hrtimer.c 42.9 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/timer.h>
51
#include <linux/freezer.h>
52 53 54

#include <asm/uaccess.h>

55 56
#include <trace/events/timer.h>

57
#include "tick-internal.h"
58

59 60
/*
 * The timer bases:
61
 *
62 63 64 65
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
66
 */
67
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68
{
69
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70
	.clock_base =
71
	{
72
		{
73 74
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
75 76
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
77 78 79 80 81
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
82
		{
83 84
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
85 86
			.get_time = &ktime_get_boottime,
		},
87 88 89 90 91
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
92
	}
93 94
};

95
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
96 97 98
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
99
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
100
};
101 102 103 104 105 106

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
125 126 127
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
128
{
129
	struct hrtimer_clock_base *base;
130 131 132 133

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
134
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
135 136 137
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
138
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
139 140 141 142 143
		}
		cpu_relax();
	}
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

167 168 169
/*
 * Switch the timer base to the current CPU when possible.
 */
170
static inline struct hrtimer_clock_base *
171 172
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
173
{
174 175
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
176
	int this_cpu = smp_processor_id();
177
	int cpu = get_nohz_timer_target(pinned);
178
	int basenum = base->index;
179

180 181
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
182
	new_base = &new_cpu_base->clock_base[basenum];
183 184 185

	if (base != new_base) {
		/*
186
		 * We are trying to move timer to new_base.
187 188 189 190 191 192 193
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
194
		if (unlikely(hrtimer_callback_running(timer)))
195 196 197 198
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
199 200
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
201

202 203
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
204 205
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
206 207
			timer->base = base;
			goto again;
208
		}
209
		timer->base = new_base;
210 211 212 213 214
	} else {
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			goto again;
		}
215 216 217 218 219 220
	}
	return new_base;
}

#else /* CONFIG_SMP */

221
static inline struct hrtimer_clock_base *
222 223
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
224
	struct hrtimer_clock_base *base = timer->base;
225

226
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
227 228 229 230

	return base;
}

231
# define switch_hrtimer_base(t, b, p)	(b)
232 233 234 235 236 237 238 239 240 241 242

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
243
u64 __ktime_divns(const ktime_t kt, s64 div)
244
{
245
	u64 dclc;
246 247
	int sft = 0;

248
	dclc = ktime_to_ns(kt);
249 250 251 252 253 254 255 256
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
257
	return dclc;
258
}
259
EXPORT_SYMBOL_GPL(__ktime_divns);
260 261
#endif /* BITS_PER_LONG >= 64 */

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

279 280
EXPORT_SYMBOL_GPL(ktime_add_safe);

281 282 283 284
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

285 286 287 288 289
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
349
	.debug_hint	= hrtimer_debug_hint,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
384
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
385 386 387 388 389 390 391 392 393 394 395 396

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

417
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
418 419 420 421 422 423 424 425
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

426
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
427 428 429
{
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
430
	unsigned int active = cpu_base->active_bases;
431

432
	hrtimer_update_next_timer(cpu_base, NULL);
433
	for (; active; base++, active >>= 1) {
434 435 436
		struct timerqueue_node *next;
		struct hrtimer *timer;

437
		if (!(active & 0x01))
438 439
			continue;

440
		next = timerqueue_getnext(&base->active);
441 442
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
443
		if (expires.tv64 < expires_next.tv64) {
444
			expires_next = expires;
445 446
			hrtimer_update_next_timer(cpu_base, timer);
		}
447 448 449 450 451 452 453 454 455 456 457 458
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
	if (expires_next.tv64 < 0)
		expires_next.tv64 = 0;
	return expires_next;
}
#endif

459 460 461 462 463 464
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

465 466
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
467 468
}

469 470 471 472 473 474 475
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;
476 477
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
506 507 508 509 510
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return cpu_base->hres_active;
}

511 512
static inline int hrtimer_hres_active(void)
{
513
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
514 515 516 517 518 519 520
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
521 522
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523
{
524 525 526 527 528 529
	ktime_t expires_next;

	if (!cpu_base->hres_active)
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
530

