inode.c 140.4 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136 137 138 139 140
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
141 142 143
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
144

145 146 147
/*
 * Test whether an inode is a fast symlink.
 */
148
static int ext4_inode_is_fast_symlink(struct inode *inode)
149
{
150
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 152 153 154 155 156 157 158 159 160
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
	up_write(&EXT4_I(inode)->i_data_sem);
175
	ret = ext4_journal_restart(handle, nblocks);
176
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
191 192 193

	ext4_ioend_wait(inode);

A
Al Viro 已提交
194
	if (inode->i_nlink) {
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
222 223 224 225
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

226
	if (!is_bad_inode(inode))
227
		dquot_initialize(inode);
228

229 230
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
231 232 233 234 235
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

236 237 238 239 240
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
241
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242
	if (IS_ERR(handle)) {
243
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 245 246 247 248
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
249
		ext4_orphan_del(NULL, inode);
250
		sb_end_intwrite(inode->i_sb);
251 252 253 254
		goto no_delete;
	}

	if (IS_SYNC(inode))
255
		ext4_handle_sync(handle);
256
	inode->i_size = 0;
257 258
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
259
		ext4_warning(inode->i_sb,
260 261 262
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
263
	if (inode->i_blocks)
264
		ext4_truncate(inode);
265 266 267 268 269 270 271

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
272
	if (!ext4_handle_has_enough_credits(handle, 3)) {
273 274 275 276
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
277
			ext4_warning(inode->i_sb,
278 279 280
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
281
			ext4_orphan_del(NULL, inode);
282
			sb_end_intwrite(inode->i_sb);
283 284 285 286
			goto no_delete;
		}
	}

287
	/*
288
	 * Kill off the orphan record which ext4_truncate created.
289
	 * AKPM: I think this can be inside the above `if'.
290
	 * Note that ext4_orphan_del() has to be able to cope with the
291
	 * deletion of a non-existent orphan - this is because we don't
292
	 * know if ext4_truncate() actually created an orphan record.
293 294
	 * (Well, we could do this if we need to, but heck - it works)
	 */
295 296
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
297 298 299 300 301 302 303 304

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
305
	if (ext4_mark_inode_dirty(handle, inode))
306
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
307
		ext4_clear_inode(inode);
308
	else
309 310
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
311
	sb_end_intwrite(inode->i_sb);
312 313
	return;
no_delete:
A
Al Viro 已提交
314
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
315 316
}

317 318
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
319
{
320
	return &EXT4_I(inode)->i_reserved_quota;
321
}
322
#endif
323

324 325
/*
 * Calculate the number of metadata blocks need to reserve
326
 * to allocate a block located at @lblock
327
 */
328
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329
{
330
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331
		return ext4_ext_calc_metadata_amount(inode, lblock);
332

333
	return ext4_ind_calc_metadata_amount(inode, lblock);
334 335
}

336 337 338 339
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
340 341
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
342 343
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 345 346
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
347
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 349
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350
			 "with only %d reserved data blocks",
351 352 353 354 355
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
356

357 358 359 360 361 362 363 364 365
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

366 367 368
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370
			   used + ei->i_allocated_meta_blocks);
371
	ei->i_allocated_meta_blocks = 0;
372

373 374 375 376 377 378
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
379
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380
				   ei->i_reserved_meta_blocks);
381
		ei->i_reserved_meta_blocks = 0;
382
		ei->i_da_metadata_calc_len = 0;
383
	}
384
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385

386 387
	/* Update quota subsystem for data blocks */
	if (quota_claim)
388
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389
	else {
390 391 392
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
393
		 * not re-claim the quota for fallocated blocks.
394
		 */
395
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396
	}
397 398 399 400 401 402

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
403 404
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
405
		ext4_discard_preallocations(inode);
406 407
}

408
static int __check_block_validity(struct inode *inode, const char *func,
409 410
				unsigned int line,
				struct ext4_map_blocks *map)
411
{
412 413
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
414 415 416 417
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
418 419 420 421 422
		return -EIO;
	}
	return 0;
}

423
#define check_block_validity(inode, map)	\
424
	__check_block_validity((inode), __func__, __LINE__, (map))
425

426
/*
427 428
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
462 463 464 465 466 467 468 469 470
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
471 472 473 474 475
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
476 477
			if (num >= max_pages) {
				done = 1;
478
				break;
479
			}
480 481 482 483 484 485
		}
		pagevec_release(&pvec);
	}
	return num;
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*
 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
 */
static void set_buffers_da_mapped(struct inode *inode,
				   struct ext4_map_blocks *map)
{
	struct address_space *mapping = inode->i_mapping;
	struct pagevec pvec;
	int i, nr_pages;
	pgoff_t index, end;

	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end = (map->m_lblk + map->m_len - 1) >>
		(PAGE_CACHE_SHIFT - inode->i_blkbits);

	pagevec_init(&pvec, 0);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index,
					  min(end - index + 1,
					      (pgoff_t)PAGEVEC_SIZE));
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page))
				break;

			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					set_buffer_da_mapped(bh);
					bh = bh->b_this_page;
				} while (bh != head);
			}
			index++;
		}
		pagevec_release(&pvec);
	}
}

529
/*
530
 * The ext4_map_blocks() function tries to look up the requested blocks,
531
 * and returns if the blocks are already mapped.
532 533 534 535 536
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
537 538
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539 540 541 542 543 544 545 546
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
547
 * that case, buffer head is unmapped
548 549 550
 *
 * It returns the error in case of allocation failure.
 */
551 552
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
553 554
{
	int retval;
555

556 557 558 559
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
560
	/*
561 562
	 * Try to see if we can get the block without requesting a new
	 * file system block.
563
	 */
564 565
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
566
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567 568
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
569
	} else {
570 571
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
572
	}
573 574
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
575

576
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577
		int ret = check_block_validity(inode, map);
578 579 580 581
		if (ret != 0)
			return ret;
	}

582
	/* If it is only a block(s) look up */
583
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 585 586 587 588 589
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
590
	 * ext4_ext_get_block() returns the create = 0
591 592
	 * with buffer head unmapped.
	 */
593
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 595
		return retval;

596 597 598 599 600 601 602 603 604 605
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
606
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607

608
	/*
609 610 611 612
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
613 614
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
615 616 617 618 619 620 621

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
622
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 625 626 627
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
628
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
630
	} else {
631
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
632

633
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 635 636 637 638
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
639
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640
		}
641

642 643 644 645 646 647 648
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
649
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 651
			ext4_da_update_reserve_space(inode, retval, 1);
	}
652
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654

655 656 657 658 659 660 661 662
		/* If we have successfully mapped the delayed allocated blocks,
		 * set the BH_Da_Mapped bit on them. Its important to do this
		 * under the protection of i_data_sem.
		 */
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
			set_buffers_da_mapped(inode, map);
	}

