hrtimer.c 45.9 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182 183 184 185
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
	if (pinned || !base->migration_enabled)
186
		return base;
187 188 189 190 191 192 193
	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
}
#else
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
194
	return base;
195 196 197
}
#endif

198 199 200
/*
 * Switch the timer base to the current CPU when possible.
 */
201
static inline struct hrtimer_clock_base *
202 203
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
204
{
205
	struct hrtimer_cpu_base *new_cpu_base, *this_base;
206
	struct hrtimer_clock_base *new_base;
207
	int basenum = base->index;
208

209 210
	this_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_base, pinned);
211
again:
212
	new_base = &new_cpu_base->clock_base[basenum];
213 214 215

	if (base != new_base) {
		/*
216
		 * We are trying to move timer to new_base.
217 218 219 220 221 222 223
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
224
		if (unlikely(hrtimer_callback_running(timer)))
225 226
			return base;

227 228
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
229 230
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
231

232 233
		if (new_cpu_base != this_base &&
		    hrtimer_check_target(timer, new_base)) {
234 235
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
236
			new_cpu_base = this_base;
237 238
			timer->base = base;
			goto again;
239
		}
240
		timer->base = new_base;
241
	} else {
242 243 244
		if (new_cpu_base != this_base &&
		    hrtimer_check_target(timer, new_base)) {
			new_cpu_base = this_base;
245 246
			goto again;
		}
247 248 249 250 251 252
	}
	return new_base;
}

#else /* CONFIG_SMP */

253
static inline struct hrtimer_clock_base *
254 255
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
256
	struct hrtimer_clock_base *base = timer->base;
257

258
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
259 260 261 262

	return base;
}

263
# define switch_hrtimer_base(t, b, p)	(b)
264 265 266 267 268 269 270 271 272 273 274

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
275
s64 __ktime_divns(const ktime_t kt, s64 div)
276 277
{
	int sft = 0;
278 279
	s64 dclc;
	u64 tmp;
280

281
	dclc = ktime_to_ns(kt);
282 283
	tmp = dclc < 0 ? -dclc : dclc;

284 285 286 287 288
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
289 290 291
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
292
}
293
EXPORT_SYMBOL_GPL(__ktime_divns);
294 295
#endif /* BITS_PER_LONG >= 64 */

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

313 314
EXPORT_SYMBOL_GPL(ktime_add_safe);

315 316 317 318
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

319 320 321 322 323
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
383
	.debug_hint	= hrtimer_debug_hint,
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
418
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
419 420 421 422 423 424 425 426 427 428 429 430

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

451
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
452 453 454 455 456 457 458 459
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

460
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
461 462 463
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
464
	unsigned int active = cpu_base->active_bases;
465

466
	hrtimer_update_next_timer(cpu_base, NULL);
467
	for (; active; base++, active >>= 1) {
468 469 470
		struct timerqueue_node *next;
		struct hrtimer *timer;

471
		if (!(active & 0x01))
472 473
			continue;

474
		next = timerqueue_getnext(&base->active);
475 476
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
477
		if (expires.tv64 < expires_next.tv64) {
478
			expires_next = expires;
479 480
			hrtimer_update_next_timer(cpu_base, timer);
		}
481 482 483 484 485 486 487 488 489 490 491 492
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

493 494 495 496 497 498
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

499 500
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
501 502
}

503 504 505 506 507 508 509
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
510 511
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
540 541 542 543 544
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

545 546
static inline int hrtimer_hres_active(void)
{
547
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 549 550 551 552 553 554
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
555 556
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557
{
558 559 560 561 562 563
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
564

565 566 567 568 569
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

587
	tick_program_event(cpu_base->expires_next, 1);
588 589 590 591 592 593 594 595 596
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
597 598
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
599
{
600
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602

603
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604

605
	/*
606 607
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
608
	 */
609 610 611 612 613 614 615 616 617 618 619 620
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
621

622 623
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
624
	 * expiry time which is less than base->offset. Set it to 0.
625 626
	 */
	if (expires.tv64 < 0)
627
		expires.tv64 = 0;
628

629
	if (expires.tv64 >= cpu_base->expires_next.tv64)
630
		return;
631

632
	/* Update the pointer to the next expiring timer */
633
	cpu_base->next_timer = timer;
634

