hrtimer.c 45.8 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.clock_base =
71
	{
72
		{
73 74
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
75 76
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
77 78 79 80 81
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
82
		{
83 84
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
85 86
			.get_time = &ktime_get_boottime,
		},
87 88 89 90 91
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
92
	}
93 94
};

95
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 97 98
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
99
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
100
};
101 102 103 104 105 106

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
125 126 127
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
128
{
129
	struct hrtimer_clock_base *base;
130 131 132 133

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
134
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 136 137
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
138
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 140 141 142 143
		}
		cpu_relax();
	}
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

167 168 169
/*
 * Switch the timer base to the current CPU when possible.
 */
170
static inline struct hrtimer_clock_base *
171 172
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
173
{
174 175
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
176
	int this_cpu = smp_processor_id();
177
	int cpu = get_nohz_timer_target(pinned);
178
	int basenum = base->index;
179

180 181
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182
	new_base = &new_cpu_base->clock_base[basenum];
183 184 185

	if (base != new_base) {
		/*
186
		 * We are trying to move timer to new_base.
187 188 189 190 191 192 193
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
194
		if (unlikely(hrtimer_callback_running(timer)))
195 196 197 198
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
199 200
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
201

202 203
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
204 205
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
206 207
			timer->base = base;
			goto again;
208
		}
209
		timer->base = new_base;
210 211 212 213 214
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
215 216 217 218 219 220
	}
	return new_base;
}

#else /* CONFIG_SMP */

221
static inline struct hrtimer_clock_base *
222 223
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
224
	struct hrtimer_clock_base *base = timer->base;
225

226
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227 228 229 230

	return base;
}

231
# define switch_hrtimer_base(t, b, p)	(b)
232 233 234 235 236 237 238 239 240 241 242

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
243
u64 __ktime_divns(const ktime_t kt, s64 div)
244
{
245
	u64 dclc;
246 247
	int sft = 0;

248
	dclc = ktime_to_ns(kt);
249 250 251 252 253 254 255 256
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
257
	return dclc;
258
}
259
EXPORT_SYMBOL_GPL(__ktime_divns);
260 261
#endif /* BITS_PER_LONG >= 64 */

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

279 280
EXPORT_SYMBOL_GPL(ktime_add_safe);

281 282 283 284
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

285 286 287 288 289
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
349
	.debug_hint	= hrtimer_debug_hint,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
384
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385 386 387 388 389 390 391 392 393 394 395 396

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

417
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
	int i;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct timerqueue_node *next;
		struct hrtimer *timer;

		next = timerqueue_getnext(&base->active);
		if (!next)
			continue;

		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

448 449 450 451 452 453
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

454 455
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
456 457
}

458 459 460 461 462 463 464
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
465 466
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
495 496 497 498 499
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

500 501
static inline int hrtimer_hres_active(void)
{
502
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
503 504 505 506 507 508 509
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
510 511
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
512
{
513 514 515 516 517 518
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
519

520 521 522 523 524
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

542 543 544 545 546 547 548 549 550 551 552
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
553 554 555 556 557
 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 * softirq.
 *
558 559 560 561 562
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
563
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
564
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
565 566
	int res;

567
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
568

569 570 571
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
572
	 * the callback is executed in the hrtimer_interrupt context. The
573 574 575 576 577 578
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

579 580 581 582 583 584 585 586 587
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

588 589 590
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

591 592 593 594 595 596 597 598 599
	/*
	 * When the target cpu of the timer is currently executing
	 * hrtimer_interrupt(), then we do not touch the clock event
	 * device. hrtimer_interrupt() will reevaluate all clock bases
	 * before reprogramming the device.
	 */
	if (cpu_base->in_hrtirq)
		return 0;

600 601 602 603 604 605 606
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
607 608 609 610 611 612 613
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
614
		cpu_base->expires_next = expires;
615 616 617 618 619 620 621 622 623 624 625 626
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

627 628 629 630 631 632 633
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
634
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
635