663
	up_write((&EXT4_I(inode)->i_data_sem));
664
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665
		int ret = check_block_validity(inode, map);
666 667 668
		if (ret != 0)
			return ret;
	}
669 670 671
	return retval;
}

672 673 674
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

675 676
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
677
{
678
	handle_t *handle = ext4_journal_current_handle();
679
	struct ext4_map_blocks map;
J
Jan Kara 已提交
680
	int ret = 0, started = 0;
681
	int dio_credits;
682

683 684 685 686
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
687
		/* Direct IO write... */
688 689 690
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
692
		if (IS_ERR(handle)) {
693
			ret = PTR_ERR(handle);
694
			return ret;
695
		}
J
Jan Kara 已提交
696
		started = 1;
697 698
	}

699
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
700
	if (ret > 0) {
701 702 703
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
704
		ret = 0;
705
	}
J
Jan Kara 已提交
706 707
	if (started)
		ext4_journal_stop(handle);
708 709 710
	return ret;
}

711 712 713 714 715 716 717
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

718 719 720
/*
 * `handle' can be NULL if create is zero
 */
721
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
722
				ext4_lblk_t block, int create, int *errp)
723
{
724 725
	struct ext4_map_blocks map;
	struct buffer_head *bh;
726 727 728 729
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

730 731 732 733
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
734

735 736 737 738 739 740 741 742 743 744
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
745
	}
746 747 748
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
749

750 751 752 753 754 755 756 757 758 759 760 761 762
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
763
		}
764 765 766 767 768 769 770
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
771
	}
772 773 774 775 776 777
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
778 779
}

780
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
781
			       ext4_lblk_t block, int create, int *err)
782
{
783
	struct buffer_head *bh;
784

785
	bh = ext4_getblk(handle, inode, block, create, err);
786 787 788 789
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
790
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
791 792 793 794 795 796 797 798
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

799 800 801 802 803 804 805
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
806 807 808 809 810 811 812
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

813 814
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
815
	     block_start = block_end, bh = next) {
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
833
 * close off a transaction and start a new one between the ext4_get_block()
834
 * and the commit_write().  So doing the jbd2_journal_start at the start of
835 836
 * prepare_write() is the right place.
 *
837 838
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
839 840 841 842
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
843
 * By accident, ext4 can be reentered when a transaction is open via
844 845 846 847 848 849
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
850
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
851 852 853 854 855
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
856
				       struct buffer_head *bh)
857
{
858 859 860
	int dirty = buffer_dirty(bh);
	int ret;

861 862
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
863
	/*
C
Christoph Hellwig 已提交
864
	 * __block_write_begin() could have dirtied some buffers. Clean
865 866
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
867
	 * by __block_write_begin() isn't a real problem here as we clear
868 869 870 871 872 873 874 875 876
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
877 878
}

879 880
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
881
static int ext4_write_begin(struct file *file, struct address_space *mapping,
882 883
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
884
{
885
	struct inode *inode = mapping->host;
886
	int ret, needed_blocks;
887 888
	handle_t *handle;
	int retries = 0;
889
	struct page *page;
890
	pgoff_t index;
891
	unsigned from, to;
N
Nick Piggin 已提交
892

893
	trace_ext4_write_begin(inode, pos, len, flags);
894 895 896 897 898
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
899
	index = pos >> PAGE_CACHE_SHIFT;
900 901
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
902 903

retry:
904 905 906 907
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
908
	}
909

910 911 912 913
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

914
	page = grab_cache_page_write_begin(mapping, index, flags);
915 916 917 918 919 920 921
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

922
	if (ext4_should_dioread_nolock(inode))
923
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
924
	else
925
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
926 927

	if (!ret && ext4_should_journal_data(inode)) {
928 929 930
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
931 932

	if (ret) {
933 934
		unlock_page(page);
		page_cache_release(page);
935
		/*
936
		 * __block_write_begin may have instantiated a few blocks
937 938
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
939 940 941
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
942
		 */
943
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
944 945 946 947
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
948
			ext4_truncate_failed_write(inode);
949
			/*
950
			 * If truncate failed early the inode might
951 952 953 954 955 956 957
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
958 959
	}

960
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
961
		goto retry;
962
out:
963 964 965
	return ret;
}

N
Nick Piggin 已提交
966 967
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
968 969 970 971
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
972
	return ext4_handle_dirty_metadata(handle, NULL, bh);
973 974
}

975
static int ext4_generic_write_end(struct file *file,
976 977 978
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1021 1022 1023 1024
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1025
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1026 1027
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1028
static int ext4_ordered_write_end(struct file *file,
1029 1030 1031
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1032
{
1033
	handle_t *handle = ext4_journal_current_handle();
1034
	struct inode *inode = mapping->host;
1035 1036
	int ret = 0, ret2;

1037
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1038
	ret = ext4_jbd2_file_inode(handle, inode);
1039 1040

	if (ret == 0) {
1041
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1042
							page, fsdata);
1043
		copied = ret2;
1044
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1045 1046 1047 1048 1049
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1050 1051
		if (ret2 < 0)
			ret = ret2;
1052 1053 1054
	} else {
		unlock_page(page);
		page_cache_release(page);
1055
	}
1056

1057
	ret2 = ext4_journal_stop(handle);
1058 1059
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1060

1061
	if (pos + len > inode->i_size) {
1062
		ext4_truncate_failed_write(inode);
1063
		/*
1064
		 * If truncate failed early the inode might still be
1065 1066 1067 1068 1069 1070 1071 1072
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1073
	return ret ? ret : copied;
1074 1075
}

N
Nick Piggin 已提交
1076
static int ext4_writeback_write_end(struct file *file,
1077 1078 1079
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1080
{
1081
	handle_t *handle = ext4_journal_current_handle();
1082
	struct inode *inode = mapping->host;
1083 1084
	int ret = 0, ret2;

1085
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1086
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1087
							page, fsdata);
1088
	copied = ret2;
1089
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1090 1091 1092 1093 1094 1095
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1096 1097
	if (ret2 < 0)
		ret = ret2;
1098

1099
	ret2 = ext4_journal_stop(handle);
1100 1101
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1102

1103
	if (pos + len > inode->i_size) {
1104
		ext4_truncate_failed_write(inode);
1105
		/*
1106
		 * If truncate failed early the inode might still be
1107 1108 1109 1110 1111 1112 1113
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1114
	return ret ? ret : copied;
1115 1116
}

N
Nick Piggin 已提交
1117
static int ext4_journalled_write_end(struct file *file,
1118 1119 1120
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1121
{
1122
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1123
	struct inode *inode = mapping->host;
1124 1125
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1126
	unsigned from, to;
1127
	loff_t new_i_size;
1128