635 636 637 638 639 640 641
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
642
		return;
643 644

	/*
645 646
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
647
	 */
648 649
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
650 651 652 653 654 655 656 657 658 659 660
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

661 662 663 664 665 666 667
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
668
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669

670
	if (!base->hres_active)
671 672 673
		return;

	raw_spin_lock(&base->lock);
674
	hrtimer_update_base(base);
675 676 677
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
678

679 680 681
/*
 * Switch to high resolution mode
 */
682
static void hrtimer_switch_to_hres(void)
683
{
684
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 686

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
687
		printk(KERN_WARNING "Could not switch to high resolution "
688
				    "mode on CPU %d\n", base->cpu);
689 690
	}
	base->hres_active = 1;
691
	hrtimer_resolution = HIGH_RES_NSEC;
692 693 694 695 696 697

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

698 699 700 701 702 703 704
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

705
/*
706 707
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
708 709 710
 */
void clock_was_set_delayed(void)
{
711
	schedule_work(&hrtimer_work);
712 713
}

714 715
#else

716
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 718
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
719
static inline void hrtimer_switch_to_hres(void) { }
720 721
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 723
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
724 725 726 727
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728
static inline void retrigger_next_event(void *arg) { }
729 730 731

#endif /* CONFIG_HIGH_RES_TIMERS */

732 733 734 735 736 737 738 739 740 741 742 743 744
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
745
#ifdef CONFIG_HIGH_RES_TIMERS
746 747
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
748 749
#endif
	timerfd_clock_was_set();
750 751 752 753
}

/*
 * During resume we might have to reprogram the high resolution timer
754 755
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
756
 * must be deferred.
757 758 759 760 761 762
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

763
	/* Retrigger on the local CPU */
764
	retrigger_next_event(NULL);
765 766
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
767 768
}

769
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
770
{
771
#ifdef CONFIG_TIMER_STATS
772 773
	if (timer->start_site)
		return;
774
	timer->start_site = __builtin_return_address(0);
775 776
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
777 778 779 780 781 782 783 784
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
785
}
786 787 788 789 790 791 792 793

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
794
#endif
795
}
796

797
/*
798
 * Counterpart to lock_hrtimer_base above:
799 800 801 802
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
803
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
804 805 806 807 808
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
809
 * @now:	forward past this time
810 811 812
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
813
 * Returns the number of overruns.
814 815 816 817 818 819 820 821
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
822
 */
D
Davide Libenzi 已提交
823
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
824
{
D
Davide Libenzi 已提交
825
	u64 orun = 1;
826
	ktime_t delta;
827

828
	delta = ktime_sub(now, hrtimer_get_expires(timer));
829 830 831 832

	if (delta.tv64 < 0)
		return 0;

833 834 835
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

836 837
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
838

839
	if (unlikely(delta.tv64 >= interval.tv64)) {
840
		s64 incr = ktime_to_ns(interval);
841 842

		orun = ktime_divns(delta, incr);
843 844
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
845 846 847 848 849 850 851
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
852
	hrtimer_add_expires(timer, interval);
853 854 855

	return orun;
}
S
Stas Sergeev 已提交
856
EXPORT_SYMBOL_GPL(hrtimer_forward);
857 858 859 860 861 862

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
863 864
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
865
 */
866 867
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
868
{
869
	debug_activate(timer);
870

871
	base->cpu_base->active_bases |= 1 << base->index;
872

873
	timer->state = HRTIMER_STATE_ENQUEUED;
874

875
	return timerqueue_add(&base->active, &timer->node);
876
}
877 878 879 880 881

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
882 883 884 885 886
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
887
 */
888
static void __remove_hrtimer(struct hrtimer *timer,
889
			     struct hrtimer_clock_base *base,
890
			     unsigned long newstate, int reprogram)
891
{
892
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
893
	unsigned int state = timer->state;
894

895 896 897
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
898

899
	if (!timerqueue_del(&base->active, &timer->node))
900
		cpu_base->active_bases &= ~(1 << base->index);
901 902

