hrtimer.c 43.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.clock_base =
71
	{
72
		{
73 74
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
75 76
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
77 78 79 80 81
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
82
		{
83 84
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
85 86
			.get_time = &ktime_get_boottime,
		},
87 88 89 90 91
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
92
	}
93 94
};

95
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 97 98
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
99
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
100
};
101 102 103 104 105 106

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
125 126 127
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
128
{
129
	struct hrtimer_clock_base *base;
130 131 132 133

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
134
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 136 137
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
138
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 140 141 142 143
		}
		cpu_relax();
	}
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

167 168 169
/*
 * Switch the timer base to the current CPU when possible.
 */
170
static inline struct hrtimer_clock_base *
171 172
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
173
{
174 175
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
176
	int this_cpu = smp_processor_id();
177
	int cpu = get_nohz_timer_target(pinned);
178
	int basenum = base->index;
179

180 181
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182
	new_base = &new_cpu_base->clock_base[basenum];
183 184 185

	if (base != new_base) {
		/*
186
		 * We are trying to move timer to new_base.
187 188 189 190 191 192 193
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
194
		if (unlikely(hrtimer_callback_running(timer)))
195 196 197 198
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
199 200
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
201

202 203
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
204 205
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
206 207
			timer->base = base;
			goto again;
208
		}
209
		timer->base = new_base;
210 211 212 213 214
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
215 216 217 218 219 220
	}
	return new_base;
}

#else /* CONFIG_SMP */

221
static inline struct hrtimer_clock_base *
222 223
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
224
	struct hrtimer_clock_base *base = timer->base;
225

226
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227 228 229 230

	return base;
}

231
# define switch_hrtimer_base(t, b, p)	(b)
232 233 234 235 236 237 238 239 240 241 242

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
243
u64 __ktime_divns(const ktime_t kt, s64 div)
244
{
245
	u64 dclc;
246 247
	int sft = 0;

248
	dclc = ktime_to_ns(kt);
249 250 251 252 253 254 255 256
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
257
	return dclc;
258
}
259
EXPORT_SYMBOL_GPL(__ktime_divns);
260 261
#endif /* BITS_PER_LONG >= 64 */

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

279 280
EXPORT_SYMBOL_GPL(ktime_add_safe);

281 282 283 284
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

285 286 287 288 289
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
349
	.debug_hint	= hrtimer_debug_hint,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
384
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385 386 387 388 389 390 391 392 393 394 395 396

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

417
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418 419 420 421 422 423 424 425
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

426
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
427 428 429
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
430
	unsigned int active = cpu_base->active_bases;
431

432
	hrtimer_update_next_timer(cpu_base, NULL);
433
	for (; active; base++, active >>= 1) {
434 435 436
		struct timerqueue_node *next;
		struct hrtimer *timer;

437
		if (!(active & 0x01))
438 439
			continue;

440
		next = timerqueue_getnext(&base->active);
441 442
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
443
		if (expires.tv64 < expires_next.tv64) {
444
			expires_next = expires;
445 446
			hrtimer_update_next_timer(cpu_base, timer);
		}
447 448 449 450 451 452 453 454 455 456 457 458
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

459 460 461 462 463 464
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

465 466
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
467 468
}

469 470 471 472 473 474 475
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
476 477
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
506 507 508 509 510
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

511 512
static inline int hrtimer_hres_active(void)
{
513
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
514 515 516 517 518 519 520
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
521 522
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523
{
524 525 526 527 528 529
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
530

531 532 533 534 535
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

553 554 555 556 557 558 559 560 561 562 563
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
564 565
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
566
{
567
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569

570
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
571

572
	/*
573 574
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
575
	 */
576 577 578 579 580 581 582 583 584 585 586 587
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
588

589 590
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
591
	 * expiry time which is less than base->offset. Set it to 0.
592 593
	 */
	if (expires.tv64 < 0)
594
		expires.tv64 = 0;
595

