hrtimer.c 48.5 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57 58
/*
 * The timer bases:
59
 *
60 61 62 63
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
64
 */
65
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66
{
67

68
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69
	.clock_base =
70
	{
71
		{
72 73
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
74
			.get_time = &ktime_get,
75
			.resolution = KTIME_LOW_RES,
76
		},
T
Thomas Gleixner 已提交
77 78 79 80 81 82
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
83
		{
84 85
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
86 87 88
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
89 90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
			.resolution = KTIME_LOW_RES,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
102
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
103
};
104 105 106 107 108 109 110

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


111 112 113 114
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
115
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
116
{
117
	ktime_t xtim, mono, boot;
118
	struct timespec xts, tom, slp;
119
	s32 tai_offset;
120

121
	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
122
	tai_offset = timekeeping_get_tai_offset();
123

J
john stultz 已提交
124
	xtim = timespec_to_ktime(xts);
125 126
	mono = ktime_add(xtim, timespec_to_ktime(tom));
	boot = ktime_add(mono, timespec_to_ktime(slp));
127
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 129
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 131
	base->clock_base[HRTIMER_BASE_TAI].softirq_time =
				ktime_add(xtim,	ktime_set(tai_offset, 0));
132 133
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
152 153 154
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
155
{
156
	struct hrtimer_clock_base *base;
157 158 159 160

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
161
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
162 163 164
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
165
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
166 167 168 169 170
		}
		cpu_relax();
	}
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

194 195 196
/*
 * Switch the timer base to the current CPU when possible.
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201 202
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
203
	int this_cpu = smp_processor_id();
204
	int cpu = get_nohz_timer_target(pinned);
205
	int basenum = base->index;
206

207 208
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
209
	new_base = &new_cpu_base->clock_base[basenum];
210 211 212

	if (base != new_base) {
		/*
213
		 * We are trying to move timer to new_base.
214 215 216 217 218 219 220
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
221
		if (unlikely(hrtimer_callback_running(timer)))
222 223 224 225
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
226 227
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
228

229 230
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
231 232
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
233 234
			timer->base = base;
			goto again;
235
		}
236
		timer->base = new_base;
237 238 239 240 241
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
242 243 244 245 246 247
	}
	return new_base;
}

#else /* CONFIG_SMP */

248
static inline struct hrtimer_clock_base *
249 250
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
251
	struct hrtimer_clock_base *base = timer->base;
252

253
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
254 255 256 257

	return base;
}

258
# define switch_hrtimer_base(t, b, p)	(b)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

284 285 286 287
		/* Make sure nsec fits into long */
		if (unlikely(nsec > KTIME_SEC_MAX))
			return (ktime_t){ .tv64 = KTIME_MAX };

288 289 290 291 292
		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
293 294

EXPORT_SYMBOL_GPL(ktime_add_ns);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
319 320 321 322 323
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
324
u64 ktime_divns(const ktime_t kt, s64 div)
325
{
326
	u64 dclc;
327 328
	int sft = 0;

329
	dclc = ktime_to_ns(kt);
330 331 332 333 334 335 336 337
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
338
	return dclc;
339 340 341
}
#endif /* BITS_PER_LONG >= 64 */

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

359 360
EXPORT_SYMBOL_GPL(ktime_add_safe);

361 362 363 364
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

365 366 367 368 369
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
429
	.debug_hint	= hrtimer_debug_hint,
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
464
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
465 466 467 468 469 470 471 472 473 474 475 476

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
534
	return __this_cpu_read(hrtimer_bases.hres_active);
535 536 537 538 539 540 541
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
542 543
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
544 545 546
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
547
	ktime_t expires, expires_next;
548

549
	expires_next.tv64 = KTIME_MAX;
550 551 552

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
553
		struct timerqueue_node *next;
554

555 556
		next = timerqueue_getnext(&base->active);
		if (!next)
557
			continue;
558 559
		timer = container_of(next, struct hrtimer, node);

560
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
561 562 563 564 565 566 567
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
568 569
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
570 571
	}

572 573 574 575 576
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
610
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
611
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
612 613
	int res;

614
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
615

616 617 618
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
619
	 * the callback is executed in the hrtimer_interrupt context. The
620 621 622 623 624 625
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

626 627 628 629 630 631 632 633 634
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

635 636 637 638 639 640 641 642 643 644
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
645 646 647 648 649 650 651
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
652
		cpu_base->expires_next = expires;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
672
					    struct hrtimer_clock_base *base)
673
{
674
	return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
675 676
}

