hrtimer.c 45.6 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.clock_base =
71
	{
72
		{
73 74
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
75 76
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
77 78 79 80 81
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
82
		{
83 84
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
85 86
			.get_time = &ktime_get_boottime,
		},
87 88 89 90 91
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
92
	}
93 94
};

95
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 97 98
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
99
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
100
};
101 102 103 104 105 106

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
125 126 127
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
128
{
129
	struct hrtimer_clock_base *base;
130 131 132 133

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
134
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 136 137
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
138
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 140 141 142 143
		}
		cpu_relax();
	}
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

167 168 169
/*
 * Switch the timer base to the current CPU when possible.
 */
170
static inline struct hrtimer_clock_base *
171 172
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
173
{
174 175
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
176
	int this_cpu = smp_processor_id();
177
	int cpu = get_nohz_timer_target(pinned);
178
	int basenum = base->index;
179

180 181
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182
	new_base = &new_cpu_base->clock_base[basenum];
183 184 185

	if (base != new_base) {
		/*
186
		 * We are trying to move timer to new_base.
187 188 189 190 191 192 193
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
194
		if (unlikely(hrtimer_callback_running(timer)))
195 196 197 198
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
199 200
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
201

202 203
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
204 205
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
206 207
			timer->base = base;
			goto again;
208
		}
209
		timer->base = new_base;
210 211 212 213 214
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
215 216 217 218 219 220
	}
	return new_base;
}

#else /* CONFIG_SMP */

221
static inline struct hrtimer_clock_base *
222 223
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
224
	struct hrtimer_clock_base *base = timer->base;
225

226
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227 228 229 230

	return base;
}

231
# define switch_hrtimer_base(t, b, p)	(b)
232 233 234 235 236 237 238 239 240 241 242

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
243
u64 __ktime_divns(const ktime_t kt, s64 div)
244
{
245
	u64 dclc;
246 247
	int sft = 0;

248
	dclc = ktime_to_ns(kt);
249 250 251 252 253 254 255 256
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
257
	return dclc;
258
}
259
EXPORT_SYMBOL_GPL(__ktime_divns);
260 261
#endif /* BITS_PER_LONG >= 64 */

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

279 280
EXPORT_SYMBOL_GPL(ktime_add_safe);

281 282 283 284
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

285 286 287 288 289
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
349
	.debug_hint	= hrtimer_debug_hint,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
384
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385 386 387 388 389 390 391 392 393 394 395 396

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

417
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
	int i;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct timerqueue_node *next;
		struct hrtimer *timer;

		next = timerqueue_getnext(&base->active);
		if (!next)
			continue;

		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

448 449 450 451 452 453 454 455 456
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
}

457 458 459 460 461 462 463
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
464 465
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
496
	return __this_cpu_read(hrtimer_bases.hres_active);
497 498 499 500 501 502 503
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
504 505
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
506
{
507 508 509 510 511 512
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
513

514 515 516 517 518
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

536 537 538 539 540 541 542 543 544 545 546
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
547 548 549 550 551
 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 * softirq.
 *
552 553 554 555 556
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
557
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
558
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
559 560
	int res;

561
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
562

563 564 565
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
566
	 * the callback is executed in the hrtimer_interrupt context. The
567 568 569 570 571 572
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

573 574 575 576 577 578 579 580 581
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

582 583 584
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

585 586 587 588 589 590 591 592 593
	/*
	 * When the target cpu of the timer is currently executing
	 * hrtimer_interrupt(), then we do not touch the clock event
	 * device. hrtimer_interrupt() will reevaluate all clock bases
	 * before reprogramming the device.
	 */
	if (cpu_base->in_hrtirq)
		return 0;

594 595 596 597 598 599 600
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
601 602 603 604 605 606 607
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
608
		cpu_base->expires_next = expires;
609 610 611 612 613 614 615 616 617 618 619 620
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