596
	if (expires.tv64 >= cpu_base->expires_next.tv64)
597
		return;
598

599
	/* Update the pointer to the next expiring timer */
600 601
	cpu_base->next_timer = timer;

602 603 604 605 606 607 608
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
609
		return;
610 611

	/*
612 613
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
614
	 */
615 616
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
617 618 619 620 621 622 623 624 625 626 627
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

628 629 630 631 632 633 634
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
635
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
636

637
	if (!base->hres_active)
638 639 640
		return;

	raw_spin_lock(&base->lock);
641
	hrtimer_update_base(base);
642 643 644
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
645

646 647 648
/*
 * Switch to high resolution mode
 */
649
static int hrtimer_switch_to_hres(void)
650
{
651
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
652 653

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
654
		printk(KERN_WARNING "Could not switch to high resolution "
655
				    "mode on CPU %d\n", base->cpu);
656
		return 0;
657 658
	}
	base->hres_active = 1;
659
	hrtimer_resolution = HIGH_RES_NSEC;
660 661 662 663

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
664
	return 1;
665 666
}

667 668 669 670 671 672 673
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

674
/*
675 676
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
677 678 679
 */
void clock_was_set_delayed(void)
{
680
	schedule_work(&hrtimer_work);
681 682
}

683 684
#else

685
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
686 687
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
688
static inline int hrtimer_switch_to_hres(void) { return 0; }
689 690
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
691 692
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
693 694 695 696
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
697
static inline void retrigger_next_event(void *arg) { }
698 699 700

#endif /* CONFIG_HIGH_RES_TIMERS */

701 702 703 704 705 706 707 708 709 710 711 712 713
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
714
#ifdef CONFIG_HIGH_RES_TIMERS
715 716
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
717 718
#endif
	timerfd_clock_was_set();
719 720 721 722
}

/*
 * During resume we might have to reprogram the high resolution timer
723 724
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
725
 * must be deferred.
726 727 728 729 730 731
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

732
	/* Retrigger on the local CPU */
733
	retrigger_next_event(NULL);
734 735
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
736 737
}

738
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
739
{
740
#ifdef CONFIG_TIMER_STATS
741 742
	if (timer->start_site)
		return;
743
	timer->start_site = __builtin_return_address(0);
744 745
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
746 747 748 749 750 751 752 753
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
754
}
755 756 757 758 759 760 761 762

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
763
#endif
764
}
765

766
/*
767
 * Counterpart to lock_hrtimer_base above:
768 769 770 771
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
772
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
773 774 775 776 777
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
778
 * @now:	forward past this time
779 780 781
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
782
 * Returns the number of overruns.
783 784 785 786 787 788 789 790
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
791
 */
D
Davide Libenzi 已提交
792
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
793
{
D
Davide Libenzi 已提交
794
	u64 orun = 1;
795
	ktime_t delta;
796

797
	delta = ktime_sub(now, hrtimer_get_expires(timer));
798 799 800 801

	if (delta.tv64 < 0)
		return 0;

802 803 804
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

805 806
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
807

808
	if (unlikely(delta.tv64 >= interval.tv64)) {
809
		s64 incr = ktime_to_ns(interval);
810 811

		orun = ktime_divns(delta, incr);
812 813
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
814 815 816 817 818 819 820
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
821
	hrtimer_add_expires(timer, interval);
822 823 824

	return orun;
}
S
Stas Sergeev 已提交
825
EXPORT_SYMBOL_GPL(hrtimer_forward);
826 827 828 829 830 831

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
832 833
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
834
 */
835 836
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
837
{
838
	debug_activate(timer);
839

840
	base->cpu_base->active_bases |= 1 << base->index;
841

842 843 844 845 846
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
847

848
	return timerqueue_add(&base->active, &timer->node);
849
}
850 851 852 853 854

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
855 856 857 858 859
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
860
 */
861
static void __remove_hrtimer(struct hrtimer *timer,
862
			     struct hrtimer_clock_base *base,
863
			     unsigned long newstate, int reprogram)
864
{
865
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
866
	unsigned int state = timer->state;
867

