hrtimer.c 45.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71
	.clock_base =
72
	{
73
		{
74 75
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
76 77
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87
			.get_time = &ktime_get_boottime,
		},
88 89 90 91 92
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
93
	}
94 95
};

96
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 98 99
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101
};
102 103 104 105 106 107

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124 125
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.seq = SEQCNT_ZERO(migration_cpu_base),
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

126 127 128 129 130 131 132 133 134
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
135 136
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
137
 */
138 139 140
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
141
{
142
	struct hrtimer_clock_base *base;
143 144 145

	for (;;) {
		base = timer->base;
146
		if (likely(base != &migration_base)) {
147
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 149 150
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
151
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 153 154 155 156
		}
		cpu_relax();
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

180 181 182
/*
 * Switch the timer base to the current CPU when possible.
 */
183
static inline struct hrtimer_clock_base *
184 185
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
186
{
187 188
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
189
	int this_cpu = smp_processor_id();
190
	int cpu = get_nohz_timer_target(pinned);
191
	int basenum = base->index;
192

193 194
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
195
	new_base = &new_cpu_base->clock_base[basenum];
196 197 198

	if (base != new_base) {
		/*
199
		 * We are trying to move timer to new_base.
200 201 202 203 204 205 206
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
207
		if (unlikely(hrtimer_callback_running(timer)))
208 209
			return base;

210 211
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
212 213
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
214

215 216
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
217 218
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
219 220
			timer->base = base;
			goto again;
221
		}
222
		timer->base = new_base;
223 224 225 226 227
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
228 229 230 231 232 233
	}
	return new_base;
}

#else /* CONFIG_SMP */

234
static inline struct hrtimer_clock_base *
235 236
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
237
	struct hrtimer_clock_base *base = timer->base;
238

239
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
240 241 242 243

	return base;
}

244
# define switch_hrtimer_base(t, b, p)	(b)
245 246 247 248 249 250 251 252 253 254 255

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
256
u64 __ktime_divns(const ktime_t kt, s64 div)
257
{
258
	u64 dclc;
259 260
	int sft = 0;

261
	dclc = ktime_to_ns(kt);
262 263 264 265 266 267 268 269
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
270
	return dclc;
271
}
272
EXPORT_SYMBOL_GPL(__ktime_divns);
273 274
#endif /* BITS_PER_LONG >= 64 */

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

292 293
EXPORT_SYMBOL_GPL(ktime_add_safe);

294 295 296 297
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

298 299 300 301 302
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
362
	.debug_hint	= hrtimer_debug_hint,
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
397
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
398 399 400 401 402 403 404 405 406 407 408 409

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

430
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
431 432 433 434 435 436 437 438
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

439
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
440 441 442
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
443
	unsigned int active = cpu_base->active_bases;
444

445
	hrtimer_update_next_timer(cpu_base, NULL);
446
	for (; active; base++, active >>= 1) {
447 448 449
		struct timerqueue_node *next;
		struct hrtimer *timer;

450
		if (!(active & 0x01))
451 452
			continue;

453
		next = timerqueue_getnext(&base->active);
454 455
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
456
		if (expires.tv64 < expires_next.tv64) {
457
			expires_next = expires;
458 459
			hrtimer_update_next_timer(cpu_base, timer);
		}
460 461 462 463 464 465 466 467 468 469 470 471
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

472 473 474 475 476 477
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

478 479
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
480 481
}

482 483 484 485 486 487 488
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
489 490
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
519 520 521 522 523
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

524 525
static inline int hrtimer_hres_active(void)
{
526
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
527 528 529 530 531 532 533
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
534 535
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
536
{
537 538 539 540 541 542
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
543

544 545 546 547 548
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

566
	tick_program_event(cpu_base->expires_next, 1);
567 568 569 570 571 572 573 574 575
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
576 577
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
578
{
579
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
580
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
581

582
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
583

584
	/*
585 586
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
587
	 */
588 589 590 591 592 593 594 595 596 597 598 599
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
600

601 602
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
603
	 * expiry time which is less than base->offset. Set it to 0.
604 605
	 */
	if (expires.tv64 < 0)
606
		expires.tv64 = 0;
607

