hrtimer.c 46.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
Z
Zhen Lei 已提交
62
 * There are more clockids than hrtimer bases. Thus, we index
63 64 65
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180
#ifdef CONFIG_NO_HZ_COMMON
181 182 183 184 185
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
186
		return base;
187 188 189 190 191 192 193
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
194
	return base;
195 196 197
}
#endif

198
/*
199 200 201 202 203 204 205 206 207 208
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
209
 */
210
static inline struct hrtimer_clock_base *
211 212
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
213
{
214
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215
	struct hrtimer_clock_base *new_base;
216
	int basenum = base->index;
217

218 219
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
220
again:
221
	new_base = &new_cpu_base->clock_base[basenum];
222 223 224

	if (base != new_base) {
		/*
225
		 * We are trying to move timer to new_base.
226 227 228 229 230 231 232
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
233
		if (unlikely(hrtimer_callback_running(timer)))
234 235
			return base;

236 237
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
238 239
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
240

241
		if (new_cpu_base != this_cpu_base &&
242
		    hrtimer_check_target(timer, new_base)) {
243 244
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
245
			new_cpu_base = this_cpu_base;
246 247
			timer->base = base;
			goto again;
248
		}
249
		timer->base = new_base;
250
	} else {
251
		if (new_cpu_base != this_cpu_base &&
252
		    hrtimer_check_target(timer, new_base)) {
253
			new_cpu_base = this_cpu_base;
254 255
			goto again;
		}
256 257 258 259 260 261
	}
	return new_base;
}

#else /* CONFIG_SMP */

262
static inline struct hrtimer_clock_base *
263 264
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
265
	struct hrtimer_clock_base *base = timer->base;
266

267
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 269 270 271

	return base;
}

272
# define switch_hrtimer_base(t, b, p)	(b)
273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
284
s64 __ktime_divns(const ktime_t kt, s64 div)
285 286
{
	int sft = 0;
287 288
	s64 dclc;
	u64 tmp;
289

290
	dclc = ktime_to_ns(kt);
291 292
	tmp = dclc < 0 ? -dclc : dclc;

293 294 295 296 297
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
298 299 300
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
301
}
302
EXPORT_SYMBOL_GPL(__ktime_divns);
303 304
#endif /* BITS_PER_LONG >= 64 */

305 306 307 308 309
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
310
	ktime_t res = ktime_add_unsafe(lhs, rhs);
311 312 313 314 315 316 317 318 319 320 321

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

322 323
EXPORT_SYMBOL_GPL(ktime_add_safe);

324 325 326 327
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

328 329 330 331 332
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

333 334 335 336
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
337
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 339 340 341 342 343 344
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
345
		return true;
346
	default:
347
		return false;
348 349 350 351 352 353
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
354
 * - an unknown non-static object is activated
355
 */
356
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 358 359 360 361 362
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
363
		return false;
364 365 366 367 368 369 370
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
371
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 373 374 375 376 377 378
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
379
		return true;
380
	default:
381
		return false;
382 383 384 385 386
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
387
	.debug_hint	= hrtimer_debug_hint,
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
422
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423 424 425 426 427

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
428
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
429 430 431 432 433 434 435

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

456
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 458 459 460 461 462 463 464
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

465
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
466 467 468
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
469
	unsigned int active = cpu_base->active_bases;
470

471
	hrtimer_update_next_timer(cpu_base, NULL);
472
	for (; active; base++, active >>= 1) {
473 474 475
		struct timerqueue_node *next;
		struct hrtimer *timer;

476
		if (!(active & 0x01))
477 478
			continue;

479
		next = timerqueue_getnext(&base->active);
480 481
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
482
		if (expires.tv64 < expires_next.tv64) {
483
			expires_next = expires;
484 485
			hrtimer_update_next_timer(cpu_base, timer);
		}
486 487 488 489 490 491 492 493 494 495 496 497
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

498 499 500 501 502 503
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

504 505
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
506 507
}

508 509 510 511 512 513
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
514
static bool hrtimer_hres_enabled __read_mostly  = true;
515 516
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
517 518 519 520 521 522

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
523
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
539 540 541 542 543
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

544 545
static inline int hrtimer_hres_active(void)
{
546
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
547 548 549 550 551 552 553
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
554 555
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
556
{
557 558 559 560 561 562
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
563