531 532 533 534 535
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

553 554 555 556 557 558 559 560 561 562 563
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
564 565
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
566
{
567
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569

570
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
571

572
	/*
573 574
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
575
	 */
576 577 578 579 580 581 582 583 584 585 586 587
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
588

589 590
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
591
	 * expiry time which is less than base->offset. Set it to 0.
592 593
	 */
	if (expires.tv64 < 0)
594
		expires.tv64 = 0;
595

596
	if (expires.tv64 >= cpu_base->expires_next.tv64)
597
		return;
598

599
	/* Update the pointer to the next expiring timer */
600 601
	cpu_base->next_timer = timer;

602 603 604 605 606 607 608
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
609
		return;
610 611

	/*
612 613
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
614
	 */
615 616
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
617 618 619 620 621 622 623 624 625 626 627
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

628 629 630 631 632 633 634
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
635
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
636

637
	if (!base->hres_active)
638 639 640
		return;

	raw_spin_lock(&base->lock);
641
	hrtimer_update_base(base);
642 643 644
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
645

646 647 648
/*
 * Switch to high resolution mode
 */
649
static int hrtimer_switch_to_hres(void)
650
{
651
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
652 653

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
654
		printk(KERN_WARNING "Could not switch to high resolution "
655
				    "mode on CPU %d\n", base->cpu);
656
		return 0;
657 658
	}
	base->hres_active = 1;
659
	hrtimer_resolution = HIGH_RES_NSEC;
660 661 662 663

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
664
	return 1;
665 666
}

667 668 669 670 671 672 673
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

674
/*
675 676
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
677 678 679
 */
void clock_was_set_delayed(void)
{
680
	schedule_work(&hrtimer_work);
681 682
}

683 684
#else

685
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
686 687
static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
688
static inline int hrtimer_switch_to_hres(void) { return 0; }
689 690
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
691 692
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
693 694 695 696
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
697
static inline void retrigger_next_event(void *arg) { }
698 699 700

#endif /* CONFIG_HIGH_RES_TIMERS */

701 702 703 704 705 706 707 708 709 710 711 712 713
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
714
#ifdef CONFIG_HIGH_RES_TIMERS
715 716
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
717 718
#endif
	timerfd_clock_was_set();
719 720 721 722
}

/*
 * During resume we might have to reprogram the high resolution timer
723 724
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
725
 * must be deferred.
726 727 728 729 730 731
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

732
	/* Retrigger on the local CPU */
733
	retrigger_next_event(NULL);
734 735
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
736 737
}

738
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
739
{
740
#ifdef CONFIG_TIMER_STATS
741 742
	if (timer->start_site)
		return;
743
	timer->start_site = __builtin_return_address(0);
744 745
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
746 747 748 749 750 751 752 753
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
754
}
755 756 757 758 759 760 761 762

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
763
#endif
764
}
765

766
/*
767
 * Counterpart to lock_hrtimer_base above:
768 769 770 771
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
772
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
773 774 775 776 777
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
778
 * @now:	forward past this time
779 780 781
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
782
 * Returns the number of overruns.
783 784 785 786 787 788 789 790
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
791
 */
D
Davide Libenzi 已提交
792
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
793
{
D
Davide Libenzi 已提交
794
	u64 orun = 1;
795
	ktime_t delta;
796

797
	delta = ktime_sub(now, hrtimer_get_expires(timer));
798 799 800 801

	if (delta.tv64 < 0)
		return 0;

802 803
	if (interval.tv64 < hrtimer_resolution)
		interval.tv64 = hrtimer_resolution;
804

805
	if (unlikely(delta.tv64 >= interval.tv64)) {
806
		s64 incr = ktime_to_ns(interval);
807 808

		orun = ktime_divns(delta, incr);
809 810
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
811 812 813 814 815 816 817
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
818
	hrtimer_add_expires(timer, interval);
819 820 821

	return orun;
}
S
Stas Sergeev 已提交
822
EXPORT_SYMBOL_GPL(hrtimer_forward);
823 824 825 826 827 828

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
829 830
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
831
 */
832 833
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
834
{
835
	debug_activate(timer);
836