1129
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1130 1131 1132
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1133 1134
	BUG_ON(!ext4_handle_valid(handle));

N
Nick Piggin 已提交
1135 1136 1137 1138 1139
	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1140 1141

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1142
				to, &partial, write_end_fn);
1143 1144
	if (!partial)
		SetPageUptodate(page);
1145 1146
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1147
		i_size_write(inode, pos+copied);
1148
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1149
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1150 1151
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1152
		ret2 = ext4_mark_inode_dirty(handle, inode);
1153 1154 1155
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1156

1157
	unlock_page(page);
1158
	page_cache_release(page);
1159
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160 1161 1162 1163 1164 1165
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1166
	ret2 = ext4_journal_stop(handle);
1167 1168
	if (!ret)
		ret = ret2;
1169
	if (pos + len > inode->i_size) {
1170
		ext4_truncate_failed_write(inode);
1171
		/*
1172
		 * If truncate failed early the inode might still be
1173 1174 1175 1176 1177 1178
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1179 1180

	return ret ? ret : copied;
1181
}
1182

1183
/*
1184
 * Reserve a single cluster located at lblock
1185
 */
1186
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1187
{
A
Aneesh Kumar K.V 已提交
1188
	int retries = 0;
1189
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1190
	struct ext4_inode_info *ei = EXT4_I(inode);
1191
	unsigned int md_needed;
1192
	int ret;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1204 1205 1206 1207 1208 1209

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1210
repeat:
1211
	spin_lock(&ei->i_block_reservation_lock);
1212 1213 1214 1215 1216 1217
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1218 1219
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1220
	trace_ext4_da_reserve_space(inode, md_needed);
1221

1222 1223 1224 1225
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1226
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1227 1228 1229
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1230 1231 1232 1233
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1234
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1235 1236
		return -ENOSPC;
	}
1237
	ei->i_reserved_data_blocks++;
1238 1239
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1240

1241 1242 1243
	return 0;       /* success */
}

1244
static void ext4_da_release_space(struct inode *inode, int to_free)
1245 1246
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1247
	struct ext4_inode_info *ei = EXT4_I(inode);
1248

1249 1250 1251
	if (!to_free)
		return;		/* Nothing to release, exit */

1252
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1253

L
Li Zefan 已提交
1254
	trace_ext4_da_release_space(inode, to_free);
1255
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1256
		/*
1257 1258 1259 1260
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1261
		 */
1262 1263
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1264
			 "data blocks", inode->i_ino, to_free,
1265 1266 1267
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1268
	}
1269
	ei->i_reserved_data_blocks -= to_free;
1270

1271 1272 1273 1274 1275
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1276 1277
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1278
		 */
1279
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1280
				   ei->i_reserved_meta_blocks);
1281
		ei->i_reserved_meta_blocks = 0;
1282
		ei->i_da_metadata_calc_len = 0;
1283
	}
1284

1285
	/* update fs dirty data blocks counter */
1286
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1287 1288

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1289

1290
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1291 1292 1293
}

static void ext4_da_page_release_reservation(struct page *page,
1294
					     unsigned long offset)
1295 1296 1297 1298
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1299 1300 1301
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1302 1303 1304 1305 1306 1307 1308 1309 1310

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
1311
			clear_buffer_da_mapped(bh);
1312 1313 1314
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		ext4_fsblk_t lblk;
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
		    !ext4_find_delalloc_cluster(inode, lblk, 1))
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1329
}
1330

1331 1332 1333 1334 1335 1336
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1337
 * them with writepage() call back
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1348 1349
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1350
{
1351 1352 1353 1354 1355
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1356
	loff_t size = i_size_read(inode);
1357 1358
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1359
	int journal_data = ext4_should_journal_data(inode);
1360
	sector_t pblock = 0, cur_logical = 0;
1361
	struct ext4_io_submit io_submit;
1362 1363

	BUG_ON(mpd->next_page <= mpd->first_page);
1364
	memset(&io_submit, 0, sizeof(io_submit));
1365 1366 1367
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1368
	 * If we look at mpd->b_blocknr we would only be looking
1369 1370
	 * at the currently mapped buffer_heads.
	 */
1371 1372 1373
	index = mpd->first_page;
	end = mpd->next_page - 1;

1374
	pagevec_init(&pvec, 0);
1375
	while (index <= end) {
1376
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1377 1378 1379
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1380
			int commit_write = 0, skip_page = 0;
1381 1382
			struct page *page = pvec.pages[i];

1383 1384 1385
			index = page->index;
			if (index > end)
				break;
1386 1387 1388 1389 1390

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1391 1392 1393 1394 1395 1396
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1397 1398 1399 1400 1401
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1402
			/*
1403 1404
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
1405
			 * __block_write_begin.  If this fails,
1406
			 * skip the page and move on.
1407
			 */
1408
			if (!page_has_buffers(page)) {
1409
				if (__block_write_begin(page, 0, len,
1410
						noalloc_get_block_write)) {
1411
				skip_page:
1412 1413 1414 1415 1416
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
1417

1418 1419
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1420
			do {
1421
				if (!bh)
1422
					goto skip_page;
1423 1424 1425
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1426 1427 1428 1429
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1430 1431
					if (buffer_da_mapped(bh))
						clear_buffer_da_mapped(bh);
1432 1433 1434 1435 1436 1437 1438
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1439

1440 1441 1442 1443 1444
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1445
					skip_page = 1;
1446 1447
				bh = bh->b_this_page;
				block_start += bh->b_size;
1448 1449
				cur_logical++;
				pblock++;
1450 1451
			} while (bh != page_bufs);

1452 1453
			if (skip_page)
				goto skip_page;
1454 1455 1456 1457 1458

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

1459
			clear_page_dirty_for_io(page);
1460 1461 1462 1463 1464 1465
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
1466
				err = __ext4_journalled_writepage(page, len);
1467
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1468 1469
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
1470 1471 1472 1473 1474 1475
			else if (buffer_uninit(page_bufs)) {
				ext4_set_bh_endio(page_bufs, inode);
				err = block_write_full_page_endio(page,
					noalloc_get_block_write,
					mpd->wbc, ext4_end_io_buffer_write);
			} else
1476 1477
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
1478 1479

			if (!err)
1480
				mpd->pages_written++;
1481 1482 1483 1484 1485 1486 1487 1488 1489
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1490
	ext4_io_submit(&io_submit);
1491 1492 1493
	return ret;
}

1494
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1495 1496 1497 1498 1499 1500 1501
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

1502 1503
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1504 1505 1506 1507 1508 1509
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1510
			if (page->index > end)
1511 1512 1513 1514 1515 1516 1517
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1518 1519
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1520 1521 1522 1523
	}
	return;
}