677 678 679 680
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
681
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
682

683
	return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
684 685
}

686 687 688 689 690 691 692 693 694 695 696 697 698
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);

	if (!hrtimer_hres_active())
		return;

	raw_spin_lock(&base->lock);
699
	hrtimer_update_base(base);
700 701 702
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
703

704 705 706
/*
 * Switch to high resolution mode
 */
707
static int hrtimer_switch_to_hres(void)
708
{
709
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
710
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 712 713
	unsigned long flags;

	if (base->hres_active)
714
		return 1;
715 716 717 718 719

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
720 721
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
722
		return 0;
723 724
	}
	base->hres_active = 1;
725 726
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
727 728 729 730 731

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
732
	return 1;
733 734
}

735 736 737 738 739 740 741
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

742
/*
743 744
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
745 746 747
 */
void clock_was_set_delayed(void)
{
748
	schedule_work(&hrtimer_work);
749 750
}

751 752 753 754
#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
755
static inline int hrtimer_switch_to_hres(void) { return 0; }
756 757
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
758
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
759
					    struct hrtimer_clock_base *base)
760 761 762 763
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
764
static inline void retrigger_next_event(void *arg) { }
765 766 767

#endif /* CONFIG_HIGH_RES_TIMERS */

768 769 770 771 772 773 774 775 776 777 778 779 780
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
781
#ifdef CONFIG_HIGH_RES_TIMERS
782 783
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
784 785
#endif
	timerfd_clock_was_set();
786 787 788 789
}

/*
 * During resume we might have to reprogram the high resolution timer
790 791
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
792
 * must be deferred.
793 794 795 796 797 798
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

799
	/* Retrigger on the local CPU */
800
	retrigger_next_event(NULL);
801 802
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
803 804
}

805
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
806
{
807
#ifdef CONFIG_TIMER_STATS
808 809
	if (timer->start_site)
		return;
810
	timer->start_site = __builtin_return_address(0);
811 812
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
813 814 815 816 817 818 819 820
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
821
}
822 823 824 825 826 827 828 829

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
830
#endif
831
}
832

833
/*
834
 * Counterpart to lock_hrtimer_base above:
835 836 837 838
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
839
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
840 841 842 843 844
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
845
 * @now:	forward past this time
846 847 848
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
849
 * Returns the number of overruns.
850
 */
D
Davide Libenzi 已提交
851
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
852
{
D
Davide Libenzi 已提交
853
	u64 orun = 1;
854
	ktime_t delta;
855

856
	delta = ktime_sub(now, hrtimer_get_expires(timer));
857 858 859 860

	if (delta.tv64 < 0)
		return 0;

861 862 863
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

864
	if (unlikely(delta.tv64 >= interval.tv64)) {
865
		s64 incr = ktime_to_ns(interval);
866 867

		orun = ktime_divns(delta, incr);
868 869
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
870 871 872 873 874 875 876
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
877
	hrtimer_add_expires(timer, interval);
878 879 880

	return orun;
}
S
Stas Sergeev 已提交
881
EXPORT_SYMBOL_GPL(hrtimer_forward);
882 883 884 885 886 887

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
888 889
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
890
 */
891 892
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
893
{
894
	debug_activate(timer);
895

896
	timerqueue_add(&base->active, &timer->node);
897
	base->cpu_base->active_bases |= 1 << base->index;
898

899 900 901 902 903
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
904

905
	return (&timer->node == base->active.next);
906
}
907 908 909 910 911

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
912 913 914 915 916
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
917
 */
918
static void __remove_hrtimer(struct hrtimer *timer,
919
			     struct hrtimer_clock_base *base,
920
			     unsigned long newstate, int reprogram)
921
{
922
	struct timerqueue_node *next_timer;
923 924 925
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

926 927 928
	next_timer = timerqueue_getnext(&base->active);
	timerqueue_del(&base->active, &timer->node);
	if (&timer->node == next_timer) {
929 930 931 932 933 934 935 936 937
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
938
		}
939
#endif
940
	}
941 942
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);
943
out:
944
	timer->state = newstate;
945 946 947 948 949 950
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
951
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
952
{
953
	if (hrtimer_is_queued(timer)) {
954
		unsigned long state;
955 956 957 958 959 960 961 962 963 964
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
965
		debug_deactivate(timer);
966
		timer_stats_hrtimer_clear_start_info(timer);
967
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
968 969 970 971 972 973 974
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
975 976 977 978 979
		return 1;
	}
	return 0;
}