837
	base->cpu_base->active_bases |= 1 << base->index;
838

839 840 841 842 843
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
844

845
	return timerqueue_add(&base->active, &timer->node);
846
}
847 848 849 850 851

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
852 853 854 855 856
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
857
 */
858
static void __remove_hrtimer(struct hrtimer *timer,
859
			     struct hrtimer_clock_base *base,
860
			     unsigned long newstate, int reprogram)
861
{
862
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
863
	unsigned int state = timer->state;
864

865 866 867
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
868

869
	if (!timerqueue_del(&base->active, &timer->node))
870
		cpu_base->active_bases &= ~(1 << base->index);
871

872
#ifdef CONFIG_HIGH_RES_TIMERS
873 874 875 876 877 878 879 880 881 882
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
883
#endif
884 885 886 887 888 889
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
890
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891
{
892
	if (hrtimer_is_queued(timer)) {
893
		unsigned long state;
894 895 896 897 898 899 900 901 902 903
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
904
		debug_deactivate(timer);
905
		timer_stats_hrtimer_clear_start_info(timer);
906
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
907 908 909 910 911 912 913
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
914 915 916 917 918
		return 1;
	}
	return 0;
}

919 920 921 922 923 924 925 926
/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL)
 */
927 928
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
			    unsigned long delta_ns, const enum hrtimer_mode mode)
929
{
930
	struct hrtimer_clock_base *base, *new_base;
931
	unsigned long flags;
932
	int leftmost;
933 934 935 936

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
937
	remove_hrtimer(timer, base);
938

939
	if (mode & HRTIMER_MODE_REL) {
940
		tim = ktime_add_safe(tim, base->get_time());
941 942 943 944 945 946 947 948
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
949
		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
950 951
#endif
	}
952

953
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
954

955 956 957
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

958 959
	timer_stats_hrtimer_set_start_info(timer);

960
	leftmost = enqueue_hrtimer(timer, new_base);
961 962
	if (!leftmost)
		goto unlock;
963 964 965 966 967 968 969

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
		wake_up_nohz_cpu(new_base->cpu_base->cpu);
970 971
	} else {
		hrtimer_reprogram(timer, new_base);
972
	}
973
unlock:
974 975
	unlock_hrtimer_base(timer, &flags);
}
976 977
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

978 979 980 981 982 983 984 985
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
986
 *    cannot be stopped
987 988 989
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
990
	struct hrtimer_clock_base *base;
991 992 993 994 995
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

996
	if (!hrtimer_callback_running(timer))
997 998 999 1000 1001 1002 1003
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1004
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1021
		cpu_relax();
1022 1023
	}
}
1024
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1035
	lock_hrtimer_base(timer, &flags);
1036
	rem = hrtimer_expires_remaining(timer);
1037 1038 1039 1040
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1041
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1042

1043
#ifdef CONFIG_NO_HZ_COMMON
1044 1045 1046
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1047
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1048
 */
1049
u64 hrtimer_get_next_event(void)
1050
{
1051
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1052
	u64 expires = KTIME_MAX;
1053 1054
	unsigned long flags;

1055
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1056

1057
	if (!__hrtimer_hres_active(cpu_base))
1058
		expires = __hrtimer_get_next_event(cpu_base).tv64;
1059

1060
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1061

1062
	return expires;
1063 1064 1065
}
#endif

1066 1067
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1068
{
1069
	struct hrtimer_cpu_base *cpu_base;
1070
	int base;
1071

1072 1073
	memset(timer, 0, sizeof(struct hrtimer));

1074
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1075

1076
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1077 1078
		clock_id = CLOCK_MONOTONIC;

1079 1080
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1081
	timerqueue_init(&timer->node);
1082 1083 1084 1085 1086 1087

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1088
}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1099
	debug_init(timer, clock_id, mode);
1100 1101
	__hrtimer_init(timer, clock_id, mode);
}
1102
EXPORT_SYMBOL_GPL(hrtimer_init);
1103

1104 1105 1106
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1107 1108 1109 1110
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1111 1112
	WARN_ON(!irqs_disabled());

1113
	debug_deactivate(timer);
1114 1115 1116
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1117 1118 1119 1120 1121 1122