1524 1525 1526
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 1528 1529
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1530 1531
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1532 1533
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1534 1535
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1536
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1537 1538
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1539 1540 1541 1542
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1543
	       EXT4_I(inode)->i_reserved_meta_blocks);
1544 1545 1546
	return;
}

1547
/*
1548 1549
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1550
 *
1551
 * @mpd - bh describing space
1552 1553 1554 1555
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1556
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1557
{
1558
	int err, blks, get_blocks_flags;
1559
	struct ext4_map_blocks map, *mapp = NULL;
1560 1561 1562 1563
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1564 1565

	/*
1566 1567
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1568
	 */
1569 1570 1571 1572 1573
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1574 1575 1576 1577

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1578
	/*
1579
	 * Call ext4_map_blocks() to allocate any delayed allocation
1580 1581 1582 1583 1584 1585 1586 1587
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1588
	 * want to change *many* call functions, so ext4_map_blocks()
1589
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1590 1591 1592 1593 1594
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1595
	 */
1596 1597
	map.m_lblk = next;
	map.m_len = max_blocks;
1598
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1599 1600
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1601
	if (mpd->b_state & (1 << BH_Delay))
1602 1603
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1604
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1605
	if (blks < 0) {
1606 1607
		struct super_block *sb = mpd->inode->i_sb;

1608
		err = blks;
1609
		/*
1610
		 * If get block returns EAGAIN or ENOSPC and there
1611 1612
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1613 1614
		 */
		if (err == -EAGAIN)
1615
			goto submit_io;
1616

1617
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1618
			mpd->retval = err;
1619
			goto submit_io;
1620 1621
		}

1622
		/*
1623 1624 1625 1626 1627
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1628
		 */
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1640
		}
1641
		/* invalidate all the pages */
1642
		ext4_da_block_invalidatepages(mpd);
1643 1644 1645

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1646
		return;
1647
	}
1648 1649
	BUG_ON(blks == 0);

1650
	mapp = &map;
1651 1652 1653
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1654

1655 1656
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1657

1658 1659
		if (ext4_should_order_data(mpd->inode)) {
			err = ext4_jbd2_file_inode(handle, mpd->inode);
1660
			if (err) {
1661
				/* Only if the journal is aborted */
1662 1663 1664
				mpd->retval = err;
				goto submit_io;
			}
1665
		}
1666 1667 1668
	}

	/*
1669
	 * Update on-disk size along with block allocation.
1670 1671 1672 1673 1674 1675
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1676 1677 1678 1679 1680
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1681 1682
	}

1683
submit_io:
1684
	mpage_da_submit_io(mpd, mapp);
1685
	mpd->io_done = 1;
1686 1687
}

1688 1689
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1701 1702
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
1703 1704
{
	sector_t next;
1705
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1706

1707 1708 1709 1710
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1711
	 * ext4_map_blocks() multiple times in a loop
1712 1713 1714 1715
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

1716
	/* check if thereserved journal credits might overflow */
1717
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
1738 1739 1740
	/*
	 * First block in the extent
	 */
1741 1742 1743 1744
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
1745 1746 1747
		return;
	}

1748
	next = mpd->b_blocknr + nrblocks;
1749 1750 1751
	/*
	 * Can we merge the block to our big extent?
	 */
1752 1753
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
1754 1755 1756
		return;
	}

1757
flush_it:
1758 1759 1760 1761
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1762
	mpage_da_map_and_submit(mpd);
1763
	return;
1764 1765
}

1766
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767
{
1768
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 1770
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1831
/*
1832 1833 1834
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1835 1836 1837 1838 1839 1840 1841
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1842 1843
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1844
				  struct buffer_head *bh, int create)
1845
{
1846
	struct ext4_map_blocks map;
1847 1848 1849
	int ret = 0;

	BUG_ON(create == 0);
1850 1851 1852 1853
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1854 1855 1856 1857 1858 1859

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1860 1861
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1862
		return ret;
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1875
		set_buffer_mapped(bh);
1876 1877
	}
	return 0;
1878
}
1879

1880 1881 1882
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
1883
 * callback function for block_write_begin() and block_write_full_page().
1884
 * These functions should only try to map a single block at a time.
1885 1886 1887 1888 1889
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
1890 1891 1892
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
1893 1894
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1895 1896
				   struct buffer_head *bh_result, int create)
{
1897
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1898
	return _ext4_get_block(inode, iblock, bh_result, 0);
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

1923
	ClearPageChecked(page);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1937 1938
	BUG_ON(!ext4_handle_valid(handle));

1939 1940 1941 1942 1943 1944 1945
	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
1946
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1947 1948 1949 1950 1951
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1952
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1953 1954 1955 1956
out:
	return ret;
}

1957
/*
1958 1959 1960 1961
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1962
 * we are writing back data modified via mmap(), no one guarantees in which
1963 1964 1965 1966
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1967 1968 1969 1970 1971
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
1972 1973 1974 1975 1976 1977 1978 1979 1980
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1981
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1997
 */
1998
static int ext4_writepage(struct page *page,
1999
			  struct writeback_control *wbc)
2000
{
T
Theodore Ts'o 已提交
2001
	int ret = 0, commit_write = 0;
2002
	loff_t size;
2003
	unsigned int len;
2004
	struct buffer_head *page_bufs = NULL;
2005 2006
	struct inode *inode = page->mapping->host;

L
Lukas Czerner 已提交
2007
	trace_ext4_writepage(page);
2008 2009 2010 2011 2012
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2013

T
Theodore Ts'o 已提交
2014 2015
	/*
	 * If the page does not have buffers (for whatever reason),
2016
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2017 2018
	 * fails, redirty the page and move on.
	 */
2019
	if (!page_has_buffers(page)) {
2020
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2021 2022
					noalloc_get_block_write)) {
		redirty_page:
2023 2024 2025 2026
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2027 2028 2029 2030 2031
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2032
		/*
2033 2034 2035
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
2036 2037 2038
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
2039
		 */
2040 2041
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
T
Theodore Ts'o 已提交
2042 2043 2044
		goto redirty_page;
	}
	if (commit_write)
2045
		/* now mark the buffer_heads as dirty and uptodate */
2046
		block_commit_write(page, 0, len);
2047

2048
	if (PageChecked(page) && ext4_should_journal_data(inode))
2049 2050 2051 2052
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2053
		return __ext4_journalled_writepage(page, len);
2054

T
Theodore Ts'o 已提交
2055
	if (buffer_uninit(page_bufs)) {
2056 2057 2058 2059
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2060 2061
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2062 2063 2064 2065

	return ret;
}

2066
/*
2067
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2068
 * calculate the total number of credits to reserve to fit
2069 2070 2071
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2072
 */
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2084
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2085 2086 2087 2088 2089
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2090

