hrtimer.c 47.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57 58
#include "timekeeping.h"

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69

70
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76
			.get_time = &ktime_get,
77
			.resolution = KTIME_LOW_RES,
78
		},
T
Thomas Gleixner 已提交
79 80 81 82 83 84
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
85
		{
86 87
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
88 89 90
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
91 92 93 94 95 96
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
			.resolution = KTIME_LOW_RES,
		},
97
	}
98 99
};

100
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 102 103
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
104
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
105
};
106 107 108 109 110 111 112

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


113 114 115 116
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
117
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118
{
119 120
	ktime_t xtim, mono, boot, tai;
	ktime_t off_real, off_boot, off_tai;
121

122 123 124 125
	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
	boot = ktime_add(mono, off_boot);
	xtim = ktime_add(mono, off_real);
	tai = ktime_add(xtim, off_tai);
126

127
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 129
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130
	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
151 152 153
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
154
{
155
	struct hrtimer_clock_base *base;
156 157 158 159

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
160
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 162 163
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
164
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 166 167 168 169
		}
		cpu_relax();
	}
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

193 194 195
/*
 * Switch the timer base to the current CPU when possible.
 */
196
static inline struct hrtimer_clock_base *
197 198
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
199
{
200 201
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
202
	int this_cpu = smp_processor_id();
203
	int cpu = get_nohz_timer_target(pinned);
204
	int basenum = base->index;
205

206 207
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208
	new_base = &new_cpu_base->clock_base[basenum];
209 210 211

	if (base != new_base) {
		/*
212
		 * We are trying to move timer to new_base.
213 214 215 216 217 218 219
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
220
		if (unlikely(hrtimer_callback_running(timer)))
221 222 223 224
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
225 226
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
227

228 229
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
230 231
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
232 233
			timer->base = base;
			goto again;
234
		}
235
		timer->base = new_base;
236 237 238 239 240
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
241 242 243 244 245 246
	}
	return new_base;
}

#else /* CONFIG_SMP */

247
static inline struct hrtimer_clock_base *
248 249
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
250
	struct hrtimer_clock_base *base = timer->base;
251

252
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253 254 255 256

	return base;
}

257
# define switch_hrtimer_base(t, b, p)	(b)
258 259 260 261 262 263 264 265 266 267 268

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
269
u64 ktime_divns(const ktime_t kt, s64 div)
270
{
271
	u64 dclc;
272 273
	int sft = 0;

274
	dclc = ktime_to_ns(kt);
275 276 277 278 279 280 281 282
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
283
	return dclc;
284
}
285
EXPORT_SYMBOL_GPL(ktime_divns);
286 287
#endif /* BITS_PER_LONG >= 64 */

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

305 306
EXPORT_SYMBOL_GPL(ktime_add_safe);

307 308 309 310
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

311 312 313 314 315
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
375
	.debug_hint	= hrtimer_debug_hint,
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
410
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
411 412 413 414 415 416 417 418 419 420 421 422

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
480
	return __this_cpu_read(hrtimer_bases.hres_active);
481 482 483 484 485 486 487
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
488 489
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
490 491 492
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
493
	ktime_t expires, expires_next;
494

495
	expires_next.tv64 = KTIME_MAX;
496 497 498

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
499
		struct timerqueue_node *next;
500

501 502
		next = timerqueue_getnext(&base->active);
		if (!next)
503
			continue;
504 505
		timer = container_of(next, struct hrtimer, node);

506
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
507 508 509 510 511 512 513
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
514 515
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
516 517
	}

518 519 520 521 522
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

540 541 542 543 544 545 546 547 548 549 550
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
551 552 553 554 555
 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
 * and no expiry check happens. The timer gets enqueued into the rbtree. The
 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
 * softirq.
 *
556 557 558 559 560
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
561
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
562
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
563 564
	int res;

565
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
566

567 568 569
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
570
	 * the callback is executed in the hrtimer_interrupt context. The
571 572 573 574 575 576
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

577 578 579 580 581 582 583 584 585
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

586 587 588 589 590 591 592 593 594 595
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
596 597 598 599 600 601 602
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
603
		cpu_base->expires_next = expires;
604 605 606 607 608 609 610 611 612 613 614 615
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

616 617 618 619
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
620
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
621