608
	if (expires.tv64 >= cpu_base->expires_next.tv64)
609
		return;
610

611
	/* Update the pointer to the next expiring timer */
612 613
	cpu_base->next_timer = timer;

614 615 616 617 618 619 620
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
621
		return;
622 623

	/*
624 625
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
626
	 */
627 628
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
629 630 631 632 633 634 635 636 637 638 639
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

640 641 642 643 644 645 646
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
647
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
648

649
	if (!base->hres_active)
650 651 652
		return;

	raw_spin_lock(&base->lock);
653
	hrtimer_update_base(base);
654 655 656
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
657

658 659 660
/*
 * Switch to high resolution mode
 */
661
static int hrtimer_switch_to_hres(void)
662
{
663
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
664 665

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
666
		printk(KERN_WARNING "Could not switch to high resolution "
667
				    "mode on CPU %d\n", base->cpu);
668
		return 0;
669 670
	}
	base->hres_active = 1;
671
	hrtimer_resolution = HIGH_RES_NSEC;
672 673 674 675

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
676
	return 1;
677 678
}

679 680 681 682 683 684 685
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

686
/*
687 688
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
689 690 691
 */
void clock_was_set_delayed(void)
{
692
	schedule_work(&hrtimer_work);
693 694
}

695 696
#else

697
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
698 699
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
700
static inline int hrtimer_switch_to_hres(void) { return 0; }
701 702
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
703 704
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
705 706 707 708
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
709
static inline void retrigger_next_event(void *arg) { }
710 711 712

#endif /* CONFIG_HIGH_RES_TIMERS */

713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
726
#ifdef CONFIG_HIGH_RES_TIMERS
727 728
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
729 730
#endif
	timerfd_clock_was_set();
731 732 733 734
}

/*
 * During resume we might have to reprogram the high resolution timer
735 736
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
737
 * must be deferred.
738 739 740 741 742 743
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

744
	/* Retrigger on the local CPU */
745
	retrigger_next_event(NULL);
746 747
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
748 749
}

750
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
751
{
752
#ifdef CONFIG_TIMER_STATS
753 754
	if (timer->start_site)
		return;
755
	timer->start_site = __builtin_return_address(0);
756 757
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
758 759 760 761 762 763 764 765
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
766
}
767 768 769 770 771 772 773 774

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
775
#endif
776
}
777

778
/*
779
 * Counterpart to lock_hrtimer_base above:
780 781 782 783
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
784
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
785 786 787 788 789
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
790
 * @now:	forward past this time
791 792 793
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
794
 * Returns the number of overruns.
795 796 797 798 799 800 801 802
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
803
 */
D
Davide Libenzi 已提交
804
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
805
{
D
Davide Libenzi 已提交
806
	u64 orun = 1;
807
	ktime_t delta;
808

809
	delta = ktime_sub(now, hrtimer_get_expires(timer));
810 811 812 813

	if (delta.tv64 < 0)
		return 0;

814 815 816
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

817 818
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
819

820
	if (unlikely(delta.tv64 >= interval.tv64)) {
821
		s64 incr = ktime_to_ns(interval);
822 823

		orun = ktime_divns(delta, incr);
824 825
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
826 827 828 829 830 831 832
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
833
	hrtimer_add_expires(timer, interval);
834 835 836

	return orun;
}
S
Stas Sergeev 已提交
837
EXPORT_SYMBOL_GPL(hrtimer_forward);
838 839 840 841 842 843

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
844 845
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
846
 */
847 848
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
849
{
850
	debug_activate(timer);
851

852
	base->cpu_base->active_bases |= 1 << base->index;
853

854
	timer->state = HRTIMER_STATE_ENQUEUED;
855

856
	return timerqueue_add(&base->active, &timer->node);
857
}
858 859 860 861 862

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
863 864 865 866 867
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
868
 */
869
static void __remove_hrtimer(struct hrtimer *timer,
870
			     struct hrtimer_clock_base *base,
871
			     unsigned long newstate, int reprogram)
872
{
873
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
874
	unsigned int state = timer->state;
875

876 877 878
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
879

880
	if (!timerqueue_del(&base->active, &timer->node))
881
		cpu_base->active_bases &= ~(1 << base->index);
882