868 869 870
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
871

872
	if (!timerqueue_del(&base->active, &timer->node))
873
		cpu_base->active_bases &= ~(1 << base->index);
874

875
#ifdef CONFIG_HIGH_RES_TIMERS
876 877 878 879 880 881 882 883 884 885
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
886
#endif
887 888 889 890 891 892
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
893
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
894
{
895
	if (hrtimer_is_queued(timer)) {
896
		unsigned long state;
897 898 899 900 901 902 903 904 905 906
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
907
		debug_deactivate(timer);
908
		timer_stats_hrtimer_clear_start_info(timer);
909
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
910 911 912 913 914 915 916
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
917 918 919 920 921
		return 1;
	}
	return 0;
}

922 923 924 925 926 927 928 929
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
930 931
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    unsigned long delta_ns, const enum hrtimer_mode mode)
932
{
933
	struct hrtimer_clock_base *base, *new_base;
934
	unsigned long flags;
935
	int leftmost;
936 937 938 939

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
940
	remove_hrtimer(timer, base);
941

942
	if (mode & HRTIMER_MODE_REL) {
943
		tim = ktime_add_safe(tim, base->get_time());
944 945 946 947 948 949 950 951
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
952
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
953 954
#endif
	}
955

956
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
957

958 959 960
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

961 962
	timer_stats_hrtimer_set_start_info(timer);

963
	leftmost = enqueue_hrtimer(timer, new_base);
964 965
	if (!leftmost)
		goto unlock;
966 967 968 969 970 971 972

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
973 974
	} else {
		hrtimer_reprogram(timer, new_base);
975
	}
976
unlock:
977 978
	unlock_hrtimer_base(timer, &flags);
}
979 980
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

981 982 983 984 985 986 987 988
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
989
 *    cannot be stopped
990 991 992
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
993
	struct hrtimer_clock_base *base;
994 995 996
	unsigned long flags;
	int ret = -1;

997 998 999 1000 1001 1002 1003 1004 1005
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1006 1007
	base = lock_hrtimer_base(timer, &flags);

1008
	if (!hrtimer_callback_running(timer))
1009 1010 1011 1012 1013 1014 1015
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1016
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1033
		cpu_relax();
1034 1035
	}
}
1036
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1047
	lock_hrtimer_base(timer, &flags);
1048
	rem = hrtimer_expires_remaining(timer);
1049 1050 1051 1052
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1053
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1054

1055
#ifdef CONFIG_NO_HZ_COMMON
1056 1057 1058
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1059
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1060
 */
1061
u64 hrtimer_get_next_event(void)
1062
{
1063
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1064
	u64 expires = KTIME_MAX;
1065 1066
	unsigned long flags;

1067
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1068

1069
	if (!__hrtimer_hres_active(cpu_base))
1070
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1071

1072
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1073

1074
	return expires;
1075 1076 1077
}
#endif

1078 1079
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1080
{
1081
	struct hrtimer_cpu_base *cpu_base;
1082
	int base;
1083

1084 1085
	memset(timer, 0, sizeof(struct hrtimer));

1086
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1087

1088
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1089 1090
		clock_id = CLOCK_MONOTONIC;

1091 1092
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1093
	timerqueue_init(&timer->node);
1094 1095 1096 1097 1098 1099

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1100
}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1111
	debug_init(timer, clock_id, mode);
1112 1113
	__hrtimer_init(timer, clock_id, mode);
}
1114
EXPORT_SYMBOL_GPL(hrtimer_init);
1115

1116 1117 1118
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1119 1120 1121 1122
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1123 1124
	WARN_ON(!irqs_disabled());

1125
	debug_deactivate(timer);
1126 1127 1128
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1129 1130 1131 1132 1133 1134

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1135
	raw_spin_unlock(&cpu_base->lock);
1136
	trace_hrtimer_expire_entry(timer, now);
1137
	restart = fn(timer);
1138
	trace_hrtimer_expire_exit(timer);
1139
	raw_spin_lock(&cpu_base->lock);
1140 1141