2091 2092
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2093
 * address space and accumulate pages that need writing, and call
2094 2095
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2096 2097 2098
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2099 2100
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2101
{
2102
	struct buffer_head	*bh, *head;
2103
	struct inode		*inode = mapping->host;
2104 2105 2106 2107 2108 2109
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2110

2111 2112 2113
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2114 2115 2116 2117
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2118
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2119 2120 2121 2122
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2123
	*done_index = index;
2124
	while (index <= end) {
2125
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2126 2127
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2128
			return 0;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2140 2141
			if (page->index > end)
				goto out;
2142

2143 2144
			*done_index = page->index + 1;

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2155 2156 2157
			lock_page(page);

			/*
2158 2159 2160 2161 2162 2163
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2164
			 */
2165 2166 2167 2168
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2169 2170 2171 2172
				unlock_page(page);
				continue;
			}

2173
			wait_on_page_writeback(page);
2174 2175
			BUG_ON(PageWriteback(page));

2176
			if (mpd->next_page != page->index)
2177 2178 2179 2180 2181 2182
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

			if (!page_has_buffers(page)) {
2183 2184
				mpage_add_bh_to_extent(mpd, logical,
						       PAGE_CACHE_SIZE,
2185
						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2186 2187
				if (mpd->io_done)
					goto ret_extent_tail;
2188 2189
			} else {
				/*
2190 2191
				 * Page with regular buffer heads,
				 * just add all dirty ones
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
				 */
				head = page_buffers(page);
				bh = head;
				do {
					BUG_ON(buffer_locked(bh));
					/*
					 * We need to try to allocate
					 * unmapped blocks in the same page.
					 * Otherwise we won't make progress
					 * with the page in ext4_writepage
					 */
					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
						mpage_add_bh_to_extent(mpd, logical,
								       bh->b_size,
								       bh->b_state);
2207 2208
						if (mpd->io_done)
							goto ret_extent_tail;
2209 2210
					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
						/*
2211 2212 2213 2214 2215 2216 2217 2218 2219
						 * mapped dirty buffer. We need
						 * to update the b_state
						 * because we look at b_state
						 * in mpage_da_map_blocks.  We
						 * don't update b_size because
						 * if we find an unmapped
						 * buffer_head later we need to
						 * use the b_state flag of that
						 * buffer_head.
2220 2221 2222 2223 2224 2225
						 */
						if (mpd->b_size == 0)
							mpd->b_state = bh->b_state & BH_FLAGS;
					}
					logical++;
				} while ((bh = bh->b_this_page) != head);
2226 2227 2228 2229 2230
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2231
				    wbc->sync_mode == WB_SYNC_NONE)
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2242
					goto out;
2243 2244 2245 2246 2247
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2248 2249 2250
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2251 2252 2253
out:
	pagevec_release(&pvec);
	cond_resched();
2254 2255 2256 2257
	return ret;
}


2258
static int ext4_da_writepages(struct address_space *mapping,
2259
			      struct writeback_control *wbc)
2260
{
2261 2262
	pgoff_t	index;
	int range_whole = 0;
2263
	handle_t *handle = NULL;
2264
	struct mpage_da_data mpd;
2265
	struct inode *inode = mapping->host;
2266
	int pages_written = 0;
2267
	unsigned int max_pages;
2268
	int range_cyclic, cycled = 1, io_done = 0;
2269 2270
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2271
	loff_t range_start = wbc->range_start;
2272
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2273
	pgoff_t done_index = 0;
2274
	pgoff_t end;
S
Shaohua Li 已提交
2275
	struct blk_plug plug;
2276

2277
	trace_ext4_da_writepages(inode, wbc);
2278

2279 2280 2281 2282 2283
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2284
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2285
		return 0;
2286 2287 2288 2289 2290

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2291
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2292 2293 2294 2295 2296
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2297
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2298 2299
		return -EROFS;

2300 2301
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2302

2303 2304
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2305
		index = mapping->writeback_index;
2306 2307 2308 2309 2310
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2311 2312
		end = -1;
	} else {
2313
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2314 2315
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2334 2335 2336 2337 2338 2339
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2350
retry:
2351
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2352 2353
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2354
	blk_start_plug(&plug);
2355
	while (!ret && wbc->nr_to_write > 0) {
2356 2357 2358 2359 2360 2361 2362 2363

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2364
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2365

2366 2367 2368 2369
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2370
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2371
			       "%ld pages, ino %lu; err %d", __func__,
2372
				wbc->nr_to_write, inode->i_ino, ret);
2373
			blk_finish_plug(&plug);
2374 2375
			goto out_writepages;
		}
2376 2377

		/*
2378
		 * Now call write_cache_pages_da() to find the next
2379
		 * contiguous region of logical blocks that need
2380
		 * blocks to be allocated by ext4 and submit them.
2381
		 */
2382
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2383
		/*
2384
		 * If we have a contiguous extent of pages and we
2385 2386 2387 2388
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2389
			mpage_da_map_and_submit(&mpd);
2390 2391
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2392
		trace_ext4_da_write_pages(inode, &mpd);
2393
		wbc->nr_to_write -= mpd.pages_written;
2394

2395
		ext4_journal_stop(handle);
2396

2397
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2398 2399 2400 2401
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2402
			jbd2_journal_force_commit_nested(sbi->s_journal);
2403 2404
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2405
			/*
2406 2407 2408
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2409
			 */
2410
			pages_written += mpd.pages_written;
2411
			ret = mpd.retval;
2412
			io_done = 1;
2413
		} else if (wbc->nr_to_write)
2414 2415 2416 2417 2418 2419
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2420
	}
S
Shaohua Li 已提交
2421
	blk_finish_plug(&plug);
2422 2423 2424 2425 2426 2427 2428
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2429 2430

	/* Update index */
2431
	wbc->range_cyclic = range_cyclic;
2432 2433 2434 2435 2436
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2437
		mapping->writeback_index = done_index;
2438

2439
out_writepages:
2440
	wbc->nr_to_write -= nr_to_writebump;
2441
	wbc->range_start = range_start;
2442
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2443
	return ret;
2444 2445
}

2446 2447 2448 2449 2450 2451 2452 2453 2454
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2455
	 * counters can get slightly wrong with percpu_counter_batch getting
2456 2457 2458 2459
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2460 2461 2462
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2463
	if (2 * free_blocks < 3 * dirty_blocks ||
2464
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2465
		/*
2466 2467
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2468 2469 2470
		 */
		return 1;
	}
2471 2472 2473 2474 2475
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
2476
		writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
2477

2478 2479 2480
	return 0;
}

2481
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2482 2483
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2484
{
2485
	int ret, retries = 0;
2486 2487 2488 2489 2490 2491
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2492 2493 2494 2495 2496 2497 2498

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2499
	trace_ext4_da_write_begin(inode, pos, len, flags);
2500
retry:
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2512 2513 2514
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2515