883
#ifdef CONFIG_HIGH_RES_TIMERS
884 885 886 887 888 889 890 891 892 893
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
894
#endif
895 896 897 898 899 900
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
901
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
902
{
903
	if (hrtimer_is_queued(timer)) {
904
		unsigned long state = timer->state;
905 906 907 908 909 910 911 912 913 914
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
915
		debug_deactivate(timer);
916
		timer_stats_hrtimer_clear_start_info(timer);
917
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
918

919 920 921
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

922
		__remove_hrtimer(timer, base, state, reprogram);
923 924 925 926 927
		return 1;
	}
	return 0;
}

928 929 930 931 932 933 934 935
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
936 937
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    unsigned long delta_ns, const enum hrtimer_mode mode)
938
{
939
	struct hrtimer_clock_base *base, *new_base;
940
	unsigned long flags;
941
	int leftmost;
942 943 944 945

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
946
	remove_hrtimer(timer, base, true);
947

948
	if (mode & HRTIMER_MODE_REL) {
949
		tim = ktime_add_safe(tim, base->get_time());
950 951 952 953 954 955 956 957
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
958
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
959 960
#endif
	}
961

962
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
963

964 965 966
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

967 968
	timer_stats_hrtimer_set_start_info(timer);

969
	leftmost = enqueue_hrtimer(timer, new_base);
970 971
	if (!leftmost)
		goto unlock;
972 973 974 975 976 977 978

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
979 980
	} else {
		hrtimer_reprogram(timer, new_base);
981
	}
982
unlock:
983 984
	unlock_hrtimer_base(timer, &flags);
}
985 986
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

987 988 989 990 991 992 993 994
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
995
 *    cannot be stopped
996 997 998
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
999
	struct hrtimer_clock_base *base;
1000 1001 1002
	unsigned long flags;
	int ret = -1;

1003 1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

1012 1013
	base = lock_hrtimer_base(timer, &flags);

1014
	if (!hrtimer_callback_running(timer))
1015
		ret = remove_hrtimer(timer, base, false);
1016 1017 1018 1019 1020 1021

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1022
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1039
		cpu_relax();
1040 1041
	}
}
1042
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1053
	lock_hrtimer_base(timer, &flags);
1054
	rem = hrtimer_expires_remaining(timer);
1055 1056 1057 1058
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1059
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1060

1061
#ifdef CONFIG_NO_HZ_COMMON
1062 1063 1064
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1065
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1066
 */
1067
u64 hrtimer_get_next_event(void)
1068
{
1069
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1070
	u64 expires = KTIME_MAX;
1071 1072
	unsigned long flags;

1073
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1074

1075
	if (!__hrtimer_hres_active(cpu_base))
1076
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1077

1078
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1079

1080
	return expires;
1081 1082 1083
}
#endif

1084 1085
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1086
{
1087
	struct hrtimer_cpu_base *cpu_base;
1088
	int base;
1089

1090 1091
	memset(timer, 0, sizeof(struct hrtimer));

1092
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1093

1094
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1095 1096
		clock_id = CLOCK_MONOTONIC;

1097 1098
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1099
	timerqueue_init(&timer->node);
1100 1101 1102 1103 1104 1105

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1106
}
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1117
	debug_init(timer, clock_id, mode);
1118 1119
	__hrtimer_init(timer, clock_id, mode);
}
1120
EXPORT_SYMBOL_GPL(hrtimer_init);
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
 *
 * It is important for this function to not return a false negative.
 */
bool hrtimer_active(const struct hrtimer *timer)
{
	struct hrtimer_cpu_base *cpu_base;
	unsigned int seq;

	do {
		cpu_base = READ_ONCE(timer->base->cpu_base);
		seq = raw_read_seqcount_begin(&cpu_base->seq);

		if (timer->state != HRTIMER_STATE_INACTIVE ||
		    cpu_base->running == timer)
			return true;

	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
		 cpu_base != READ_ONCE(timer->base->cpu_base));

	return false;
}
EXPORT_SYMBOL_GPL(hrtimer_active);

/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1167 1168 1169
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1170 1171 1172 1173
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1174
	lockdep_assert_held(&cpu_base->lock);
1175

1176
	debug_deactivate(timer);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	cpu_base->running = timer;

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1189 1190
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1191 1192 1193 1194 1195 1196