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1123
	raw_spin_unlock(&cpu_base->lock);
1124
	trace_hrtimer_expire_entry(timer, now);
1125
	restart = fn(timer);
1126
	trace_hrtimer_expire_exit(timer);
1127
	raw_spin_lock(&cpu_base->lock);
1128 1129

	/*
T
Thomas Gleixner 已提交
1130 1131 1132
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1133 1134 1135
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1136
		enqueue_hrtimer(timer, base);
1137
	}
1138 1139 1140

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1141 1142 1143
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1144
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1145
{
1146 1147
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	unsigned int active = cpu_base->active_bases;
1148

1149
	for (; active; base++, active >>= 1) {
1150
		struct timerqueue_node *node;
1151 1152
		ktime_t basenow;

1153
		if (!(active & 0x01))
1154
			continue;
1155 1156 1157

		basenow = ktime_add(now, base->offset);

1158
		while ((node = timerqueue_getnext(&base->active))) {
1159 1160
			struct hrtimer *timer;

1161
			timer = container_of(node, struct hrtimer, node);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
1175
			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1176 1177
				break;

1178
			__run_hrtimer(cpu_base, base, timer, &basenow);
1179 1180
		}
	}
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	__hrtimer_run_queues(cpu_base, now);

1214 1215
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1216 1217 1218 1219
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1220
	cpu_base->expires_next = expires_next;
1221
	cpu_base->in_hrtirq = 0;
1222
	raw_spin_unlock(&cpu_base->lock);
1223 1224

	/* Reprogramming necessary ? */
1225 1226 1227 1228
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1229
	}
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1240 1241 1242
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1243
	 */
1244
	raw_spin_lock(&cpu_base->lock);
1245
	now = hrtimer_update_base(cpu_base);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1257
	raw_spin_unlock(&cpu_base->lock);
1258
	delta = ktime_sub(now, entry_time);
1259 1260
	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1272 1273
}

1274 1275 1276 1277
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
1278
static inline void __hrtimer_peek_ahead_timers(void)
1279 1280 1281 1282 1283 1284
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1285
	td = this_cpu_ptr(&tick_cpu_device);
1286 1287 1288 1289
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1290 1291 1292 1293 1294
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1295

1296
/*
1297
 * Called from run_local_timers in hardirq context every jiffy
1298
 */
1299
void hrtimer_run_queues(void)
1300
{
1301
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1302
	ktime_t now;
1303

1304
	if (__hrtimer_hres_active(cpu_base))
1305 1306
		return;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	/*
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
		hrtimer_switch_to_hres();
		return;
	}

1319 1320 1321 1322
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1323 1324
}

1325 1326 1327
/*
 * Sleep related functions:
 */
1328
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1341
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1342 1343 1344 1345
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1346
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1347

1348
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1349
{
1350
	hrtimer_init_sleeper(t, current);
1351

1352 1353
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1354
		hrtimer_start_expires(&t->timer, mode);
1355

1356
		if (likely(t->task))
1357
			freezable_schedule();
1358

1359
		hrtimer_cancel(&t->timer);
1360
		mode = HRTIMER_MODE_ABS;
1361 1362

	} while (t->task && !signal_pending(current));
1363

1364 1365
	__set_current_state(TASK_RUNNING);

1366
	return t->task == NULL;
1367 1368
}

1369 1370 1371 1372 1373
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1374
	rem = hrtimer_expires_remaining(timer);
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1385
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1386
{
1387
	struct hrtimer_sleeper t;
1388
	struct timespec __user  *rmtp;
1389
	int ret = 0;
1390

1391
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1392
				HRTIMER_MODE_ABS);
1393
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1394

1395
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1396
		goto out;
1397

1398
	rmtp = restart->nanosleep.rmtp;
1399
	if (rmtp) {
1400
		ret = update_rmtp(&t.timer, rmtp);
1401
		if (ret <= 0)
1402
			goto out;
1403
	}
1404 1405

	/* The other values in restart are already filled in */
1406 1407 1408 1409
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1410 1411
}