#ifdef CONFIG_HIGH_RES_TIMERS
903 904 905 906 907 908 909 910 911 912
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
913
#endif
914 915 916 917 918 919
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
920
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
921
{
922
	if (hrtimer_is_queued(timer)) {
923
		unsigned long state = timer->state;
924 925 926 927 928 929 930 931 932 933
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
934
		debug_deactivate(timer);
935
		timer_stats_hrtimer_clear_start_info(timer);
936
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
937

938 939 940
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

941
		__remove_hrtimer(timer, base, state, reprogram);
942 943 944 945 946
		return 1;
	}
	return 0;
}

947 948 949 950 951 952 953 954
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
955 956
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    unsigned long delta_ns, const enum hrtimer_mode mode)
957
{
958
	struct hrtimer_clock_base *base, *new_base;
959
	unsigned long flags;
960
	int leftmost;
961 962 963 964

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
965
	remove_hrtimer(timer, base, true);
966

967
	if (mode & HRTIMER_MODE_REL) {
968
		tim = ktime_add_safe(tim, base->get_time());
969 970 971 972 973 974 975 976
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
977
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
978 979
#endif
	}
980

981
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
982

983 984 985
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

986 987
	timer_stats_hrtimer_set_start_info(timer);

988
	leftmost = enqueue_hrtimer(timer, new_base);
989 990
	if (!leftmost)
		goto unlock;
991 992 993 994 995 996

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
997 998
		if (new_base->cpu_base->nohz_active)
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
999 1000
	} else {
		hrtimer_reprogram(timer, new_base);
1001
	}
1002
unlock:
1003
	unlock_hrtimer_base(timer, &flags);
1004
}
1005 1006
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

1007 1008 1009 1010 1011 1012 1013 1014
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1015
 *    cannot be stopped
1016 1017 1018
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1019
	struct hrtimer_clock_base *base;
1020 1021 1022
	unsigned long flags;
	int ret = -1;

1023 1024 1025 1026 1027 1028 1029 1030 1031
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1032 1033
	base = lock_hrtimer_base(timer, &flags);

1034
	if (!hrtimer_callback_running(timer))
1035
		ret = remove_hrtimer(timer, base, false);
1036 1037 1038 1039 1040 1041

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1042
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1059
		cpu_relax();
1060 1061
	}
}
1062
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1073
	lock_hrtimer_base(timer, &flags);
1074
	rem = hrtimer_expires_remaining(timer);
1075 1076 1077 1078
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1079
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1080

1081
#ifdef CONFIG_NO_HZ_COMMON
1082 1083 1084
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1085
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1086
 */
1087
u64 hrtimer_get_next_event(void)
1088
{
1089
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1090
	u64 expires = KTIME_MAX;
1091 1092
	unsigned long flags;

1093
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1094

1095
	if (!__hrtimer_hres_active(cpu_base))
1096
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1097

1098
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1099

1100
	return expires;
1101 1102 1103
}
#endif

1104 1105
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1106
{
1107
	struct hrtimer_cpu_base *cpu_base;
1108
	int base;
1109

1110 1111
	memset(timer, 0, sizeof(struct hrtimer));

1112
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1113

1114
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1115 1116
		clock_id = CLOCK_MONOTONIC;

1117 1118
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1119
	timerqueue_init(&timer->node);
1120 1121 1122 1123 1124 1125

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1126
}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1137
	debug_init(timer, clock_id, mode);
1138 1139
	__hrtimer_init(timer, clock_id, mode);
}
1140
EXPORT_SYMBOL_GPL(hrtimer_init);
1141

1142 1143 1144 1145
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1146
 *
1147
 * It is important for this function to not return a false negative.
1148
 */
1149
bool hrtimer_active(const struct hrtimer *timer)
1150
{
1151
	struct hrtimer_cpu_base *cpu_base;
1152
	unsigned int seq;
1153

1154 1155 1156
	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);
1157

1158 1159 1160 1161 1162 1163 1164 1165
		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
1166
}
1167
EXPORT_SYMBOL_GPL(hrtimer_active);
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1187 1188 1189
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1190 1191 1192 1193
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1194
	lockdep_assert_held(&cpu_base->lock);
1195

1196
	debug_deactivate(timer);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1209 1210
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1211 1212 1213 1214 1215 1216