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1197
	raw_spin_unlock(&cpu_base->lock);
1198
	trace_hrtimer_expire_entry(timer, now);
1199
	restart = fn(timer);
1200
	trace_hrtimer_expire_exit(timer);
1201
	raw_spin_lock(&cpu_base->lock);
1202 1203

	/*
1204
	 * Note: We clear the running state after enqueue_hrtimer and
T
Thomas Gleixner 已提交
1205 1206
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1207 1208 1209 1210
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1211
	 */
1212 1213
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1214
		enqueue_hrtimer(timer, base);
1215

1216 1217 1218 1219 1220 1221 1222 1223
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
	 * timer->state == INACTIVE.
	 */
	raw_write_seqcount_barrier(&cpu_base->seq);
1224

1225 1226
	WARN_ON_ONCE(cpu_base->running != timer);
	cpu_base->running = NULL;
1227 1228
}

1229
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1230
{
1231 1232
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1233

1234
	for (; active; base++, active >>= 1) {
1235
		struct timerqueue_node *node;
1236 1237
		ktime_t basenow;

1238
		if (!(active & 0x01))
1239
			continue;
1240 1241 1242

		basenow = ktime_add(now, base->offset);

1243
		while ((node = timerqueue_getnext(&base->active))) {
1244 1245
			struct hrtimer *timer;

1246
			timer = container_of(node, struct hrtimer, node);
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1260
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1261 1262
				break;

1263
			__run_hrtimer(cpu_base, base, timer, &basenow);
1264 1265
		}
	}
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1299 1300
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1301 1302 1303 1304
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1305
	cpu_base->expires_next = expires_next;
1306
	cpu_base->in_hrtirq = 0;
1307
	raw_spin_unlock(&cpu_base->lock);
1308 1309

	/* Reprogramming necessary ? */
1310
	if (!tick_program_event(expires_next, 0)) {
1311 1312
		cpu_base->hang_detected = 0;
		return;
1313
	}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1324 1325 1326
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1327
	 */
1328
	raw_spin_lock(&cpu_base->lock);
1329
	now = hrtimer_update_base(cpu_base);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1341
	raw_spin_unlock(&cpu_base->lock);
1342
	delta = ktime_sub(now, entry_time);
1343 1344
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1356 1357
}

1358 1359 1360 1361
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1362
static inline void __hrtimer_peek_ahead_timers(void)
1363 1364 1365 1366 1367 1368
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1369
	td = this_cpu_ptr(&tick_cpu_device);
1370 1371 1372 1373
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1374 1375 1376 1377 1378
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1379

1380
/*
1381
 * Called from run_local_timers in hardirq context every jiffy
1382
 */
1383
void hrtimer_run_queues(void)
1384
{
1385
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1386
	ktime_t now;
1387

1388
	if (__hrtimer_hres_active(cpu_base))
1389 1390
		return;

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
		hrtimer_switch_to_hres();
		return;
	}

1403 1404 1405 1406
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1407 1408
}

1409 1410 1411
/*
 * Sleep related functions:
 */
1412
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1425
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1426 1427 1428 1429
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1430
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1431

1432
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1433
{
1434
	hrtimer_init_sleeper(t, current);
1435

1436 1437
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1438
		hrtimer_start_expires(&t->timer, mode);
1439

1440
		if (likely(t->task))
1441
			freezable_schedule();
1442

1443
		hrtimer_cancel(&t->timer);
1444
		mode = HRTIMER_MODE_ABS;
1445 1446

	} while (t->task && !signal_pending(current));
1447

1448 1449
	__set_current_state(TASK_RUNNING);

1450
	return t->task == NULL;
1451 1452
}

1453 1454 1455 1456 1457
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1458
	rem = hrtimer_expires_remaining(timer);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1469
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1470
{
1471
	struct hrtimer_sleeper t;
1472
	struct timespec __user  *rmtp;
1473
	int ret = 0;
1474

1475
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1476
				HRTIMER_MODE_ABS);
1477
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1478

1479
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1480
		goto out;
1481

1482
	rmtp = restart->nanosleep.rmtp;
1483
	if (rmtp) {
1484
		ret = update_rmtp(&t.timer, rmtp);
1485
		if (ret <= 0)
1486
			goto out;
1487
	}
1488 1489