621 622 623 624 625 626 627
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
628
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
629 630 631 632 633

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
634
	hrtimer_update_base(base);
635 636 637
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
638

639 640 641
/*
 * Switch to high resolution mode
 */
642
static int hrtimer_switch_to_hres(void)
643
{
644
	int cpu = smp_processor_id();
I
Ingo Molnar 已提交
645
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
646 647 648
	unsigned long flags;

	if (base->hres_active)
649
		return 1;
650 651 652 653 654

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
655 656
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
657
		return 0;
658 659
	}
	base->hres_active = 1;
660
	hrtimer_resolution = HIGH_RES_NSEC;
661 662 663 664 665

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
666
	return 1;
667 668
}

669 670 671 672 673 674 675
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

676
/*
677 678
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
679 680 681
 */
void clock_was_set_delayed(void)
{
682
	schedule_work(&hrtimer_work);
683 684
}

685 686 687 688
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
689
static inline int hrtimer_switch_to_hres(void) { return 0; }
690 691
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
692 693
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
694 695 696 697
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
698
static inline void retrigger_next_event(void *arg) { }
699 700 701

#endif /* CONFIG_HIGH_RES_TIMERS */

702 703 704 705 706 707 708 709 710 711 712 713 714
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
715
#ifdef CONFIG_HIGH_RES_TIMERS
716 717
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
718 719
#endif
	timerfd_clock_was_set();
720 721 722 723
}

/*
 * During resume we might have to reprogram the high resolution timer
724 725
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
726
 * must be deferred.
727 728 729 730 731 732
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

733
	/* Retrigger on the local CPU */
734
	retrigger_next_event(NULL);
735 736
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
737 738
}

739
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
740
{
741
#ifdef CONFIG_TIMER_STATS
742 743
	if (timer->start_site)
		return;
744
	timer->start_site = __builtin_return_address(0);
745 746
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
747 748 749 750 751 752 753 754
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
755
}
756 757 758 759 760 761 762 763

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
764
#endif
765
}
766

767
/*
768
 * Counterpart to lock_hrtimer_base above:
769 770 771 772
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
773
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
774 775 776 777 778
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
779
 * @now:	forward past this time
780 781 782
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
783
 * Returns the number of overruns.
784 785 786 787 788 789 790 791
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
792
 */
D
Davide Libenzi 已提交
793
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
794
{
D
Davide Libenzi 已提交
795
	u64 orun = 1;
796
	ktime_t delta;
797

798
	delta = ktime_sub(now, hrtimer_get_expires(timer));
799 800 801 802

	if (delta.tv64 < 0)
		return 0;

803 804
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
805

806
	if (unlikely(delta.tv64 >= interval.tv64)) {
807
		s64 incr = ktime_to_ns(interval);
808 809

		orun = ktime_divns(delta, incr);
810 811
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
812 813 814 815 816 817 818
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
819
	hrtimer_add_expires(timer, interval);
820 821 822

	return orun;
}
S
Stas Sergeev 已提交
823
EXPORT_SYMBOL_GPL(hrtimer_forward);
824 825 826 827 828 829

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
830 831
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
832
 */
833 834
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
835
{
836
	debug_activate(timer);
837

838
	timerqueue_add(&base->active, &timer->node);
839
	base->cpu_base->active_bases |= 1 << base->index;
840

841 842 843 844 845
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
846

847
	return (&timer->node == base->active.next);
848
}
849 850 851 852 853

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
854 855 856 857 858
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
859
 */
860
static void __remove_hrtimer(struct hrtimer *timer,
861
			     struct hrtimer_clock_base *base,
862
			     unsigned long newstate, int reprogram)
863
{
864
	struct timerqueue_node *next_timer;
865 866 867
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

868 869
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
870 871 872
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);