2516
	page = grab_cache_page_write_begin(mapping, index, flags);
2517 2518 2519 2520 2521
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2522 2523
	*pagep = page;

2524
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2525 2526 2527 2528
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2529 2530 2531 2532 2533 2534
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2535
			ext4_truncate_failed_write(inode);
2536 2537
	}

2538 2539
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2540 2541 2542 2543
out:
	return ret;
}

2544 2545 2546 2547 2548
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2549
					    unsigned long offset)
2550 2551 2552 2553 2554 2555 2556 2557 2558
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2559
	for (i = 0; i < idx; i++)
2560 2561
		bh = bh->b_this_page;

2562
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2563 2564 2565 2566
		return 0;
	return 1;
}

2567
static int ext4_da_write_end(struct file *file,
2568 2569 2570
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2571 2572 2573 2574 2575
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2576
	unsigned long start, end;
2577 2578 2579
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2580 2581
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2582 2583
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2584
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2585 2586
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2587
		default:
2588 2589 2590
			BUG();
		}
	}
2591

2592
	trace_ext4_da_write_end(inode, pos, len, copied);
2593
	start = pos & (PAGE_CACHE_SIZE - 1);
2594
	end = start + copied - 1;
2595 2596 2597 2598 2599 2600 2601 2602

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
2603
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
2614

2615 2616 2617
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
2618 2619 2620 2621 2622
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2623
		}
2624
	}
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2646
	ext4_da_page_release_reservation(page, offset);
2647 2648 2649 2650 2651 2652 2653

out:
	ext4_invalidatepage(page, offset);

	return;
}

2654 2655 2656 2657 2658
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2659 2660
	trace_ext4_alloc_da_blocks(inode);

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2671
	 *
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2684
	 * the pages by calling redirty_page_for_writepage() but that
2685 2686
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2687
	 * simplifying them because we wouldn't actually intend to
2688 2689 2690
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2691
	 *
2692 2693 2694 2695 2696 2697
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2698

2699 2700 2701 2702 2703
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2704
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2705 2706 2707 2708 2709 2710 2711 2712
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2713
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2714 2715 2716 2717 2718
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2729 2730
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2742
		 * NB. EXT4_STATE_JDATA is not set on files other than
2743 2744 2745 2746 2747 2748
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2749
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2750
		journal = EXT4_JOURNAL(inode);
2751 2752 2753
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2754 2755 2756 2757 2758

		if (err)
			return 0;
	}

2759
	return generic_block_bmap(mapping, block, ext4_get_block);
2760 2761
}

2762
static int ext4_readpage(struct file *file, struct page *page)
2763
{
2764
	trace_ext4_readpage(page);
2765
	return mpage_readpage(page, ext4_get_block);
2766 2767 2768
}

static int
2769
ext4_readpages(struct file *file, struct address_space *mapping,
2770 2771
		struct list_head *pages, unsigned nr_pages)
{
2772
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2773 2774
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

2795
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2796
{
2797
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2798

2799 2800
	trace_ext4_invalidatepage(page, offset);

2801 2802 2803 2804 2805
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
2806 2807 2808 2809 2810 2811
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2812 2813 2814 2815
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
2816 2817
}

2818
static int ext4_releasepage(struct page *page, gfp_t wait)
2819
{
2820
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2821

2822 2823
	trace_ext4_releasepage(page);

2824 2825 2826
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2827 2828 2829 2830
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2831 2832
}

2833 2834 2835 2836 2837
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2838
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2839 2840
		   struct buffer_head *bh_result, int create)
{
2841
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2842
		   inode->i_ino, create);
2843 2844
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2845 2846
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int flags)
{
	handle_t *handle = ext4_journal_current_handle();
	struct ext4_map_blocks map;
	int ret = 0;

	ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
		   inode->i_ino, flags);

	flags = EXT4_GET_BLOCKS_NO_LOCK;

	map.m_lblk = iblock;
	map.m_len = bh_result->b_size >> inode->i_blkbits;

	ret = ext4_map_blocks(handle, inode, &map, flags);
	if (ret > 0) {
		map_bh(bh_result, inode->i_sb, map.m_pblk);
		bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
					map.m_flags;
		bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
		ret = 0;
	}
	return ret;
}

2873
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2874 2875
			    ssize_t size, void *private, int ret,
			    bool is_async)
2876
{
2877
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2878 2879
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
2880 2881
	unsigned long flags;
	struct ext4_inode_info *ei;
2882

2883 2884
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2885
		goto out;
2886

2887
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2888
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2889 2890 2891
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2892 2893
	iocb->private = NULL;

2894
	/* if not aio dio with unwritten extents, just free io and return */
2895
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2896
		ext4_free_io_end(io_end);
2897 2898 2899
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2900
		inode_dio_done(inode);
2901
		return;
2902 2903
	}

2904 2905
	io_end->offset = offset;
	io_end->size = size;
2906 2907 2908 2909
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2910 2911
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

2912
	/* Add the io_end to per-inode completed aio dio list*/
2913 2914 2915 2916
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2917 2918

	/* queue the work to convert unwritten extents to written */
2919
	queue_work(wq, &io_end->work);
2920
}
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2933 2934 2935
		ext4_msg(io_end->inode->i_sb, KERN_INFO,
			 "sb umounted, discard end_io request for inode %lu",
			 io_end->inode->i_ino);
2936 2937 2938 2939
		ext4_free_io_end(io_end);
		goto out;
	}

2940 2941 2942 2943
	/*
	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
	 * but being more careful is always safe for the future change.
	 */
2944
	inode = io_end->inode;
2945
	ext4_set_io_unwritten_flag(inode, io_end);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
2972
		pr_warn_ratelimited("%s: allocation fail\n", __func__);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

2991 2992 2993 2994 2995
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2996
 * For holes, we fallocate those blocks, mark them as uninitialized
2997
 * If those blocks were preallocated, we mark sure they are splited, but
2998
 * still keep the range to write as uninitialized.
2999
 *
3000 3001
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
3002
 * set up an end_io call back function, which will do the conversion
3003
 * when async direct IO completed.
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
3021 3022
		int overwrite = 0;

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
		BUG_ON(iocb->private == NULL);

		/* If we do a overwrite dio, i_mutex locking can be released */
		overwrite = *((int *)iocb->private);

		if (overwrite) {
			down_read(&EXT4_I(inode)->i_data_sem);
			mutex_unlock(&inode->i_mutex);
		}