980 981 982
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
983
{
984
	struct hrtimer_clock_base *base, *new_base;
985
	unsigned long flags;
986
	int ret, leftmost;
987 988 989 990 991 992

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

993
	if (mode & HRTIMER_MODE_REL) {
994
		tim = ktime_add_safe(tim, base->get_time());
995 996 997 998 999 1000 1001 1002
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
1003
		tim = ktime_add_safe(tim, base->resolution);
1004 1005
#endif
	}
1006

1007
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1008

1009 1010 1011
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

1012 1013
	timer_stats_hrtimer_set_start_info(timer);

1014 1015
	leftmost = enqueue_hrtimer(timer, new_base);

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	if (!leftmost) {
		unlock_hrtimer_base(timer, &flags);
		return ret;
	}

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
	} else if (new_base->cpu_base == &__get_cpu_var(hrtimer_bases) &&
			hrtimer_enqueue_reprogram(timer, new_base)) {
		/*
		 * Only allow reprogramming if the new base is on this CPU.
		 * (it might still be on another CPU if the timer was pending)
		 *
		 * XXX send_remote_softirq() ?
		 */
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		if (wakeup) {
			/*
			 * We need to drop cpu_base->lock to avoid a
			 * lock ordering issue vs. rq->lock.
			 */
			raw_spin_unlock(&new_base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			local_irq_restore(flags);
			return ret;
		} else {
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
		}
	}
1048 1049 1050 1051 1052

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
1053
EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1054 1055 1056 1057 1058 1059

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
1060 1061
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1072 1073 1074
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1075
 * hrtimer_start - (re)start an hrtimer on the current CPU
1076 1077
 * @timer:	the timer to be added
 * @tim:	expiry time
1078 1079
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
1080 1081 1082 1083 1084 1085 1086 1087
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1088
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1089
}
1090
EXPORT_SYMBOL_GPL(hrtimer_start);
1091

1092

1093 1094 1095 1096 1097 1098 1099 1100
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1101
 *    cannot be stopped
1102 1103 1104
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1105
	struct hrtimer_clock_base *base;
1106 1107 1108 1109 1110
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1111
	if (!hrtimer_callback_running(timer))
1112 1113 1114 1115 1116 1117 1118
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1119
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1136
		cpu_relax();
1137 1138
	}
}
1139
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1150
	lock_hrtimer_base(timer, &flags);
1151
	rem = hrtimer_expires_remaining(timer);
1152 1153 1154 1155
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1156
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1157

1158
#ifdef CONFIG_NO_HZ_COMMON
1159 1160 1161 1162 1163 1164 1165 1166
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1167 1168
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1169 1170 1171 1172
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1173
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1174

1175 1176 1177
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1178
			struct timerqueue_node *next;
1179

1180 1181
			next = timerqueue_getnext(&base->active);
			if (!next)
1182
				continue;
1183

1184
			timer = container_of(next, struct hrtimer, node);
1185
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1186 1187 1188 1189
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1190
	}
1191

1192
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1193

1194 1195 1196 1197 1198 1199
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1200 1201
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1202
{
1203
	struct hrtimer_cpu_base *cpu_base;
1204
	int base;
1205

1206 1207
	memset(timer, 0, sizeof(struct hrtimer));

1208
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1209

1210
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1211 1212
		clock_id = CLOCK_MONOTONIC;

1213 1214
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1215
	timerqueue_init(&timer->node);
1216 1217 1218 1219 1220 1221

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1222
}
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1233
	debug_init(timer, clock_id, mode);
1234 1235
	__hrtimer_init(timer, clock_id, mode);
}
1236
EXPORT_SYMBOL_GPL(hrtimer_init);
1237 1238 1239 1240 1241 1242

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1243 1244
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1245 1246 1247
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1248
	struct hrtimer_cpu_base *cpu_base;
1249
	int base = hrtimer_clockid_to_base(which_clock);
1250

1251
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1252
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1253 1254 1255

	return 0;
}
1256
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1257

1258
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1259 1260 1261 1262 1263 1264
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1265 1266
	WARN_ON(!irqs_disabled());

1267
	debug_deactivate(timer);
1268 1269 1270
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1271 1272 1273 1274 1275 1276

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1277
	raw_spin_unlock(&cpu_base->lock);
1278
	trace_hrtimer_expire_entry(timer, now);
1279
	restart = fn(timer);
1280
	trace_hrtimer_expire_exit(timer);
1281
	raw_spin_lock(&cpu_base->lock);
1282 1283