636
	if (!base->hres_active)
637 638 639
		return;

	raw_spin_lock(&base->lock);
640
	hrtimer_update_base(base);
641 642 643
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
644

645 646 647
/*
 * Switch to high resolution mode
 */
648
static int hrtimer_switch_to_hres(void)
649
{
650
	int cpu = smp_processor_id();
I
Ingo Molnar 已提交
651
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
652 653 654
	unsigned long flags;

	if (base->hres_active)
655
		return 1;
656 657 658 659 660

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
661 662
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
663
		return 0;
664 665
	}
	base->hres_active = 1;
666
	hrtimer_resolution = HIGH_RES_NSEC;
667 668 669 670 671

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
672
	return 1;
673 674
}

675 676 677 678 679 680 681
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

682
/*
683 684
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
685 686 687
 */
void clock_was_set_delayed(void)
{
688
	schedule_work(&hrtimer_work);
689 690
}

691 692
#else

693
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
694 695
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
696
static inline int hrtimer_switch_to_hres(void) { return 0; }
697 698
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
699 700
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
701 702 703 704
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
705
static inline void retrigger_next_event(void *arg) { }
706 707 708

#endif /* CONFIG_HIGH_RES_TIMERS */

709 710 711 712 713 714 715 716 717 718 719 720 721
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
722
#ifdef CONFIG_HIGH_RES_TIMERS
723 724
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
725 726
#endif
	timerfd_clock_was_set();
727 728 729 730
}

/*
 * During resume we might have to reprogram the high resolution timer
731 732
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
733
 * must be deferred.
734 735 736 737 738 739
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

740
	/* Retrigger on the local CPU */
741
	retrigger_next_event(NULL);
742 743
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
744 745
}

746
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
747
{
748
#ifdef CONFIG_TIMER_STATS
749 750
	if (timer->start_site)
		return;
751
	timer->start_site = __builtin_return_address(0);
752 753
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
754 755 756 757 758 759 760 761
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
762
}
763 764 765 766 767 768 769 770

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
771
#endif
772
}
773

774
/*
775
 * Counterpart to lock_hrtimer_base above:
776 777 778 779
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
780
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
781 782 783 784 785
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
786
 * @now:	forward past this time
787 788 789
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
790
 * Returns the number of overruns.
791 792 793 794 795 796 797 798
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
799
 */
D
Davide Libenzi 已提交
800
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801
{
D
Davide Libenzi 已提交
802
	u64 orun = 1;
803
	ktime_t delta;
804

805
	delta = ktime_sub(now, hrtimer_get_expires(timer));
806 807 808 809

	if (delta.tv64 < 0)
		return 0;

810 811
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
812

813
	if (unlikely(delta.tv64 >= interval.tv64)) {
814
		s64 incr = ktime_to_ns(interval);
815 816

		orun = ktime_divns(delta, incr);
817 818
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 820 821 822 823 824 825
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
826
	hrtimer_add_expires(timer, interval);
827 828 829

	return orun;
}
S
Stas Sergeev 已提交
830
EXPORT_SYMBOL_GPL(hrtimer_forward);
831 832 833 834 835 836

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
837 838
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
839
 */
840 841
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
842
{
843
	debug_activate(timer);
844

845
	timerqueue_add(&base->active, &timer->node);
846
	base->cpu_base->active_bases |= 1 << base->index;
847

848 849 850 851 852
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
853

854
	return (&timer->node == base->active.next);
855
}
856 857 858 859 860

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
861 862 863 864 865
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
866
 */
867
static void __remove_hrtimer(struct hrtimer *timer,
868
			     struct hrtimer_clock_base *base,
869
			     unsigned long newstate, int reprogram)
870
{
871
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
872
	struct timerqueue_node *next_timer;
873

874 875 876
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

877 878
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
879
	if (!timerqueue_getnext(&base->active))
880
		cpu_base->active_bases &= ~(1 << base->index);
881