873
	if (&timer->node == next_timer) {
874 875 876 877 878 879 880 881 882
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
883
		}
884
#endif
885
	}
886
out:
887
	timer->state = newstate;
888 889 890 891 892 893
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
894
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
895
{
896
	if (hrtimer_is_queued(timer)) {
897
		unsigned long state;
898 899 900 901 902 903 904 905 906 907
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
908
		debug_deactivate(timer);
909
		timer_stats_hrtimer_clear_start_info(timer);
910
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
911 912 913 914 915 916 917
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
918 919 920 921 922
		return 1;
	}
	return 0;
}

923 924 925
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
926
{
927
	struct hrtimer_clock_base *base, *new_base;
928
	unsigned long flags;
929
	int ret, leftmost;
930 931 932 933 934 935

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

936
	if (mode & HRTIMER_MODE_REL) {
937
		tim = ktime_add_safe(tim, base->get_time());
938 939 940 941 942 943 944 945
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
946
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
947 948
#endif
	}
949

950
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
951

952 953 954
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

955 956
	timer_stats_hrtimer_set_start_info(timer);

957 958
	leftmost = enqueue_hrtimer(timer, new_base);

959 960 961 962 963 964 965 966 967 968 969
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
970
	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
971
			hrtimer_reprogram(timer, new_base)) {
972 973 974 975 976 977
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
978 979 980 981 982 983 984 985 986 987 988 989 990
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
991 992 993 994 995

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
996
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
997 998 999 1000 1001 1002

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1003 1004
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1015 1016 1017
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1018
 * hrtimer_start - (re)start an hrtimer on the current CPU
1019 1020
 * @timer:	the timer to be added
 * @tim:	expiry time
1021 1022
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1023 1024 1025 1026 1027 1028 1029 1030
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1031
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1032
}
1033
EXPORT_SYMBOL_GPL(hrtimer_start);
1034

1035

1036 1037 1038 1039 1040 1041 1042 1043
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1044
 *    cannot be stopped
1045 1046 1047
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1048
	struct hrtimer_clock_base *base;
1049 1050 1051 1052 1053
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1054
	if (!hrtimer_callback_running(timer))
1055 1056 1057 1058 1059 1060 1061
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1062
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1079
		cpu_relax();
1080 1081
	}
}
1082
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1093
	lock_hrtimer_base(timer, &flags);
1094
	rem = hrtimer_expires_remaining(timer);
1095 1096 1097 1098
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1099
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1100

1101
#ifdef CONFIG_NO_HZ_COMMON
1102 1103 1104 1105 1106 1107 1108 1109
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1110
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1111
	ktime_t mindelta = { .tv64 = KTIME_MAX };
1112 1113
	unsigned long flags;

1114
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1115

1116 1117 1118
	if (!hrtimer_hres_active())
		mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
				     ktime_get());
1119

1120
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1121

1122 1123 1124 1125 1126 1127
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1128 1129
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1130
{
1131
	struct hrtimer_cpu_base *cpu_base;
1132
	int base;
1133

1134 1135
	memset(timer, 0, sizeof(struct hrtimer));

1136
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1137

1138
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1139 1140
		clock_id = CLOCK_MONOTONIC;

1141 1142
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1143
	timerqueue_init(&timer->node);
1144 1145 1146 1147 1148 1149

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1150
}
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1161
	debug_init(timer, clock_id, mode);
1162 1163
	__hrtimer_init(timer, clock_id, mode);
}
1164
EXPORT_SYMBOL_GPL(hrtimer_init);
1165

1166 1167 1168
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1169 1170 1171 1172
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1173 1174
	WARN_ON(!irqs_disabled());

1175
	debug_deactivate(timer);
1176 1177 1178
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1179 1180 1181 1182 1183 1184

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1185
	raw_spin_unlock(&cpu_base->lock);
1186
	trace_hrtimer_expire_entry(timer, now);
1187
	restart = fn(timer);
1188
	trace_hrtimer_expire_exit(timer);
1189
	raw_spin_lock(&cpu_base->lock);
1190 1191