	/*
T
Thomas Gleixner 已提交
1142 1143 1144
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1145 1146 1147 1148
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1149
	 */
1150 1151
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1152
		enqueue_hrtimer(timer, base);
1153 1154 1155

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1156 1157 1158
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1159
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1160
{
1161 1162
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1163

1164
	for (; active; base++, active >>= 1) {
1165
		struct timerqueue_node *node;
1166 1167
		ktime_t basenow;

1168
		if (!(active & 0x01))
1169
			continue;
1170 1171 1172

		basenow = ktime_add(now, base->offset);

1173
		while ((node = timerqueue_getnext(&base->active))) {
1174 1175
			struct hrtimer *timer;

1176
			timer = container_of(node, struct hrtimer, node);
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1190
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1191 1192
				break;

1193
			__run_hrtimer(cpu_base, base, timer, &basenow);
1194 1195
		}
	}
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1229 1230
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1231 1232 1233 1234
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1235
	cpu_base->expires_next = expires_next;
1236
	cpu_base->in_hrtirq = 0;
1237
	raw_spin_unlock(&cpu_base->lock);
1238 1239

	/* Reprogramming necessary ? */
1240 1241 1242 1243
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1244
	}
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1255 1256 1257
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1258
	 */
1259
	raw_spin_lock(&cpu_base->lock);
1260
	now = hrtimer_update_base(cpu_base);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1272
	raw_spin_unlock(&cpu_base->lock);
1273
	delta = ktime_sub(now, entry_time);
1274 1275
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1287 1288
}

1289 1290 1291 1292
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1293
static inline void __hrtimer_peek_ahead_timers(void)
1294 1295 1296 1297 1298 1299
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1300
	td = this_cpu_ptr(&tick_cpu_device);
1301 1302 1303 1304
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1305 1306 1307 1308 1309
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1310

1311
/*
1312
 * Called from run_local_timers in hardirq context every jiffy
1313
 */
1314
void hrtimer_run_queues(void)
1315
{
1316
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1317
	ktime_t now;
1318

1319
	if (__hrtimer_hres_active(cpu_base))
1320 1321
		return;

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	/*
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
		hrtimer_switch_to_hres();
		return;
	}

1334 1335 1336 1337
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1338 1339
}

1340 1341 1342
/*
 * Sleep related functions:
 */
1343
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1356
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1357 1358 1359 1360
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1361
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1362

1363
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1364
{
1365
	hrtimer_init_sleeper(t, current);
1366

1367 1368
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1369
		hrtimer_start_expires(&t->timer, mode);
1370

1371
		if (likely(t->task))
1372
			freezable_schedule();
1373

1374
		hrtimer_cancel(&t->timer);
1375
		mode = HRTIMER_MODE_ABS;
1376 1377

	} while (t->task && !signal_pending(current));
1378

1379 1380
	__set_current_state(TASK_RUNNING);

1381
	return t->task == NULL;
1382 1383
}

1384 1385 1386 1387 1388
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1389
	rem = hrtimer_expires_remaining(timer);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1400
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1401
{
1402
	struct hrtimer_sleeper t;
1403
	struct timespec __user  *rmtp;
1404
	int ret = 0;
1405

1406
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1407
				HRTIMER_MODE_ABS);
1408
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1409

1410
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1411
		goto out;
1412

1413
	rmtp = restart->nanosleep.rmtp;
1414
	if (rmtp) {
1415
		ret = update_rmtp(&t.timer, rmtp);
1416
		if (ret <= 0)
1417
			goto out;
1418
	}
1419 1420

	/* The other values in restart are already filled in */
1421 1422 1423 1424
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1425 1426
}

1427
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1428 1429 1430
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1431
	struct hrtimer_sleeper t;
1432
	int ret = 0;
1433 1434 1435
	unsigned long slack;

	slack = current->timer_slack_ns;
1436
	if (dl_task(current) || rt_task(current))
1437
		slack = 0;
1438