3033
		/*
3034 3035 3036
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
L
Lucas De Marchi 已提交
3037
 		 * to prevent parallel buffered read to expose the stale data
3038
 		 * before DIO complete the data IO.
3039 3040
		 *
 		 * As to previously fallocated extents, ext4 get_block
3041 3042 3043
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3044 3045 3046 3047 3048 3049 3050 3051
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3052
 		 */
3053 3054 3055
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3056 3057
			ext4_io_end_t *io_end =
				ext4_init_io_end(inode, GFP_NOFS);
3058 3059 3060 3061
			if (!io_end) {
				ret = -ENOMEM;
				goto retake_lock;
			}
3062 3063
			io_end->flag |= EXT4_IO_END_DIRECT;
			iocb->private = io_end;
3064 3065
			/*
			 * we save the io structure for current async
3066
			 * direct IO, so that later ext4_map_blocks()
3067 3068 3069 3070 3071 3072 3073
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		if (overwrite)
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write_nolock,
						 ext4_end_io_dio,
						 NULL,
						 0);
		else
			ret = __blockdev_direct_IO(rw, iocb, inode,
						 inode->i_sb->s_bdev, iov,
						 offset, nr_segs,
						 ext4_get_block_write,
						 ext4_end_io_dio,
						 NULL,
						 DIO_LOCKING);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3109
		} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3110
						EXT4_STATE_DIO_UNWRITTEN)) {
3111
			int err;
3112 3113
			/*
			 * for non AIO case, since the IO is already
L
Lucas De Marchi 已提交
3114
			 * completed, we could do the conversion right here
3115
			 */
3116 3117 3118 3119
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3120
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3121
		}
3122 3123 3124 3125 3126 3127 3128 3129

	retake_lock:
		/* take i_mutex locking again if we do a ovewrite dio */
		if (overwrite) {
			up_read(&EXT4_I(inode)->i_data_sem);
			mutex_lock(&inode->i_mutex);
		}

3130 3131
		return ret;
	}
3132 3133

	/* for write the the end of file case, we fall back to old way */
3134 3135 3136 3137 3138 3139 3140 3141 3142
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3143
	ssize_t ret;
3144

3145 3146 3147 3148 3149 3150
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

3151
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3152
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3153 3154 3155 3156 3157 3158
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3159 3160
}

3161
/*
3162
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3174
static int ext4_journalled_set_page_dirty(struct page *page)
3175 3176 3177 3178 3179
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3180
static const struct address_space_operations ext4_ordered_aops = {
3181 3182
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3183
	.writepage		= ext4_writepage,
3184 3185 3186 3187 3188 3189 3190 3191
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3192
	.error_remove_page	= generic_error_remove_page,
3193 3194
};

3195
static const struct address_space_operations ext4_writeback_aops = {
3196 3197
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3198
	.writepage		= ext4_writepage,
3199 3200 3201 3202 3203 3204 3205 3206
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3207
	.error_remove_page	= generic_error_remove_page,
3208 3209
};

3210
static const struct address_space_operations ext4_journalled_aops = {
3211 3212
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3213
	.writepage		= ext4_writepage,
3214 3215 3216 3217 3218 3219
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
3220
	.direct_IO		= ext4_direct_IO,
3221
	.is_partially_uptodate  = block_is_partially_uptodate,
3222
	.error_remove_page	= generic_error_remove_page,
3223 3224
};

3225
static const struct address_space_operations ext4_da_aops = {
3226 3227
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3228
	.writepage		= ext4_writepage,
3229 3230 3231 3232 3233 3234 3235 3236 3237
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3238
	.error_remove_page	= generic_error_remove_page,
3239 3240
};

3241
void ext4_set_aops(struct inode *inode)
3242
{
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3257
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3258 3259 3260 3261
		break;
	default:
		BUG();
	}
3262 3263
}

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3284
		return -ENOMEM;
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
 * from:   The starting byte offset (from the begining of the file)
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
 *         for updateing the contents of a page whose blocks may
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
 * Returns zero on sucess or negative on failure.
 */
E
Eric Sandeen 已提交
3327
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3353 3354
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3367 3368
		unsigned int end_of_block, range_to_discard;

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3454
		} else
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
 * Returns: 0 on sucess or negative on failure
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3493
		return -EOPNOTSUPP;
3494 3495 3496

	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
		/* TODO: Add support for non extent hole punching */
3497
		return -EOPNOTSUPP;
3498 3499
	}

3500 3501
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3502
		return -EOPNOTSUPP;
3503 3504
	}

3505 3506 3507
	return ext4_ext_punch_hole(file, offset, length);
}

3508
/*
3509
 * ext4_truncate()
3510
 *
3511 3512
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3513 3514
 * simultaneously on behalf of the same inode.
 *
3515
 * As we work through the truncate and commit bits of it to the journal there
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3529
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3530
 * that this inode's truncate did not complete and it will again call
3531 3532
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3533
 * that's fine - as long as they are linked from the inode, the post-crash
3534
 * ext4_truncate() run will find them and release them.
3535
 */
3536
void ext4_truncate(struct inode *inode)
3537
{
3538 3539
	trace_ext4_truncate_enter(inode);

3540
	if (!ext4_can_truncate(inode))
3541 3542
		return;

3543
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3544

3545
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3546
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3547

3548
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3549
		ext4_ext_truncate(inode);
3550 3551
	else
		ext4_ind_truncate(inode);
3552

3553
	trace_ext4_truncate_exit(inode);
3554 3555 3556
}

/*
3557
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3558 3559 3560 3561
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3562 3563
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3564
{
3565 3566 3567 3568 3569 3570
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3571
	iloc->bh = NULL;
3572 3573
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3574

3575 3576 3577
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3578 3579
		return -EIO;

3580 3581 3582
	/*
	 * Figure out the offset within the block group inode table
	 */
3583
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3584 3585 3586 3587 3588 3589
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3590
	if (!bh) {
3591 3592
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
3593 3594 3595 3596
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3620
			int i, start;
3621

3622
			start = inode_offset & ~(inodes_per_block - 1);
3623

3624 3625
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3638
			for (i = start; i < start + inodes_per_block; i++) {
3639 3640
				if (i == inode_offset)
					continue;
3641
				if (ext4_test_bit(i, bitmap_bh->b_data))
3642 3643 3644
					break;
			}
			brelse(bitmap_bh);
3645
			if (i == start + inodes_per_block) {
3646 3647 3648 3649 3650 3651 3652 3653 3654
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3655 3656 3657 3658 3659 3660 3661 3662 3663
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3664
			/* s_inode_readahead_blks is always a power of 2 */
3665 3666 3667 3668 3669
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3670
			if (ext4_has_group_desc_csum(sb))
3671
				num -= ext4_itable_unused_count(sb, gdp);
3672 3673 3674 3675 3676 3677 3678
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3679 3680 3681 3682 3683
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3684
		trace_ext4_load_inode(inode);
3685 3686
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3687
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3688 3689
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3690 3691
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3692 3693 3694 3695 3696 3697 3698 3699 3700
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3701
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3702 3703
{
	/* We have all inode data except xattrs in memory here. */
3704
	return __ext4_get_inode_loc(inode, iloc,
3705
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3706 3707
}