564 565 566 567 568
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

586
	tick_program_event(cpu_base->expires_next, 1);
587 588 589 590 591 592 593 594 595
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
596 597
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
598
{
599
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
600
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
601

602
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
603

604
	/*
605 606
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
607
	 */
608 609 610 611 612 613 614 615 616 617 618 619
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
620

621 622
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
623
	 * expiry time which is less than base->offset. Set it to 0.
624 625
	 */
	if (expires.tv64 < 0)
626
		expires.tv64 = 0;
627

628
	if (expires.tv64 >= cpu_base->expires_next.tv64)
629
		return;
630

631
	/* Update the pointer to the next expiring timer */
632
	cpu_base->next_timer = timer;
633

634 635 636 637 638 639 640
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
641
		return;
642 643

	/*
644 645
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
646
	 */
647 648
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
649 650 651 652 653 654 655 656 657 658 659
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

660 661 662 663 664 665 666
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
667
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668

669
	if (!base->hres_active)
670 671 672
		return;

	raw_spin_lock(&base->lock);
673
	hrtimer_update_base(base);
674 675 676
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
677

678 679 680
/*
 * Switch to high resolution mode
 */
681
static void hrtimer_switch_to_hres(void)
682
{
683
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684 685

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
686
		printk(KERN_WARNING "Could not switch to high resolution "
687
				    "mode on CPU %d\n", base->cpu);
688
		return;
689 690
	}
	base->hres_active = 1;
691
	hrtimer_resolution = HIGH_RES_NSEC;
692 693 694 695 696 697

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

698 699 700 701 702 703 704
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

705
/*
P
Pratyush Patel 已提交
706
 * Called from timekeeping and resume code to reprogram the hrtimer
707
 * interrupt device on all cpus.
708 709 710
 */
void clock_was_set_delayed(void)
{
711
	schedule_work(&hrtimer_work);
712 713
}

714 715
#else

716
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 718
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
719
static inline void hrtimer_switch_to_hres(void) { }
720 721
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 723
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
724 725 726 727
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728
static inline void retrigger_next_event(void *arg) { }
729 730 731

#endif /* CONFIG_HIGH_RES_TIMERS */

732 733 734 735 736 737 738 739 740 741 742 743 744
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
745
#ifdef CONFIG_HIGH_RES_TIMERS
746 747
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
748 749
#endif
	timerfd_clock_was_set();
750 751 752 753
}

/*
 * During resume we might have to reprogram the high resolution timer
754 755
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
756
 * must be deferred.
757 758 759 760 761 762
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

763
	/* Retrigger on the local CPU */
764
	retrigger_next_event(NULL);
765 766
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
767 768
}

769
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
770
{
771
#ifdef CONFIG_TIMER_STATS
772 773
	if (timer->start_site)
		return;
774
	timer->start_site = __builtin_return_address(0);
775 776
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
777 778 779 780 781 782 783 784
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
785
}
786 787 788 789 790 791 792 793

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
794
#endif
795
}
796

797
/*
798
 * Counterpart to lock_hrtimer_base above:
799 800 801 802
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
803
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
804 805 806 807 808
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
809
 * @now:	forward past this time
810 811 812
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
813
 * Returns the number of overruns.
814 815 816 817 818 819 820 821
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
822
 */
D
Davide Libenzi 已提交
823
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
824
{
D
Davide Libenzi 已提交
825
	u64 orun = 1;
826
	ktime_t delta;
827

828
	delta = ktime_sub(now, hrtimer_get_expires(timer));
829 830 831 832

	if (delta.tv64 < 0)
		return 0;

833 834 835
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

836 837
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
838

839
	if (unlikely(delta.tv64 >= interval.tv64)) {
840
		s64 incr = ktime_to_ns(interval);
841 842

		orun = ktime_divns(delta, incr);
843 844
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
845 846 847 848 849 850 851
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
852
	hrtimer_add_expires(timer, interval);
853 854 855

	return orun;
}
S
Stas Sergeev 已提交
856
EXPORT_SYMBOL_GPL(hrtimer_forward);
857 858 859 860 861 862

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
863 864
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
865
 */
866 867
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
868
{
869
	debug_activate(timer);
870