882
	if (&timer->node == next_timer) {
883 884
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
885
		if (reprogram && cpu_base->hres_active) {
886 887 888 889
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
890 891
			if (cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(cpu_base, 1);
892
		}
893
#endif
894
	}
895
out:
896
	timer->state = newstate;
897 898 899 900 901 902
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
903
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
904
{
905
	if (hrtimer_is_queued(timer)) {
906
		unsigned long state;
907 908 909 910 911 912 913 914 915 916
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
917
		debug_deactivate(timer);
918
		timer_stats_hrtimer_clear_start_info(timer);
919
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
920 921 922 923 924 925 926
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
927 928 929 930 931
		return 1;
	}
	return 0;
}

932 933 934
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
935
{
936
	struct hrtimer_clock_base *base, *new_base;
937
	unsigned long flags;
938
	int ret, leftmost;
939 940 941 942 943 944

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

945
	if (mode & HRTIMER_MODE_REL) {
946
		tim = ktime_add_safe(tim, base->get_time());
947 948 949 950 951 952 953 954
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
955
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
956 957
#endif
	}
958

959
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
960

961 962 963
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

964 965
	timer_stats_hrtimer_set_start_info(timer);

966 967
	leftmost = enqueue_hrtimer(timer, new_base);

968 969 970 971 972 973 974 975 976 977 978
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
979
	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
980
			hrtimer_reprogram(timer, new_base)) {
981 982 983 984 985 986
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
987 988 989 990 991 992 993 994 995 996 997 998 999
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1000 1001 1002 1003 1004

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1005
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1006 1007 1008 1009 1010 1011

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1012 1013
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1024 1025 1026
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1027
 * hrtimer_start - (re)start an hrtimer on the current CPU
1028 1029
 * @timer:	the timer to be added
 * @tim:	expiry time
1030 1031
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1032 1033 1034 1035 1036 1037 1038 1039
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1040
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1041
}
1042
EXPORT_SYMBOL_GPL(hrtimer_start);
1043

1044

1045 1046 1047 1048 1049 1050 1051 1052
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1053
 *    cannot be stopped
1054 1055 1056
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1057
	struct hrtimer_clock_base *base;
1058 1059 1060 1061 1062
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1063
	if (!hrtimer_callback_running(timer))
1064 1065 1066 1067 1068 1069 1070
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1071
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1088
		cpu_relax();
1089 1090
	}
}
1091
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1102
	lock_hrtimer_base(timer, &flags);
1103
	rem = hrtimer_expires_remaining(timer);
1104 1105 1106 1107
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1108
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1109

1110
#ifdef CONFIG_NO_HZ_COMMON
1111 1112 1113 1114 1115 1116 1117 1118
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1119
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1120
	ktime_t mindelta = { .tv64 = KTIME_MAX };
1121 1122
	unsigned long flags;

1123
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1124

1125
	if (!__hrtimer_hres_active(cpu_base))
1126 1127
		mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
				     ktime_get());
1128

1129
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1130

1131 1132 1133 1134 1135 1136
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1137 1138
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1139
{
1140
	struct hrtimer_cpu_base *cpu_base;
1141
	int base;
1142

1143 1144
	memset(timer, 0, sizeof(struct hrtimer));

1145
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1146

1147
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1148 1149
		clock_id = CLOCK_MONOTONIC;

1150 1151
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1152
	timerqueue_init(&timer->node);
1153 1154 1155 1156 1157 1158

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1159
}
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1170
	debug_init(timer, clock_id, mode);
1171 1172
	__hrtimer_init(timer, clock_id, mode);
}
1173
EXPORT_SYMBOL_GPL(hrtimer_init);
1174

1175 1176 1177
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1178 1179 1180 1181
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1182 1183
	WARN_ON(!irqs_disabled());

1184
	debug_deactivate(timer);
1185 1186 1187
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1188 1189 1190 1191 1192 1193

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1194
	raw_spin_unlock(&cpu_base->lock);
1195
	trace_hrtimer_expire_entry(timer, now);
1196
	restart = fn(timer);
1197
	trace_hrtimer_expire_exit(timer);
1198
	raw_spin_lock(&cpu_base->lock);
1199 1200