	/*
T
Thomas Gleixner 已提交
1284 1285 1286
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1287 1288 1289
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1290
		enqueue_hrtimer(timer, base);
1291
	}
1292 1293 1294

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1295 1296 1297
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1298 1299 1300 1301 1302 1303 1304 1305 1306
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1307 1308
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1309 1310 1311 1312 1313

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1314
	raw_spin_lock(&cpu_base->lock);
1315
	entry_time = now = hrtimer_update_base(cpu_base);
1316
retry:
1317
	expires_next.tv64 = KTIME_MAX;
1318 1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1327
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1328
		struct hrtimer_clock_base *base;
1329
		struct timerqueue_node *node;
1330 1331 1332 1333
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1334

1335
		base = cpu_base->clock_base + i;
1336 1337
		basenow = ktime_add(now, base->offset);

1338
		while ((node = timerqueue_getnext(&base->active))) {
1339 1340
			struct hrtimer *timer;

1341
			timer = container_of(node, struct hrtimer, node);
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1357 1358
				ktime_t expires;

1359
				expires = ktime_sub(hrtimer_get_expires(timer),
1360
						    base->offset);
1361 1362
				if (expires.tv64 < 0)
					expires.tv64 = KTIME_MAX;
1363 1364 1365 1366 1367
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1368
			__run_hrtimer(timer, &basenow);
1369 1370 1371
		}
	}

1372 1373 1374 1375
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1376
	cpu_base->expires_next = expires_next;
1377
	raw_spin_unlock(&cpu_base->lock);
1378 1379

	/* Reprogramming necessary ? */
1380 1381 1382 1383
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1384
	}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1395 1396 1397
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1398
	 */
1399
	raw_spin_lock(&cpu_base->lock);
1400
	now = hrtimer_update_base(cpu_base);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1412
	raw_spin_unlock(&cpu_base->lock);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1427 1428
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1456
	unsigned long flags;
1457

1458
	local_irq_save(flags);
1459
	__hrtimer_peek_ahead_timers();
1460 1461 1462
	local_irq_restore(flags);
}

1463 1464 1465 1466 1467
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1468 1469 1470 1471 1472
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1496 1497
}

1498
/*
1499
 * Called from hardirq context every jiffy
1500
 */
1501
void hrtimer_run_queues(void)
1502
{
1503
	struct timerqueue_node *node;
1504 1505 1506
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1507

1508
	if (hrtimer_hres_active())
1509 1510
		return;

1511 1512
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1513
		if (!timerqueue_getnext(&base->active))
1514
			continue;
1515

1516
		if (gettime) {
1517 1518
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1519
		}
1520

1521
		raw_spin_lock(&cpu_base->lock);
1522

1523
		while ((node = timerqueue_getnext(&base->active))) {
1524
			struct hrtimer *timer;
1525

1526
			timer = container_of(node, struct hrtimer, node);
1527 1528
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1529 1530
				break;

1531
			__run_hrtimer(timer, &base->softirq_time);
1532
		}
1533
		raw_spin_unlock(&cpu_base->lock);
1534
	}
1535 1536
}

1537 1538 1539
/*
 * Sleep related functions:
 */
1540
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1553
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1554 1555 1556 1557
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1558
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1559

1560
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1561
{
1562
	hrtimer_init_sleeper(t, current);
1563

1564 1565
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1566
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1567 1568
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1569

1570
		if (likely(t->task))
1571
			freezable_schedule();
1572

1573
		hrtimer_cancel(&t->timer);
1574
		mode = HRTIMER_MODE_ABS;
1575 1576

	} while (t->task && !signal_pending(current));
1577

1578 1579
	__set_current_state(TASK_RUNNING);

1580
	return t->task == NULL;
1581 1582
}

1583 1584 1585 1586 1587
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1588
	rem = hrtimer_expires_remaining(timer);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1599
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1600
{
1601
	struct hrtimer_sleeper t;
1602
	struct timespec __user  *rmtp;
1603
	int ret = 0;
1604

1605
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1606
				HRTIMER_MODE_ABS);
1607
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1608

1609
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1610
		goto out;
1611

1612
	rmtp = restart->nanosleep.rmtp;
1613
	if (rmtp) {
1614
		ret = update_rmtp(&t.timer, rmtp);
1615
		if (ret <= 0)
1616
			goto out;
1617
	}
1618 1619

	/* The other values in restart are already filled in */
1620 1621 1622 1623
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1624 1625
}