1412
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1413 1414 1415
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1416
	struct hrtimer_sleeper t;
1417
	int ret = 0;
1418 1419 1420
	unsigned long slack;

	slack = current->timer_slack_ns;
1421
	if (dl_task(current) || rt_task(current))
1422
		slack = 0;
1423

1424
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1425
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1426
	if (do_nanosleep(&t, mode))
1427
		goto out;
1428

1429
	/* Absolute timers do not update the rmtp value and restart: */
1430 1431 1432 1433
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1434

1435
	if (rmtp) {
1436
		ret = update_rmtp(&t.timer, rmtp);
1437
		if (ret <= 0)
1438
			goto out;
1439
	}
1440

1441
	restart = &current->restart_block;
1442
	restart->fn = hrtimer_nanosleep_restart;
1443
	restart->nanosleep.clockid = t.timer.base->clockid;
1444
	restart->nanosleep.rmtp = rmtp;
1445
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1446

1447 1448 1449 1450
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1451 1452
}

1453 1454
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1455
{
1456
	struct timespec tu;
1457 1458 1459 1460 1461 1462 1463

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1464
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1465 1466
}

1467 1468 1469
/*
 * Functions related to boot-time initialization:
 */
1470
static void init_hrtimers_cpu(int cpu)
1471
{
1472
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1473 1474
	int i;

1475
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1476
		cpu_base->clock_base[i].cpu_base = cpu_base;
1477 1478
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1479

1480
	cpu_base->cpu = cpu;
1481
	hrtimer_init_hres(cpu_base);
1482 1483 1484 1485
}

#ifdef CONFIG_HOTPLUG_CPU

1486
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1487
				struct hrtimer_clock_base *new_base)
1488 1489
{
	struct hrtimer *timer;
1490
	struct timerqueue_node *node;
1491

1492 1493
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1494
		BUG_ON(hrtimer_callback_running(timer));
1495
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1496 1497 1498 1499 1500 1501 1502

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1503
		timer->base = new_base;
1504
		/*
T
Thomas Gleixner 已提交
1505 1506 1507 1508 1509 1510
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1511
		 */
1512
		enqueue_hrtimer(timer, new_base);
1513

T
Thomas Gleixner 已提交
1514 1515
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1516 1517 1518
	}
}

1519
static void migrate_hrtimers(int scpu)
1520
{
1521
	struct hrtimer_cpu_base *old_base, *new_base;
1522
	int i;
1523

1524 1525
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1526 1527 1528

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1529
	new_base = this_cpu_ptr(&hrtimer_bases);
1530 1531 1532 1533
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1534 1535
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1536

1537
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1538
		migrate_hrtimer_list(&old_base->clock_base[i],
1539
				     &new_base->clock_base[i]);
1540 1541
	}

1542 1543
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1544

1545 1546 1547
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1548
}
1549

1550 1551
#endif /* CONFIG_HOTPLUG_CPU */

1552
static int hrtimer_cpu_notify(struct notifier_block *self,
1553 1554
					unsigned long action, void *hcpu)
{
1555
	int scpu = (long)hcpu;
1556 1557 1558 1559

	switch (action) {

	case CPU_UP_PREPARE:
1560
	case CPU_UP_PREPARE_FROZEN:
1561
		init_hrtimers_cpu(scpu);
1562 1563 1564 1565
		break;

#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1566
	case CPU_DEAD_FROZEN:
1567
		migrate_hrtimers(scpu);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		break;
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1578
static struct notifier_block hrtimers_nb = {
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
}

1589
/**
1590
 * schedule_hrtimeout_range_clock - sleep until timeout
1591
 * @expires:	timeout value (ktime_t)
1592
 * @delta:	slack in expires timeout (ktime_t)
1593
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1594
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1595
 */
1596 1597 1598
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1612
	 * A NULL parameter means "infinite"
1613 1614 1615 1616 1617 1618
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1619
	hrtimer_init_on_stack(&t.timer, clock, mode);
1620
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1621 1622 1623

	hrtimer_init_sleeper(&t, current);

1624
	hrtimer_start_expires(&t.timer, mode);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1700
EXPORT_SYMBOL_GPL(schedule_hrtimeout);