871
	base->cpu_base->active_bases |= 1 << base->index;
872

873
	timer->state = HRTIMER_STATE_ENQUEUED;
874

875
	return timerqueue_add(&base->active, &timer->node);
876
}
877 878 879 880 881

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
882 883 884 885 886
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
887
 */
888
static void __remove_hrtimer(struct hrtimer *timer,
889
			     struct hrtimer_clock_base *base,
890
			     u8 newstate, int reprogram)
891
{
892
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
893
	u8 state = timer->state;
894

895 896 897
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
898

899
	if (!timerqueue_del(&base->active, &timer->node))
900
		cpu_base->active_bases &= ~(1 << base->index);
901 902

#ifdef CONFIG_HIGH_RES_TIMERS
903 904 905 906 907 908 909 910 911 912
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
913
#endif
914 915 916 917 918 919
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
920
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
921
{
922
	if (hrtimer_is_queued(timer)) {
923
		u8 state = timer->state;
924 925 926 927 928 929 930 931 932 933
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
934
		debug_deactivate(timer);
935
		timer_stats_hrtimer_clear_start_info(timer);
936
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
937

938 939 940
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

941
		__remove_hrtimer(timer, base, state, reprogram);
942 943 944 945 946
		return 1;
	}
	return 0;
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
#endif
	return tim;
}

963 964 965 966 967 968 969 970
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
971
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
972
			    u64 delta_ns, const enum hrtimer_mode mode)
973
{
974
	struct hrtimer_clock_base *base, *new_base;
975
	unsigned long flags;
976
	int leftmost;
977 978 979 980

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
981
	remove_hrtimer(timer, base, true);
982

983
	if (mode & HRTIMER_MODE_REL)
984
		tim = ktime_add_safe(tim, base->get_time());
985 986

	tim = hrtimer_update_lowres(timer, tim, mode);
987

988
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
989

990 991 992
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

993 994
	timer_stats_hrtimer_set_start_info(timer);

995
	leftmost = enqueue_hrtimer(timer, new_base);
996 997
	if (!leftmost)
		goto unlock;
998 999 1000 1001 1002 1003

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
1004 1005
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1006 1007
	} else {
		hrtimer_reprogram(timer, new_base);
1008
	}
1009
unlock:
1010
	unlock_hrtimer_base(timer, &flags);
1011
}
1012 1013
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1014 1015 1016 1017 1018 1019 1020 1021
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1022
 *    cannot be stopped
1023 1024 1025
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1026
	struct hrtimer_clock_base *base;
1027 1028 1029
	unsigned long flags;
	int ret = -1;

1030 1031 1032 1033 1034 1035 1036 1037 1038
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1039 1040
	base = lock_hrtimer_base(timer, &flags);

1041
	if (!hrtimer_callback_running(timer))
1042
		ret = remove_hrtimer(timer, base, false);
1043 1044 1045 1046 1047 1048

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1049
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1066
		cpu_relax();
1067 1068
	}
}
1069
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1070 1071 1072 1073

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1074
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1075
 */
1076
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1077 1078 1079 1080
{
	unsigned long flags;
	ktime_t rem;

1081
	lock_hrtimer_base(timer, &flags);
1082 1083 1084 1085
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1086 1087 1088 1089
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1090
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1091

1092
#ifdef CONFIG_NO_HZ_COMMON
1093 1094 1095
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1096
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1097
 */
1098
u64 hrtimer_get_next_event(void)
1099
{
1100
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1101
	u64 expires = KTIME_MAX;
1102 1103
	unsigned long flags;

1104
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1105

1106
	if (!__hrtimer_hres_active(cpu_base))
1107
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1108

1109
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1110

1111
	return expires;
1112 1113 1114
}
#endif

1115 1116
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1117
{
1118
	struct hrtimer_cpu_base *cpu_base;
1119
	int base;
1120

1121 1122
	memset(timer, 0, sizeof(struct hrtimer));

1123
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1124

1125
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1126 1127
		clock_id = CLOCK_MONOTONIC;

1128 1129
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1130
	timerqueue_init(&timer->node);
1131 1132 1133 1134 1135 1136

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1137
}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1148
	debug_init(timer, clock_id, mode);
1149 1150
	__hrtimer_init(timer, clock_id, mode);
}
1151
EXPORT_SYMBOL_GPL(hrtimer_init);
1152