1439
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1440
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1441
	if (do_nanosleep(&t, mode))
1442
		goto out;
1443

1444
	/* Absolute timers do not update the rmtp value and restart: */
1445 1446 1447 1448
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1449

1450
	if (rmtp) {
1451
		ret = update_rmtp(&t.timer, rmtp);
1452
		if (ret <= 0)
1453
			goto out;
1454
	}
1455

1456
	restart = &current->restart_block;
1457
	restart->fn = hrtimer_nanosleep_restart;
1458
	restart->nanosleep.clockid = t.timer.base->clockid;
1459
	restart->nanosleep.rmtp = rmtp;
1460
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1461

1462 1463 1464 1465
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1466 1467
}

1468 1469
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1470
{
1471
	struct timespec tu;
1472 1473 1474 1475 1476 1477 1478

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1479
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1480 1481
}

1482 1483 1484
/*
 * Functions related to boot-time initialization:
 */
1485
static void init_hrtimers_cpu(int cpu)
1486
{
1487
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1488 1489
	int i;

1490
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1491
		cpu_base->clock_base[i].cpu_base = cpu_base;
1492 1493
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1494

1495
	cpu_base->cpu = cpu;
1496
	hrtimer_init_hres(cpu_base);
1497 1498 1499 1500
}

#ifdef CONFIG_HOTPLUG_CPU

1501
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1502
				struct hrtimer_clock_base *new_base)
1503 1504
{
	struct hrtimer *timer;
1505
	struct timerqueue_node *node;
1506

1507 1508
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1509
		BUG_ON(hrtimer_callback_running(timer));
1510
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1511 1512 1513 1514 1515 1516 1517

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1518
		timer->base = new_base;
1519
		/*
T
Thomas Gleixner 已提交
1520 1521 1522 1523 1524 1525
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1526
		 */
1527
		enqueue_hrtimer(timer, new_base);
1528

T
Thomas Gleixner 已提交
1529 1530
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1531 1532 1533
	}
}

1534
static void migrate_hrtimers(int scpu)
1535
{
1536
	struct hrtimer_cpu_base *old_base, *new_base;
1537
	int i;
1538

1539 1540
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1541 1542 1543

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1544
	new_base = this_cpu_ptr(&hrtimer_bases);
1545 1546 1547 1548
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1549 1550
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1551

1552
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1553
		migrate_hrtimer_list(&old_base->clock_base[i],
1554
				     &new_base->clock_base[i]);
1555 1556
	}

1557 1558
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1559

1560 1561 1562
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1563
}
1564

1565 1566
#endif /* CONFIG_HOTPLUG_CPU */

1567
static int hrtimer_cpu_notify(struct notifier_block *self,
1568 1569
					unsigned long action, void *hcpu)
{
1570
	int scpu = (long)hcpu;
1571 1572 1573 1574

	switch (action) {

	case CPU_UP_PREPARE:
1575
	case CPU_UP_PREPARE_FROZEN:
1576
		init_hrtimers_cpu(scpu);
1577 1578 1579 1580
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1581
	case CPU_DEAD_FROZEN:
1582
		migrate_hrtimers(scpu);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1593
static struct notifier_block hrtimers_nb = {
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1604
/**
1605
 * schedule_hrtimeout_range_clock - sleep until timeout
1606
 * @expires:	timeout value (ktime_t)
1607
 * @delta:	slack in expires timeout (ktime_t)
1608
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1609
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1610
 */
1611 1612 1613
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1627
	 * A NULL parameter means "infinite"
1628 1629 1630 1631 1632 1633
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1634
	hrtimer_init_on_stack(&t.timer, clock, mode);
1635
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1636 1637 1638

	hrtimer_init_sleeper(&t, current);

1639
	hrtimer_start_expires(&t.timer, mode);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1715
EXPORT_SYMBOL_GPL(schedule_hrtimeout);