622
	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636 637
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
638
	hrtimer_update_base(base);
639 640 641
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
642

643 644 645
/*
 * Switch to high resolution mode
 */
646
static int hrtimer_switch_to_hres(void)
647
{
648
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
649
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
650 651 652
	unsigned long flags;

	if (base->hres_active)
653
		return 1;
654 655 656 657 658

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
659 660
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
661
		return 0;
662 663
	}
	base->hres_active = 1;
664 665
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
666 667 668 669 670

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
671
	return 1;
672 673
}

674 675 676 677 678 679 680
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

681
/*
682 683
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
684 685 686
 */
void clock_was_set_delayed(void)
{
687
	schedule_work(&hrtimer_work);
688 689
}

690 691 692 693
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
694
static inline int hrtimer_switch_to_hres(void) { return 0; }
695 696
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
697 698
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
699 700 701 702
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
703
static inline void retrigger_next_event(void *arg) { }
704 705 706

#endif /* CONFIG_HIGH_RES_TIMERS */

707 708 709 710 711 712 713 714 715 716 717 718 719
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
720
#ifdef CONFIG_HIGH_RES_TIMERS
721 722
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
723 724
#endif
	timerfd_clock_was_set();
725 726 727 728
}

/*
 * During resume we might have to reprogram the high resolution timer
729 730
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
731
 * must be deferred.
732 733 734 735 736 737
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

738
	/* Retrigger on the local CPU */
739
	retrigger_next_event(NULL);
740 741
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
742 743
}

744
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
745
{
746
#ifdef CONFIG_TIMER_STATS
747 748
	if (timer->start_site)
		return;
749
	timer->start_site = __builtin_return_address(0);
750 751
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
752 753 754 755 756 757 758 759
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
760
}
761 762 763 764 765 766 767 768

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
769
#endif
770
}
771

772
/*
773
 * Counterpart to lock_hrtimer_base above:
774 775 776 777
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
778
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
779 780 781 782 783
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
784
 * @now:	forward past this time
785 786 787
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
788
 * Returns the number of overruns.
789
 */
D
Davide Libenzi 已提交
790
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
791
{
D
Davide Libenzi 已提交
792
	u64 orun = 1;
793
	ktime_t delta;
794

795
	delta = ktime_sub(now, hrtimer_get_expires(timer));
796 797 798 799

	if (delta.tv64 < 0)
		return 0;

800 801 802
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

803
	if (unlikely(delta.tv64 >= interval.tv64)) {
804
		s64 incr = ktime_to_ns(interval);
805 806

		orun = ktime_divns(delta, incr);
807 808
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
809 810 811 812 813 814 815
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
816
	hrtimer_add_expires(timer, interval);
817 818 819

	return orun;
}
S
Stas Sergeev 已提交
820
EXPORT_SYMBOL_GPL(hrtimer_forward);
821 822 823 824 825 826

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
827 828
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
829
 */
830 831
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
832
{
833
	debug_activate(timer);
834

835
	timerqueue_add(&base->active, &timer->node);
836
	base->cpu_base->active_bases |= 1 << base->index;
837

838 839 840 841 842
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
843

844
	return (&timer->node == base->active.next);
845
}
846 847 848 849 850

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
851 852 853 854 855
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
856
 */
857
static void __remove_hrtimer(struct hrtimer *timer,
858
			     struct hrtimer_clock_base *base,
859
			     unsigned long newstate, int reprogram)
860
{
861
	struct timerqueue_node *next_timer;
862 863 864
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

865 866 867
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
	if (&timer->node == next_timer) {
868 869 870 871 872 873 874 875 876
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
877
		}
878
#endif
879
	}
880 881
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);
882
out:
883
	timer->state = newstate;
884 885 886 887 888 889
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
890
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891
{
892
	if (hrtimer_is_queued(timer)) {
893
		unsigned long state;
894 895 896 897 898 899 900 901 902 903
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
904
		debug_deactivate(timer);
905
		timer_stats_hrtimer_clear_start_info(timer);
906
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
907 908 909 910 911 912 913
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
914 915 916 917 918
		return 1;
	}
	return 0;
}

919 920 921
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
922
{
923
	struct hrtimer_clock_base *base, *new_base;
924
	unsigned long flags;
925
	int ret, leftmost;
926 927 928 929 930 931