	/* The other values in restart are already filled in */
1490 1491 1492 1493
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1494 1495
}

1496
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1497 1498 1499
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1500
	struct hrtimer_sleeper t;
1501
	int ret = 0;
1502 1503 1504
	unsigned long slack;

	slack = current->timer_slack_ns;
1505
	if (dl_task(current) || rt_task(current))
1506
		slack = 0;
1507

1508
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1509
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1510
	if (do_nanosleep(&t, mode))
1511
		goto out;
1512

1513
	/* Absolute timers do not update the rmtp value and restart: */
1514 1515 1516 1517
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1518

1519
	if (rmtp) {
1520
		ret = update_rmtp(&t.timer, rmtp);
1521
		if (ret <= 0)
1522
			goto out;
1523
	}
1524

1525
	restart = &current->restart_block;
1526
	restart->fn = hrtimer_nanosleep_restart;
1527
	restart->nanosleep.clockid = t.timer.base->clockid;
1528
	restart->nanosleep.rmtp = rmtp;
1529
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1530

1531 1532 1533 1534
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1535 1536
}

1537 1538
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1539
{
1540
	struct timespec tu;
1541 1542 1543 1544 1545 1546 1547

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1548
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1549 1550
}

1551 1552 1553
/*
 * Functions related to boot-time initialization:
 */
1554
static void init_hrtimers_cpu(int cpu)
1555
{
1556
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1557 1558
	int i;

1559
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1560
		cpu_base->clock_base[i].cpu_base = cpu_base;
1561 1562
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1563

1564
	cpu_base->cpu = cpu;
1565
	hrtimer_init_hres(cpu_base);
1566 1567 1568 1569
}

#ifdef CONFIG_HOTPLUG_CPU

1570
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1571
				struct hrtimer_clock_base *new_base)
1572 1573
{
	struct hrtimer *timer;
1574
	struct timerqueue_node *node;
1575

1576 1577
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1578
		BUG_ON(hrtimer_callback_running(timer));
1579
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1580 1581

		/*
1582
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1583 1584 1585
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1586
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1587
		timer->base = new_base;
1588
		/*
T
Thomas Gleixner 已提交
1589 1590 1591 1592 1593 1594
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1595
		 */
1596
		enqueue_hrtimer(timer, new_base);
1597 1598 1599
	}
}

1600
static void migrate_hrtimers(int scpu)
1601
{
1602
	struct hrtimer_cpu_base *old_base, *new_base;
1603
	int i;
1604

1605 1606
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1607 1608 1609

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1610
	new_base = this_cpu_ptr(&hrtimer_bases);
1611 1612 1613 1614
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1615 1616
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1617

1618
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1619
		migrate_hrtimer_list(&old_base->clock_base[i],
1620
				     &new_base->clock_base[i]);
1621 1622
	}

1623 1624
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1625

1626 1627 1628
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1629
}
1630

1631 1632
#endif /* CONFIG_HOTPLUG_CPU */

1633
static int hrtimer_cpu_notify(struct notifier_block *self,
1634 1635
					unsigned long action, void *hcpu)
{
1636
	int scpu = (long)hcpu;
1637 1638 1639 1640

	switch (action) {

	case CPU_UP_PREPARE:
1641
	case CPU_UP_PREPARE_FROZEN:
1642
		init_hrtimers_cpu(scpu);
1643 1644 1645 1646
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1647
	case CPU_DEAD_FROZEN:
1648
		migrate_hrtimers(scpu);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1659
static struct notifier_block hrtimers_nb = {
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1670
/**
1671
 * schedule_hrtimeout_range_clock - sleep until timeout
1672
 * @expires:	timeout value (ktime_t)
1673
 * @delta:	slack in expires timeout (ktime_t)
1674
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1675
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1676
 */
1677 1678 1679
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1693
	 * A NULL parameter means "infinite"
1694 1695 1696 1697 1698 1699
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1700
	hrtimer_init_on_stack(&t.timer, clock, mode);
1701
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1702 1703 1704

	hrtimer_init_sleeper(&t, current);

1705
	hrtimer_start_expires(&t.timer, mode);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1781
EXPORT_SYMBOL_GPL(schedule_hrtimeout);