1626
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1627 1628 1629
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1630
	struct hrtimer_sleeper t;
1631
	int ret = 0;
1632 1633 1634
	unsigned long slack;

	slack = current->timer_slack_ns;
1635
	if (dl_task(current) || rt_task(current))
1636
		slack = 0;
1637

1638
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1639
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1640
	if (do_nanosleep(&t, mode))
1641
		goto out;
1642

1643
	/* Absolute timers do not update the rmtp value and restart: */
1644 1645 1646 1647
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1648

1649
	if (rmtp) {
1650
		ret = update_rmtp(&t.timer, rmtp);
1651
		if (ret <= 0)
1652
			goto out;
1653
	}
1654 1655

	restart = &current_thread_info()->restart_block;
1656
	restart->fn = hrtimer_nanosleep_restart;
1657
	restart->nanosleep.clockid = t.timer.base->clockid;
1658
	restart->nanosleep.rmtp = rmtp;
1659
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1660

1661 1662 1663 1664
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1665 1666
}

1667 1668
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1669
{
1670
	struct timespec tu;
1671 1672 1673 1674 1675 1676 1677

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1678
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1679 1680
}

1681 1682 1683
/*
 * Functions related to boot-time initialization:
 */
1684
static void init_hrtimers_cpu(int cpu)
1685
{
1686
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1687 1688
	int i;

1689
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1690
		cpu_base->clock_base[i].cpu_base = cpu_base;
1691 1692
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1693

1694
	cpu_base->cpu = cpu;
1695
	hrtimer_init_hres(cpu_base);
1696 1697 1698 1699
}

#ifdef CONFIG_HOTPLUG_CPU

1700
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1701
				struct hrtimer_clock_base *new_base)
1702 1703
{
	struct hrtimer *timer;
1704
	struct timerqueue_node *node;
1705

1706 1707
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1708
		BUG_ON(hrtimer_callback_running(timer));
1709
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1710 1711 1712 1713 1714 1715 1716

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1717
		timer->base = new_base;
1718
		/*
T
Thomas Gleixner 已提交
1719 1720 1721 1722 1723 1724
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1725
		 */
1726
		enqueue_hrtimer(timer, new_base);
1727

T
Thomas Gleixner 已提交
1728 1729
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1730 1731 1732
	}
}

1733
static void migrate_hrtimers(int scpu)
1734
{
1735
	struct hrtimer_cpu_base *old_base, *new_base;
1736
	int i;
1737

1738 1739
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1740 1741 1742 1743

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1744 1745 1746 1747
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1748 1749
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1750

1751
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1752
		migrate_hrtimer_list(&old_base->clock_base[i],
1753
				     &new_base->clock_base[i]);
1754 1755
	}

1756 1757
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1758

1759 1760 1761
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1762
}
1763

1764 1765
#endif /* CONFIG_HOTPLUG_CPU */

1766
static int hrtimer_cpu_notify(struct notifier_block *self,
1767 1768
					unsigned long action, void *hcpu)
{
1769
	int scpu = (long)hcpu;
1770 1771 1772 1773

	switch (action) {

	case CPU_UP_PREPARE:
1774
	case CPU_UP_PREPARE_FROZEN:
1775
		init_hrtimers_cpu(scpu);
1776 1777 1778
		break;

#ifdef CONFIG_HOTPLUG_CPU
1779 1780 1781 1782
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1783
	case CPU_DEAD:
1784
	case CPU_DEAD_FROZEN:
1785
	{
1786
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1787
		migrate_hrtimers(scpu);
1788
		break;
1789
	}
1790 1791 1792 1793 1794 1795 1796 1797 1798
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1799
static struct notifier_block hrtimers_nb = {
1800 1801 1802 1803 1804 1805 1806 1807
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1808 1809 1810
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1811 1812
}

1813
/**
1814
 * schedule_hrtimeout_range_clock - sleep until timeout
1815
 * @expires:	timeout value (ktime_t)
1816
 * @delta:	slack in expires timeout (ktime_t)
1817
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1818
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1819
 */
1820 1821 1822
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1836
	 * A NULL parameter means "infinite"
1837 1838 1839 1840 1841 1842 1843
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1844
	hrtimer_init_on_stack(&t.timer, clock, mode);
1845
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1846 1847 1848

	hrtimer_init_sleeper(&t, current);

1849
	hrtimer_start_expires(&t.timer, mode);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1927
EXPORT_SYMBOL_GPL(schedule_hrtimeout);