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

932
	if (mode & HRTIMER_MODE_REL) {
933
		tim = ktime_add_safe(tim, base->get_time());
934 935 936 937 938 939 940 941
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
942
		tim = ktime_add_safe(tim, base->resolution);
943 944
#endif
	}
945

946
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
947

948 949 950
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

951 952
	timer_stats_hrtimer_set_start_info(timer);

953 954
	leftmost = enqueue_hrtimer(timer, new_base);

955 956 957 958 959 960 961 962 963 964 965 966
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
	} else if (new_base->cpu_base == &__get_cpu_var(hrtimer_bases) &&
967
			hrtimer_reprogram(timer, new_base)) {
968 969 970 971 972 973
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
974 975 976 977 978 979 980 981 982 983 984 985 986
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
987 988 989 990 991

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
992
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
993 994 995 996 997 998

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
999 1000
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1011 1012 1013
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1014
 * hrtimer_start - (re)start an hrtimer on the current CPU
1015 1016
 * @timer:	the timer to be added
 * @tim:	expiry time
1017 1018
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1019 1020 1021 1022 1023 1024 1025 1026
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1027
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1028
}
1029
EXPORT_SYMBOL_GPL(hrtimer_start);
1030

1031

1032 1033 1034 1035 1036 1037 1038 1039
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1040
 *    cannot be stopped
1041 1042 1043
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1044
	struct hrtimer_clock_base *base;
1045 1046 1047 1048 1049
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1050
	if (!hrtimer_callback_running(timer))
1051 1052 1053 1054 1055 1056 1057
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1058
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1075
		cpu_relax();
1076 1077
	}
}
1078
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1089
	lock_hrtimer_base(timer, &flags);
1090
	rem = hrtimer_expires_remaining(timer);
1091 1092 1093 1094
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1095
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1096

1097
#ifdef CONFIG_NO_HZ_COMMON
1098 1099 1100 1101 1102 1103 1104 1105
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1106 1107
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1108 1109 1110 1111
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1112
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1113

1114 1115 1116
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1117
			struct timerqueue_node *next;
1118

1119 1120
			next = timerqueue_getnext(&base->active);
			if (!next)
1121
				continue;
1122

1123
			timer = container_of(next, struct hrtimer, node);
1124
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1125 1126 1127 1128
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1129
	}
1130

1131
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132

1133 1134 1135 1136 1137 1138
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1139 1140
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1141
{
1142
	struct hrtimer_cpu_base *cpu_base;
1143
	int base;
1144

1145 1146
	memset(timer, 0, sizeof(struct hrtimer));

1147
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1148

1149
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 1151
		clock_id = CLOCK_MONOTONIC;

1152 1153
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1154
	timerqueue_init(&timer->node);
1155 1156 1157 1158 1159 1160

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1161
}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1172
	debug_init(timer, clock_id, mode);
1173 1174
	__hrtimer_init(timer, clock_id, mode);
}
1175
EXPORT_SYMBOL_GPL(hrtimer_init);
1176 1177 1178 1179 1180 1181

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1182 1183
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1184 1185 1186
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1187
	struct hrtimer_cpu_base *cpu_base;
1188
	int base = hrtimer_clockid_to_base(which_clock);
1189

1190
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1191
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192 1193 1194

	return 0;
}
1195
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196

1197
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198 1199 1200 1201 1202 1203
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1204 1205
	WARN_ON(!irqs_disabled());

1206
	debug_deactivate(timer);
1207 1208 1209
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1210 1211 1212 1213 1214 1215

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1216
	raw_spin_unlock(&cpu_base->lock);
1217
	trace_hrtimer_expire_entry(timer, now);
1218
	restart = fn(timer);
1219
	trace_hrtimer_expire_exit(timer);
1220
	raw_spin_lock(&cpu_base->lock);
1221 1222

	/*
T
Thomas Gleixner 已提交
1223 1224 1225
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 1227 1228
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229
		enqueue_hrtimer(timer, base);
1230
	}
1231 1232 1233

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1234 1235 1236
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1237 1238 1239 1240 1241 1242 1243 1244 1245
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1246 1247
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1248 1249 1250 1251 1252