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1217
	raw_spin_unlock(&cpu_base->lock);
1218
	trace_hrtimer_expire_entry(timer, now);
1219
	restart = fn(timer);
1220
	trace_hrtimer_expire_exit(timer);
1221
	raw_spin_lock(&cpu_base->lock);
1222 1223

	/*
1224
	 * Note: We clear the running state after enqueue_hrtimer and
T
Thomas Gleixner 已提交
1225 1226
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1227 1228 1229 1230
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1231
	 */
1232 1233
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1234
		enqueue_hrtimer(timer, base);
1235

1236 1237 1238 1239 1240 1241 1242 1243
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1244

1245 1246
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1247 1248
}

1249
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1250
{
1251 1252
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1253

1254
	for (; active; base++, active >>= 1) {
1255
		struct timerqueue_node *node;
1256 1257
		ktime_t basenow;

1258
		if (!(active & 0x01))
1259
			continue;
1260 1261 1262

		basenow = ktime_add(now, base->offset);

1263
		while ((node = timerqueue_getnext(&base->active))) {
1264 1265
			struct hrtimer *timer;

1266
			timer = container_of(node, struct hrtimer, node);
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1280
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1281 1282
				break;

1283
			__run_hrtimer(cpu_base, base, timer, &basenow);
1284 1285
		}
	}
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1319 1320
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1321 1322 1323 1324
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1325
	cpu_base->expires_next = expires_next;
1326
	cpu_base->in_hrtirq = 0;
1327
	raw_spin_unlock(&cpu_base->lock);
1328 1329

	/* Reprogramming necessary ? */
1330
	if (!tick_program_event(expires_next, 0)) {
1331 1332
		cpu_base->hang_detected = 0;
		return;
1333
	}
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1344 1345 1346
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1347
	 */
1348
	raw_spin_lock(&cpu_base->lock);
1349
	now = hrtimer_update_base(cpu_base);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1361
	raw_spin_unlock(&cpu_base->lock);
1362
	delta = ktime_sub(now, entry_time);
1363 1364
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1376 1377
}

1378 1379 1380 1381
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1382
static inline void __hrtimer_peek_ahead_timers(void)
1383 1384 1385 1386 1387 1388
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1389
	td = this_cpu_ptr(&tick_cpu_device);
1390 1391 1392 1393
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1394 1395 1396 1397 1398
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1399

1400
/*
1401
 * Called from run_local_timers in hardirq context every jiffy
1402
 */
1403
void hrtimer_run_queues(void)
1404
{
1405
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1406
	ktime_t now;
1407

1408
	if (__hrtimer_hres_active(cpu_base))
1409
		return;
1410

1411
	/*
1412 1413 1414 1415 1416
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1417
	 */
1418
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1419
		hrtimer_switch_to_hres();
1420
		return;
1421
	}
1422

1423 1424 1425 1426
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1427 1428
}

1429 1430 1431
/*
 * Sleep related functions:
 */
1432
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1445
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1446 1447 1448 1449
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1450
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1451

1452
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1453
{
1454
	hrtimer_init_sleeper(t, current);
1455

1456 1457
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1458
		hrtimer_start_expires(&t->timer, mode);
1459

1460
		if (likely(t->task))
1461
			freezable_schedule();
1462

1463
		hrtimer_cancel(&t->timer);
1464
		mode = HRTIMER_MODE_ABS;
1465 1466

	} while (t->task && !signal_pending(current));
1467

1468 1469
	__set_current_state(TASK_RUNNING);

1470
	return t->task == NULL;
1471 1472
}

1473 1474 1475 1476 1477
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1478
	rem = hrtimer_expires_remaining(timer);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1489
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1490
{
1491
	struct hrtimer_sleeper t;
1492
	struct timespec __user  *rmtp;
1493
	int ret = 0;
1494

1495
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1496
				HRTIMER_MODE_ABS);
1497
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1498

1499
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1500
		goto out;
1501

1502
	rmtp = restart->nanosleep.rmtp;
1503
	if (rmtp) {
1504
		ret = update_rmtp(&t.timer, rmtp);
1505
		if (ret <= 0)
1506
			goto out;
1507
	}
1508 1509