1153 1154 1155 1156
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1157
 *
1158
 * It is important for this function to not return a false negative.
1159
 */
1160
bool hrtimer_active(const struct hrtimer *timer)
1161
{
1162
	struct hrtimer_cpu_base *cpu_base;
1163
	unsigned int seq;
1164

1165 1166 1167
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1168

1169 1170 1171 1172 1173 1174 1175 1176
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1177
}
1178
EXPORT_SYMBOL_GPL(hrtimer_active);
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1198 1199 1200
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1201 1202 1203 1204
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1205
	lockdep_assert_held(&cpu_base->lock);
1206

1207
	debug_deactivate(timer);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1220 1221
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1222

1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1231 1232 1233 1234 1235
	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1236
	raw_spin_unlock(&cpu_base->lock);
1237
	trace_hrtimer_expire_entry(timer, now);
1238
	restart = fn(timer);
1239
	trace_hrtimer_expire_exit(timer);
1240
	raw_spin_lock(&cpu_base->lock);
1241 1242

	/*
1243
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1244
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1245
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1246 1247 1248 1249
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1250
	 */
1251 1252
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1253
		enqueue_hrtimer(timer, base);
1254

1255 1256 1257 1258 1259 1260 1261 1262
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1263

1264 1265
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1266 1267
}

1268
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1269
{
1270 1271
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1272

1273
	for (; active; base++, active >>= 1) {
1274
		struct timerqueue_node *node;
1275 1276
		ktime_t basenow;

1277
		if (!(active & 0x01))
1278
			continue;
1279 1280 1281

		basenow = ktime_add(now, base->offset);

1282
		while ((node = timerqueue_getnext(&base->active))) {
1283 1284
			struct hrtimer *timer;

1285
			timer = container_of(node, struct hrtimer, node);
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1299
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1300 1301
				break;

1302
			__run_hrtimer(cpu_base, base, timer, &basenow);
1303 1304
		}
	}
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1338 1339
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1340 1341 1342 1343
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1344
	cpu_base->expires_next = expires_next;
1345
	cpu_base->in_hrtirq = 0;
1346
	raw_spin_unlock(&cpu_base->lock);
1347 1348

	/* Reprogramming necessary ? */
1349
	if (!tick_program_event(expires_next, 0)) {
1350 1351
		cpu_base->hang_detected = 0;
		return;
1352
	}
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1363 1364 1365
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1366
	 */
1367
	raw_spin_lock(&cpu_base->lock);
1368
	now = hrtimer_update_base(cpu_base);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1380
	raw_spin_unlock(&cpu_base->lock);
1381
	delta = ktime_sub(now, entry_time);
1382 1383
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1395 1396
}

1397 1398 1399 1400
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1401
static inline void __hrtimer_peek_ahead_timers(void)
1402 1403 1404 1405 1406 1407
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1408
	td = this_cpu_ptr(&tick_cpu_device);
1409 1410 1411 1412
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1413 1414 1415 1416 1417
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1418

1419
/*
1420
 * Called from run_local_timers in hardirq context every jiffy
1421
 */
1422
void hrtimer_run_queues(void)
1423
{
1424
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1425
	ktime_t now;
1426

1427
	if (__hrtimer_hres_active(cpu_base))
1428
		return;
1429

1430
	/*
1431 1432 1433 1434 1435
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1436
	 */
1437
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1438
		hrtimer_switch_to_hres();
1439
		return;
1440
	}
1441

1442 1443 1444 1445
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1446 1447
}

1448 1449 1450
/*
 * Sleep related functions:
 */
1451
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1464
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1465 1466 1467 1468
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1469
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1470

1471
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1472
{
1473
	hrtimer_init_sleeper(t, current);
1474

1475 1476
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1477
		hrtimer_start_expires(&t->timer, mode);
1478

1479
		if (likely(t->task))
1480
			freezable_schedule();
1481

1482
		hrtimer_cancel(&t->timer);
1483
		mode = HRTIMER_MODE_ABS;
1484 1485

	} while (t->task && !signal_pending(current));
1486

1487 1488
	__set_current_state(TASK_RUNNING);

1489
	return t->task == NULL;
1490 1491
}

1492 1493 1494 1495 1496
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1497
	rem = hrtimer_expires_remaining(timer);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1508
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1509
{
1510
	struct hrtimer_sleeper t;
1511
	struct timespec __user  *rmtp;
1512
	int ret = 0;
1513