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1253
	raw_spin_lock(&cpu_base->lock);
1254
	entry_time = now = hrtimer_update_base(cpu_base);
1255
retry:
1256
	expires_next.tv64 = KTIME_MAX;
1257 1258 1259 1260 1261 1262 1263 1264 1265
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1266
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267
		struct hrtimer_clock_base *base;
1268
		struct timerqueue_node *node;
1269 1270 1271 1272
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1273

1274
		base = cpu_base->clock_base + i;
1275 1276
		basenow = ktime_add(now, base->offset);

1277
		while ((node = timerqueue_getnext(&base->active))) {
1278 1279
			struct hrtimer *timer;

1280
			timer = container_of(node, struct hrtimer, node);
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1296 1297
				ktime_t expires;

1298
				expires = ktime_sub(hrtimer_get_expires(timer),
1299
						    base->offset);
1300 1301
				if (expires.tv64 < 0)
					expires.tv64 = KTIME_MAX;
1302 1303 1304 1305 1306
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1307
			__run_hrtimer(timer, &basenow);
1308 1309 1310
		}
	}

1311 1312 1313 1314
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1315
	cpu_base->expires_next = expires_next;
1316
	raw_spin_unlock(&cpu_base->lock);
1317 1318

	/* Reprogramming necessary ? */
1319 1320 1321 1322
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1323
	}
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1334 1335 1336
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1337
	 */
1338
	raw_spin_lock(&cpu_base->lock);
1339
	now = hrtimer_update_base(cpu_base);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1351
	raw_spin_unlock(&cpu_base->lock);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1379
	td = this_cpu_ptr(&tick_cpu_device);
1380 1381 1382 1383
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1395
	unsigned long flags;
1396

1397
	local_irq_save(flags);
1398
	__hrtimer_peek_ahead_timers();
1399 1400 1401
	local_irq_restore(flags);
}

1402 1403 1404 1405 1406
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1407 1408 1409 1410 1411
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1435 1436
}

1437
/*
1438
 * Called from hardirq context every jiffy
1439
 */
1440
void hrtimer_run_queues(void)
1441
{
1442
	struct timerqueue_node *node;
1443 1444 1445
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1446

1447
	if (hrtimer_hres_active())
1448 1449
		return;

1450 1451
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1452
		if (!timerqueue_getnext(&base->active))
1453
			continue;
1454

1455
		if (gettime) {
1456 1457
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1458
		}
1459

1460
		raw_spin_lock(&cpu_base->lock);
1461

1462
		while ((node = timerqueue_getnext(&base->active))) {
1463
			struct hrtimer *timer;
1464

1465
			timer = container_of(node, struct hrtimer, node);
1466 1467
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1468 1469
				break;

1470
			__run_hrtimer(timer, &base->softirq_time);
1471
		}
1472
		raw_spin_unlock(&cpu_base->lock);
1473
	}
1474 1475
}

1476 1477 1478
/*
 * Sleep related functions:
 */
1479
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1492
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1493 1494 1495 1496
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1497
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1498

1499
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1500
{
1501
	hrtimer_init_sleeper(t, current);
1502

1503 1504
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1505
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1506 1507
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1508

1509
		if (likely(t->task))
1510
			freezable_schedule();
1511

1512
		hrtimer_cancel(&t->timer);
1513
		mode = HRTIMER_MODE_ABS;
1514 1515

	} while (t->task && !signal_pending(current));
1516

1517 1518
	__set_current_state(TASK_RUNNING);

1519
	return t->task == NULL;
1520 1521
}

1522 1523 1524 1525 1526
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1527
	rem = hrtimer_expires_remaining(timer);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1538
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1539
{
1540
	struct hrtimer_sleeper t;
1541
	struct timespec __user  *rmtp;
1542
	int ret = 0;
1543

1544
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1545
				HRTIMER_MODE_ABS);
1546
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1547

1548
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1549
		goto out;
1550

1551
	rmtp = restart->nanosleep.rmtp;
1552
	if (rmtp) {
1553
		ret = update_rmtp(&t.timer, rmtp);
1554
		if (ret <= 0)
1555
			goto out;
1556
	}
1557 1558

	/* The other values in restart are already filled in */
1559 1560 1561 1562
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1563 1564
}

1565
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1566 1567 1568
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1569
	struct hrtimer_sleeper t;
1570
	int ret = 0;
1571 1572 1573
	unsigned long slack;

	slack = current->timer_slack_ns;
1574
	if (dl_task(current) || rt_task(current))
1575
		slack = 0;
1576