	/* The other values in restart are already filled in */
1510 1511 1512 1513
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1514 1515
}

1516
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1517 1518 1519
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1520
	struct hrtimer_sleeper t;
1521
	int ret = 0;
1522 1523 1524
	unsigned long slack;

	slack = current->timer_slack_ns;
1525
	if (dl_task(current) || rt_task(current))
1526
		slack = 0;
1527

1528
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1529
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1530
	if (do_nanosleep(&t, mode))
1531
		goto out;
1532

1533
	/* Absolute timers do not update the rmtp value and restart: */
1534 1535 1536 1537
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1538

1539
	if (rmtp) {
1540
		ret = update_rmtp(&t.timer, rmtp);
1541
		if (ret <= 0)
1542
			goto out;
1543
	}
1544

1545
	restart = &current->restart_block;
1546
	restart->fn = hrtimer_nanosleep_restart;
1547
	restart->nanosleep.clockid = t.timer.base->clockid;
1548
	restart->nanosleep.rmtp = rmtp;
1549
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1550

1551 1552 1553 1554
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1555 1556
}

1557 1558
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1559
{
1560
	struct timespec tu;
1561 1562 1563 1564 1565 1566 1567

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1568
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1569 1570
}

1571 1572 1573
/*
 * Functions related to boot-time initialization:
 */
1574
static void init_hrtimers_cpu(int cpu)
1575
{
1576
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1577 1578
	int i;

1579
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1580
		cpu_base->clock_base[i].cpu_base = cpu_base;
1581 1582
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1583

1584
	cpu_base->cpu = cpu;
1585
	hrtimer_init_hres(cpu_base);
1586 1587 1588 1589
}

#ifdef CONFIG_HOTPLUG_CPU

1590
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1591
				struct hrtimer_clock_base *new_base)
1592 1593
{
	struct hrtimer *timer;
1594
	struct timerqueue_node *node;
1595

1596 1597
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1598
		BUG_ON(hrtimer_callback_running(timer));
1599
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1600 1601

		/*
1602
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1603 1604 1605
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1606
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1607
		timer->base = new_base;
1608
		/*
T
Thomas Gleixner 已提交
1609 1610 1611 1612 1613 1614
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1615
		 */
1616
		enqueue_hrtimer(timer, new_base);
1617 1618 1619
	}
}

1620
static void migrate_hrtimers(int scpu)
1621
{
1622
	struct hrtimer_cpu_base *old_base, *new_base;
1623
	int i;
1624

1625 1626
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1627 1628 1629

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1630
	new_base = this_cpu_ptr(&hrtimer_bases);
1631 1632 1633 1634
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1635 1636
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1637

1638
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1639
		migrate_hrtimer_list(&old_base->clock_base[i],
1640
				     &new_base->clock_base[i]);
1641 1642
	}

1643 1644
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1645

1646 1647 1648
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1649
}
1650

1651 1652
#endif /* CONFIG_HOTPLUG_CPU */

1653
static int hrtimer_cpu_notify(struct notifier_block *self,
1654 1655
					unsigned long action, void *hcpu)
{
1656
	int scpu = (long)hcpu;
1657 1658 1659 1660

	switch (action) {

	case CPU_UP_PREPARE:
1661
	case CPU_UP_PREPARE_FROZEN:
1662
		init_hrtimers_cpu(scpu);
1663 1664 1665 1666
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1667
	case CPU_DEAD_FROZEN:
1668
		migrate_hrtimers(scpu);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1679
static struct notifier_block hrtimers_nb = {
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1690
/**
1691
 * schedule_hrtimeout_range_clock - sleep until timeout
1692
 * @expires:	timeout value (ktime_t)
1693
 * @delta:	slack in expires timeout (ktime_t)
1694
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1695
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1696
 */
1697 1698 1699
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1713
	 * A NULL parameter means "infinite"
1714 1715 1716 1717 1718 1719
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1720
	hrtimer_init_on_stack(&t.timer, clock, mode);
1721
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1722 1723 1724

	hrtimer_init_sleeper(&t, current);

1725
	hrtimer_start_expires(&t.timer, mode);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1801
EXPORT_SYMBOL_GPL(schedule_hrtimeout);