	/*
T
Thomas Gleixner 已提交
1192 1193 1194
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1195 1196 1197
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1198
		enqueue_hrtimer(timer, base);
1199
	}
1200 1201 1202

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1203 1204 1205
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1206
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1207
{
1208
	int i;
1209

1210
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1211
		struct hrtimer_clock_base *base;
1212
		struct timerqueue_node *node;
1213 1214 1215 1216
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1217

1218
		base = cpu_base->clock_base + i;
1219 1220
		basenow = ktime_add(now, base->offset);

1221
		while ((node = timerqueue_getnext(&base->active))) {
1222 1223
			struct hrtimer *timer;

1224
			timer = container_of(node, struct hrtimer, node);
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1238
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1239 1240
				break;

1241
			__run_hrtimer(cpu_base, base, timer, &basenow);
1242 1243
		}
	}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1277 1278
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1279 1280 1281 1282
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1283
	cpu_base->expires_next = expires_next;
1284
	cpu_base->in_hrtirq = 0;
1285
	raw_spin_unlock(&cpu_base->lock);
1286 1287

	/* Reprogramming necessary ? */
1288 1289 1290 1291
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1292
	}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1303 1304 1305
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1306
	 */
1307
	raw_spin_lock(&cpu_base->lock);
1308
	now = hrtimer_update_base(cpu_base);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1320
	raw_spin_unlock(&cpu_base->lock);
1321
	delta = ktime_sub(now, entry_time);
1322 1323
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1348
	td = this_cpu_ptr(&tick_cpu_device);
1349 1350 1351 1352
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1364
	unsigned long flags;
1365

1366
	local_irq_save(flags);
1367
	__hrtimer_peek_ahead_timers();
1368 1369 1370
	local_irq_restore(flags);
}

1371 1372 1373 1374 1375
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1376 1377 1378 1379 1380
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1404 1405
}

1406
/*
1407
 * Called from hardirq context every jiffy
1408
 */
1409
void hrtimer_run_queues(void)
1410
{
1411
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1412
	ktime_t now;
1413

1414
	if (hrtimer_hres_active())
1415 1416
		return;

1417 1418 1419 1420
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1421 1422
}

1423 1424 1425
/*
 * Sleep related functions:
 */
1426
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1439
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1440 1441 1442 1443
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1444
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1445

1446
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1447
{
1448
	hrtimer_init_sleeper(t, current);
1449

1450 1451
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1452
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1453 1454
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1455

1456
		if (likely(t->task))
1457
			freezable_schedule();
1458

1459
		hrtimer_cancel(&t->timer);
1460
		mode = HRTIMER_MODE_ABS;
1461 1462

	} while (t->task && !signal_pending(current));
1463

1464 1465
	__set_current_state(TASK_RUNNING);

1466
	return t->task == NULL;
1467 1468
}

1469 1470 1471 1472 1473
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1474
	rem = hrtimer_expires_remaining(timer);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1485
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1486
{
1487
	struct hrtimer_sleeper t;
1488
	struct timespec __user  *rmtp;
1489
	int ret = 0;
1490

1491
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1492
				HRTIMER_MODE_ABS);
1493
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1494

1495
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1496
		goto out;
1497

1498
	rmtp = restart->nanosleep.rmtp;
1499
	if (rmtp) {
1500
		ret = update_rmtp(&t.timer, rmtp);
1501
		if (ret <= 0)
1502
			goto out;
1503
	}
1504 1505

	/* The other values in restart are already filled in */
1506 1507 1508 1509
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1510 1511
}

1512
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1513 1514 1515
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1516
	struct hrtimer_sleeper t;
1517
	int ret = 0;
1518 1519 1520
	unsigned long slack;

	slack = current->timer_slack_ns;
1521
	if (dl_task(current) || rt_task(current))
1522
		slack = 0;
1523

1524
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1525
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1526
	if (do_nanosleep(&t, mode))
1527
		goto out;
1528