1577
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1578
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1579
	if (do_nanosleep(&t, mode))
1580
		goto out;
1581

1582
	/* Absolute timers do not update the rmtp value and restart: */
1583 1584 1585 1586
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1587

1588
	if (rmtp) {
1589
		ret = update_rmtp(&t.timer, rmtp);
1590
		if (ret <= 0)
1591
			goto out;
1592
	}
1593 1594

	restart = &current_thread_info()->restart_block;
1595
	restart->fn = hrtimer_nanosleep_restart;
1596
	restart->nanosleep.clockid = t.timer.base->clockid;
1597
	restart->nanosleep.rmtp = rmtp;
1598
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1599

1600 1601 1602 1603
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1604 1605
}

1606 1607
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1608
{
1609
	struct timespec tu;
1610 1611 1612 1613 1614 1615 1616

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1617
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1618 1619
}

1620 1621 1622
/*
 * Functions related to boot-time initialization:
 */
1623
static void init_hrtimers_cpu(int cpu)
1624
{
1625
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1626 1627
	int i;

1628
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1629
		cpu_base->clock_base[i].cpu_base = cpu_base;
1630 1631
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1632

1633
	cpu_base->cpu = cpu;
1634
	hrtimer_init_hres(cpu_base);
1635 1636 1637 1638
}

#ifdef CONFIG_HOTPLUG_CPU

1639
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1640
				struct hrtimer_clock_base *new_base)
1641 1642
{
	struct hrtimer *timer;
1643
	struct timerqueue_node *node;
1644

1645 1646
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1647
		BUG_ON(hrtimer_callback_running(timer));
1648
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1649 1650 1651 1652 1653 1654 1655

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1656
		timer->base = new_base;
1657
		/*
T
Thomas Gleixner 已提交
1658 1659 1660 1661 1662 1663
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1664
		 */
1665
		enqueue_hrtimer(timer, new_base);
1666

T
Thomas Gleixner 已提交
1667 1668
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1669 1670 1671
	}
}

1672
static void migrate_hrtimers(int scpu)
1673
{
1674
	struct hrtimer_cpu_base *old_base, *new_base;
1675
	int i;
1676

1677 1678
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1679 1680 1681 1682

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1683 1684 1685 1686
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1687 1688
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1689

1690
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1691
		migrate_hrtimer_list(&old_base->clock_base[i],
1692
				     &new_base->clock_base[i]);
1693 1694
	}

1695 1696
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1697

1698 1699 1700
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1701
}
1702

1703 1704
#endif /* CONFIG_HOTPLUG_CPU */

1705
static int hrtimer_cpu_notify(struct notifier_block *self,
1706 1707
					unsigned long action, void *hcpu)
{
1708
	int scpu = (long)hcpu;
1709 1710 1711 1712

	switch (action) {

	case CPU_UP_PREPARE:
1713
	case CPU_UP_PREPARE_FROZEN:
1714
		init_hrtimers_cpu(scpu);
1715 1716 1717
		break;

#ifdef CONFIG_HOTPLUG_CPU
1718 1719 1720 1721
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1722
	case CPU_DEAD:
1723
	case CPU_DEAD_FROZEN:
1724
	{
1725
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1726
		migrate_hrtimers(scpu);
1727
		break;
1728
	}
1729 1730 1731 1732 1733 1734 1735 1736 1737
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1738
static struct notifier_block hrtimers_nb = {
1739 1740 1741 1742 1743 1744 1745 1746
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1747 1748 1749
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1750 1751
}

1752
/**
1753
 * schedule_hrtimeout_range_clock - sleep until timeout
1754
 * @expires:	timeout value (ktime_t)
1755
 * @delta:	slack in expires timeout (ktime_t)
1756
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1757
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1758
 */
1759 1760 1761
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1775
	 * A NULL parameter means "infinite"
1776 1777 1778 1779 1780 1781 1782
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1783
	hrtimer_init_on_stack(&t.timer, clock, mode);
1784
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1785 1786 1787

	hrtimer_init_sleeper(&t, current);

1788
	hrtimer_start_expires(&t.timer, mode);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1866
EXPORT_SYMBOL_GPL(schedule_hrtimeout);