1514
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1515
				HRTIMER_MODE_ABS);
1516
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1517

1518
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1519
		goto out;
1520

1521
	rmtp = restart->nanosleep.rmtp;
1522
	if (rmtp) {
1523
		ret = update_rmtp(&t.timer, rmtp);
1524
		if (ret <= 0)
1525
			goto out;
1526
	}
1527 1528

	/* The other values in restart are already filled in */
1529 1530 1531 1532
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1533 1534
}

1535
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1536 1537 1538
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1539
	struct hrtimer_sleeper t;
1540
	int ret = 0;
1541
	u64 slack;
1542 1543

	slack = current->timer_slack_ns;
1544
	if (dl_task(current) || rt_task(current))
1545
		slack = 0;
1546

1547
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1548
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1549
	if (do_nanosleep(&t, mode))
1550
		goto out;
1551

1552
	/* Absolute timers do not update the rmtp value and restart: */
1553 1554 1555 1556
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1557

1558
	if (rmtp) {
1559
		ret = update_rmtp(&t.timer, rmtp);
1560
		if (ret <= 0)
1561
			goto out;
1562
	}
1563

1564
	restart = &current->restart_block;
1565
	restart->fn = hrtimer_nanosleep_restart;
1566
	restart->nanosleep.clockid = t.timer.base->clockid;
1567
	restart->nanosleep.rmtp = rmtp;
1568
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1569

1570 1571 1572 1573
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1574 1575
}

1576 1577
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1578
{
1579
	struct timespec tu;
1580 1581 1582 1583 1584 1585 1586

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1587
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1588 1589
}

1590 1591 1592
/*
 * Functions related to boot-time initialization:
 */
1593
int hrtimers_prepare_cpu(unsigned int cpu)
1594
{
1595
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1596 1597
	int i;

1598
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1599
		cpu_base->clock_base[i].cpu_base = cpu_base;
1600 1601
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1602

1603
	cpu_base->cpu = cpu;
1604
	hrtimer_init_hres(cpu_base);
1605
	return 0;
1606 1607 1608 1609
}

#ifdef CONFIG_HOTPLUG_CPU

1610
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1611
				struct hrtimer_clock_base *new_base)
1612 1613
{
	struct hrtimer *timer;
1614
	struct timerqueue_node *node;
1615

1616 1617
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1618
		BUG_ON(hrtimer_callback_running(timer));
1619
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1620 1621

		/*
1622
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1623 1624 1625
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1626
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1627
		timer->base = new_base;
1628
		/*
T
Thomas Gleixner 已提交
1629 1630 1631 1632 1633 1634
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1635
		 */
1636
		enqueue_hrtimer(timer, new_base);
1637 1638 1639
	}
}

1640
int hrtimers_dead_cpu(unsigned int scpu)
1641
{
1642
	struct hrtimer_cpu_base *old_base, *new_base;
1643
	int i;
1644

1645 1646
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1647 1648 1649

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1650
	new_base = this_cpu_ptr(&hrtimer_bases);
1651 1652 1653 1654
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1655 1656
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1657

1658
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1659
		migrate_hrtimer_list(&old_base->clock_base[i],
1660
				     &new_base->clock_base[i]);
1661 1662
	}

1663 1664
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1665

1666 1667 1668
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1669
	return 0;
1670
}
1671

1672 1673 1674 1675
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1676
	hrtimers_prepare_cpu(smp_processor_id());
1677 1678
}

1679
/**
1680
 * schedule_hrtimeout_range_clock - sleep until timeout
1681
 * @expires:	timeout value (ktime_t)
1682
 * @delta:	slack in expires timeout (ktime_t)
1683
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1684
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1685
 */
1686
int __sched
1687
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1688
			       const enum hrtimer_mode mode, int clock)
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1702
	 * A NULL parameter means "infinite"
1703 1704 1705 1706 1707 1708
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1709
	hrtimer_init_on_stack(&t.timer, clock, mode);
1710
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1711 1712 1713

	hrtimer_init_sleeper(&t, current);

1714
	hrtimer_start_expires(&t.timer, mode);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1755
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1756 1757 1758 1759 1760
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1790
EXPORT_SYMBOL_GPL(schedule_hrtimeout);