	/*
T
Thomas Gleixner 已提交
1201 1202 1203
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1204 1205 1206
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1207
		enqueue_hrtimer(timer, base);
1208
	}
1209 1210 1211

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1212 1213 1214
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1215
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1216
{
1217
	int i;
1218

1219
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1220
		struct hrtimer_clock_base *base;
1221
		struct timerqueue_node *node;
1222 1223 1224 1225
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1226

1227
		base = cpu_base->clock_base + i;
1228 1229
		basenow = ktime_add(now, base->offset);

1230
		while ((node = timerqueue_getnext(&base->active))) {
1231 1232
			struct hrtimer *timer;

1233
			timer = container_of(node, struct hrtimer, node);
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1247
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1248 1249
				break;

1250
			__run_hrtimer(cpu_base, base, timer, &basenow);
1251 1252
		}
	}
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1286 1287
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1288 1289 1290 1291
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1292
	cpu_base->expires_next = expires_next;
1293
	cpu_base->in_hrtirq = 0;
1294
	raw_spin_unlock(&cpu_base->lock);
1295 1296

	/* Reprogramming necessary ? */
1297 1298 1299 1300
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1301
	}
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1312 1313 1314
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1315
	 */
1316
	raw_spin_lock(&cpu_base->lock);
1317
	now = hrtimer_update_base(cpu_base);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1329
	raw_spin_unlock(&cpu_base->lock);
1330
	delta = ktime_sub(now, entry_time);
1331 1332
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1344 1345
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1357
	td = this_cpu_ptr(&tick_cpu_device);
1358 1359 1360 1361
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1373
	unsigned long flags;
1374

1375
	local_irq_save(flags);
1376
	__hrtimer_peek_ahead_timers();
1377 1378 1379
	local_irq_restore(flags);
}

1380 1381 1382 1383 1384
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1385 1386 1387 1388 1389
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1413 1414
}

1415
/*
1416
 * Called from hardirq context every jiffy
1417
 */
1418
void hrtimer_run_queues(void)
1419
{
1420
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1421
	ktime_t now;
1422

1423
	if (__hrtimer_hres_active(cpu_base))
1424 1425
		return;

1426 1427 1428 1429
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1430 1431
}

1432 1433 1434
/*
 * Sleep related functions:
 */
1435
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1448
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1449 1450 1451 1452
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1453
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1454

1455
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1456
{
1457
	hrtimer_init_sleeper(t, current);
1458

1459 1460
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1461
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1462 1463
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1464

1465
		if (likely(t->task))
1466
			freezable_schedule();
1467

1468
		hrtimer_cancel(&t->timer);
1469
		mode = HRTIMER_MODE_ABS;
1470 1471

	} while (t->task && !signal_pending(current));
1472

1473 1474
	__set_current_state(TASK_RUNNING);

1475
	return t->task == NULL;
1476 1477
}

1478 1479 1480 1481 1482
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1483
	rem = hrtimer_expires_remaining(timer);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1494
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1495
{
1496
	struct hrtimer_sleeper t;
1497
	struct timespec __user  *rmtp;
1498
	int ret = 0;
1499

1500
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1501
				HRTIMER_MODE_ABS);
1502
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1503

1504
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1505
		goto out;
1506

1507
	rmtp = restart->nanosleep.rmtp;
1508
	if (rmtp) {
1509
		ret = update_rmtp(&t.timer, rmtp);
1510
		if (ret <= 0)
1511
			goto out;
1512
	}
1513 1514

	/* The other values in restart are already filled in */
1515 1516 1517 1518
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1519 1520
}

1521
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1522 1523 1524
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1525
	struct hrtimer_sleeper t;
1526
	int ret = 0;
1527 1528 1529
	unsigned long slack;

	slack = current->timer_slack_ns;
1530
	if (dl_task(current) || rt_task(current))
1531
		slack = 0;
1532

