1628 1629 1630
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1631
	return 0;
1632
}
1633

1634 1635 1636 1637
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1638
	hrtimers_prepare_cpu(smp_processor_id());
1639 1640
}

1641
/**
1642
 * schedule_hrtimeout_range_clock - sleep until timeout
1643
 * @expires:	timeout value (ktime_t)
1644
 * @delta:	slack in expires timeout (ktime_t)
1645
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1646
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1647
 */
1648
int __sched
1649
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1650
			       const enum hrtimer_mode mode, int clock)
1651 1652 1653 1654 1655 1656 1657
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1658
	if (expires && *expires == 0) {
1659 1660 1661 1662 1663
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1664
	 * A NULL parameter means "infinite"
1665 1666 1667 1668 1669 1670
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1671
	hrtimer_init_on_stack(&t.timer, clock, mode);
1672
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1673 1674 1675

	hrtimer_init_sleeper(&t, current);

1676
	hrtimer_start_expires(&t.timer, mode);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1707 1708
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1709 1710
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1711 1712
 * delivered to the current task or the current task is explicitly woken
 * up.
1713 1714 1715 1716
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1717 1718 1719
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1720
 */
1721
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1722 1723 1724 1725 1726
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1741 1742
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1743 1744
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1745 1746
 * delivered to the current task or the current task is explicitly woken
 * up.
1747 1748 1749 1750
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1751 1752 1753
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1754 1755 1756 1757 1758 1759
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1760
EXPORT_SYMBOL_GPL(schedule_hrtimeout);