1529
	/* Absolute timers do not update the rmtp value and restart: */
1530 1531 1532 1533
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1534

1535
	if (rmtp) {
1536
		ret = update_rmtp(&t.timer, rmtp);
1537
		if (ret <= 0)
1538
			goto out;
1539
	}
1540

1541
	restart = &current->restart_block;
1542
	restart->fn = hrtimer_nanosleep_restart;
1543
	restart->nanosleep.clockid = t.timer.base->clockid;
1544
	restart->nanosleep.rmtp = rmtp;
1545
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1546

1547 1548 1549 1550
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1551 1552
}

1553 1554
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1555
{
1556
	struct timespec tu;
1557 1558 1559 1560 1561 1562 1563

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1564
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1565 1566
}

1567 1568 1569
/*
 * Functions related to boot-time initialization:
 */
1570
static void init_hrtimers_cpu(int cpu)
1571
{
1572
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1573 1574
	int i;

1575
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1576
		cpu_base->clock_base[i].cpu_base = cpu_base;
1577 1578
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1579

1580
	cpu_base->cpu = cpu;
1581
	hrtimer_init_hres(cpu_base);
1582 1583 1584 1585
}

#ifdef CONFIG_HOTPLUG_CPU

1586
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1587
				struct hrtimer_clock_base *new_base)
1588 1589
{
	struct hrtimer *timer;
1590
	struct timerqueue_node *node;
1591

1592 1593
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1594
		BUG_ON(hrtimer_callback_running(timer));
1595
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1596 1597 1598 1599 1600 1601 1602

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1603
		timer->base = new_base;
1604
		/*
T
Thomas Gleixner 已提交
1605 1606 1607 1608 1609 1610
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1611
		 */
1612
		enqueue_hrtimer(timer, new_base);
1613

T
Thomas Gleixner 已提交
1614 1615
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1616 1617 1618
	}
}

1619
static void migrate_hrtimers(int scpu)
1620
{
1621
	struct hrtimer_cpu_base *old_base, *new_base;
1622
	int i;
1623

1624 1625
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1626 1627 1628

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1629
	new_base = this_cpu_ptr(&hrtimer_bases);
1630 1631 1632 1633
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1634 1635
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1636

1637
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1638
		migrate_hrtimer_list(&old_base->clock_base[i],
1639
				     &new_base->clock_base[i]);
1640 1641
	}

1642 1643
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1644

1645 1646 1647
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1648
}
1649

1650 1651
#endif /* CONFIG_HOTPLUG_CPU */

1652
static int hrtimer_cpu_notify(struct notifier_block *self,
1653 1654
					unsigned long action, void *hcpu)
{
1655
	int scpu = (long)hcpu;
1656 1657 1658 1659

	switch (action) {

	case CPU_UP_PREPARE:
1660
	case CPU_UP_PREPARE_FROZEN:
1661
		init_hrtimers_cpu(scpu);
1662 1663 1664 1665
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1666
	case CPU_DEAD_FROZEN:
1667
		migrate_hrtimers(scpu);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1678
static struct notifier_block hrtimers_nb = {
1679 1680 1681 1682 1683 1684 1685 1686
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1687 1688 1689
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1690 1691
}

1692
/**
1693
 * schedule_hrtimeout_range_clock - sleep until timeout
1694
 * @expires:	timeout value (ktime_t)
1695
 * @delta:	slack in expires timeout (ktime_t)
1696
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1697
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1698
 */
1699 1700 1701
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1715
	 * A NULL parameter means "infinite"
1716 1717 1718 1719 1720 1721
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1722
	hrtimer_init_on_stack(&t.timer, clock, mode);
1723
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1724 1725 1726

	hrtimer_init_sleeper(&t, current);

1727
	hrtimer_start_expires(&t.timer, mode);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1805
EXPORT_SYMBOL_GPL(schedule_hrtimeout);