1533
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1534
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1535
	if (do_nanosleep(&t, mode))
1536
		goto out;
1537

1538
	/* Absolute timers do not update the rmtp value and restart: */
1539 1540 1541 1542
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1543

1544
	if (rmtp) {
1545
		ret = update_rmtp(&t.timer, rmtp);
1546
		if (ret <= 0)
1547
			goto out;
1548
	}
1549

1550
	restart = &current->restart_block;
1551
	restart->fn = hrtimer_nanosleep_restart;
1552
	restart->nanosleep.clockid = t.timer.base->clockid;
1553
	restart->nanosleep.rmtp = rmtp;
1554
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1555

1556 1557 1558 1559
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1560 1561
}

1562 1563
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1564
{
1565
	struct timespec tu;
1566 1567 1568 1569 1570 1571 1572

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1573
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1574 1575
}

1576 1577 1578
/*
 * Functions related to boot-time initialization:
 */
1579
static void init_hrtimers_cpu(int cpu)
1580
{
1581
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1582 1583
	int i;

1584
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1585
		cpu_base->clock_base[i].cpu_base = cpu_base;
1586 1587
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1588

1589
	cpu_base->cpu = cpu;
1590
	hrtimer_init_hres(cpu_base);
1591 1592 1593 1594
}

#ifdef CONFIG_HOTPLUG_CPU

1595
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1596
				struct hrtimer_clock_base *new_base)
1597 1598
{
	struct hrtimer *timer;
1599
	struct timerqueue_node *node;
1600

1601 1602
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1603
		BUG_ON(hrtimer_callback_running(timer));
1604
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1605 1606 1607 1608 1609 1610 1611

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1612
		timer->base = new_base;
1613
		/*
T
Thomas Gleixner 已提交
1614 1615 1616 1617 1618 1619
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1620
		 */
1621
		enqueue_hrtimer(timer, new_base);
1622

T
Thomas Gleixner 已提交
1623 1624
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1625 1626 1627
	}
}

1628
static void migrate_hrtimers(int scpu)
1629
{
1630
	struct hrtimer_cpu_base *old_base, *new_base;
1631
	int i;
1632

1633 1634
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1635 1636 1637

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1638
	new_base = this_cpu_ptr(&hrtimer_bases);
1639 1640 1641 1642
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1643 1644
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1645

1646
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1647
		migrate_hrtimer_list(&old_base->clock_base[i],
1648
				     &new_base->clock_base[i]);
1649 1650
	}

1651 1652
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1653

1654 1655 1656
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1657
}
1658

1659 1660
#endif /* CONFIG_HOTPLUG_CPU */

1661
static int hrtimer_cpu_notify(struct notifier_block *self,
1662 1663
					unsigned long action, void *hcpu)
{
1664
	int scpu = (long)hcpu;
1665 1666 1667 1668

	switch (action) {

	case CPU_UP_PREPARE:
1669
	case CPU_UP_PREPARE_FROZEN:
1670
		init_hrtimers_cpu(scpu);
1671 1672 1673 1674
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1675
	case CPU_DEAD_FROZEN:
1676
		migrate_hrtimers(scpu);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1687
static struct notifier_block hrtimers_nb = {
1688 1689 1690 1691 1692 1693 1694 1695
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1696 1697 1698
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1699 1700
}

1701
/**
1702
 * schedule_hrtimeout_range_clock - sleep until timeout
1703
 * @expires:	timeout value (ktime_t)
1704
 * @delta:	slack in expires timeout (ktime_t)
1705
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1706
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1707
 */
1708 1709 1710
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1724
	 * A NULL parameter means "infinite"
1725 1726 1727 1728 1729 1730
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1731
	hrtimer_init_on_stack(&t.timer, clock, mode);
1732
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1733 1734 1735

	hrtimer_init_sleeper(&t, current);

1736
	hrtimer_start_expires(&t.timer, mode);
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1814
EXPORT_SYMBOL_GPL(schedule_hrtimeout);