3708
void ext4_set_inode_flags(struct inode *inode)
3709
{
3710
	unsigned int flags = EXT4_I(inode)->i_flags;
3711 3712

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3713
	if (flags & EXT4_SYNC_FL)
3714
		inode->i_flags |= S_SYNC;
3715
	if (flags & EXT4_APPEND_FL)
3716
		inode->i_flags |= S_APPEND;
3717
	if (flags & EXT4_IMMUTABLE_FL)
3718
		inode->i_flags |= S_IMMUTABLE;
3719
	if (flags & EXT4_NOATIME_FL)
3720
		inode->i_flags |= S_NOATIME;
3721
	if (flags & EXT4_DIRSYNC_FL)
3722 3723 3724
		inode->i_flags |= S_DIRSYNC;
}

3725 3726 3727
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3748
}
3749

3750
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3751
				  struct ext4_inode_info *ei)
3752 3753
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3754 3755
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3756 3757 3758 3759 3760 3761

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3762
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3763 3764 3765 3766 3767
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3768 3769 3770 3771
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3772

3773
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3774
{
3775 3776
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3777 3778
	struct ext4_inode_info *ei;
	struct inode *inode;
3779
	journal_t *journal = EXT4_SB(sb)->s_journal;
3780
	long ret;
3781
	int block;
3782 3783
	uid_t i_uid;
	gid_t i_gid;
3784

3785 3786 3787 3788 3789 3790 3791
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3792
	iloc.bh = NULL;
3793

3794 3795
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3796
		goto bad_inode;
3797
	raw_inode = ext4_raw_inode(&iloc);
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3831
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3832 3833
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3834
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3835 3836
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3837
	}
3838 3839
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3840
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3841

3842
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3843 3844 3845 3846 3847 3848 3849 3850 3851
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3852
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3853
			/* this inode is deleted */
3854
			ret = -ESTALE;
3855 3856 3857 3858 3859 3860 3861 3862
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3863
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3864
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3865
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3866 3867
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3868
	inode->i_size = ext4_isize(raw_inode);
3869
	ei->i_disksize = inode->i_size;
3870 3871 3872
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3873 3874
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3875
	ei->i_last_alloc_group = ~0;
3876 3877 3878 3879
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3880
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3881 3882 3883
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3895
		read_lock(&journal->j_state_lock);
3896 3897 3898 3899 3900 3901 3902 3903
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3904
		read_unlock(&journal->j_state_lock);
3905 3906 3907 3908
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3909
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3910 3911
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3912 3913
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3914 3915
		} else {
			__le32 *magic = (void *)raw_inode +
3916
					EXT4_GOOD_OLD_INODE_SIZE +
3917
					ei->i_extra_isize;
3918
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3919
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3920
		}
3921
	}
3922

K
Kalpak Shah 已提交
3923 3924 3925 3926 3927
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3928 3929 3930 3931 3932 3933 3934
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3935
	ret = 0;
3936
	if (ei->i_file_acl &&
3937
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3938 3939
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3940 3941
		ret = -EIO;
		goto bad_inode;
3942
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3943 3944 3945 3946 3947
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
3948
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3949 3950
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
3951
		/* Validate block references which are part of inode */
3952
		ret = ext4_ind_check_inode(inode);
3953
	}
3954
	if (ret)
3955
		goto bad_inode;
3956

3957
	if (S_ISREG(inode->i_mode)) {
3958 3959 3960
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3961
	} else if (S_ISDIR(inode->i_mode)) {
3962 3963
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3964
	} else if (S_ISLNK(inode->i_mode)) {
3965
		if (ext4_inode_is_fast_symlink(inode)) {
3966
			inode->i_op = &ext4_fast_symlink_inode_operations;
3967 3968 3969
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3970 3971
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3972
		}
3973 3974
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3975
		inode->i_op = &ext4_special_inode_operations;
3976 3977 3978 3979 3980 3981
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3982 3983
	} else {
		ret = -EIO;
3984
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3985
		goto bad_inode;
3986
	}
3987
	brelse(iloc.bh);
3988
	ext4_set_inode_flags(inode);
3989 3990
	unlock_new_inode(inode);
	return inode;
3991 3992

bad_inode:
3993
	brelse(iloc.bh);
3994 3995
	iget_failed(inode);
	return ERR_PTR(ret);
3996 3997
}

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4011
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4012
		raw_inode->i_blocks_high = 0;
4013
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4014 4015 4016 4017 4018 4019
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
4020 4021 4022 4023
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
4024
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4025
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4026
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4027
	} else {
4028
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
4029 4030 4031 4032
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4033
	}
4034
	return 0;
4035 4036
}

4037 4038 4039 4040 4041 4042 4043
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
4044
static int ext4_do_update_inode(handle_t *handle,
4045
				struct inode *inode,
4046
				struct ext4_iloc *iloc)
4047
{
4048 4049
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
4050 4051
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
4052 4053
	uid_t i_uid;
	gid_t i_gid;
4054 4055 4056

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
4057
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4058
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4059

4060
	ext4_get_inode_flags(ei);
4061
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4062 4063
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
4064
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4065 4066
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4067 4068 4069 4070
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
4071
		if (!ei->i_dtime) {
4072
			raw_inode->i_uid_high =
4073
				cpu_to_le16(high_16_bits(i_uid));
4074
			raw_inode->i_gid_high =
4075
				cpu_to_le16(high_16_bits(i_gid));
4076 4077 4078 4079 4080
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
4081 4082
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4083 4084 4085 4086
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
4087 4088 4089 4090 4091 4092

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

4093 4094
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
4095
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4096
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4097 4098
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
4099 4100
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
4101
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4118
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4119
			ext4_handle_sync(handle);
4120
			err = ext4_handle_dirty_super(handle, sb);
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4135 4136 4137
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4138

4139 4140 4141 4142 4143
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4144
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4145 4146
	}

4147 4148
	ext4_inode_csum_set(inode, raw_inode, ei);

4149
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4150
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4151 4152
	if (!err)
		err = rc;
4153
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4154

4155
	ext4_update_inode_fsync_trans(handle, inode, 0);
4156
out_brelse:
4157
	brelse(bh);
4158
	ext4_std_error(inode->i_sb, err);
4159 4160 4161 4162
	return err;
}

/*
4163
 * ext4_write_inode()
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4180
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4197
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4198
{
4199 4200
	int err;

4201 4202 4203
	if (current->flags & PF_MEMALLOC)
		return 0;

4204 4205 4206 4207 4208 4209
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4210

4211
		if (wbc->sync_mode != WB_SYNC_ALL)
4212 4213 4214 4215 4216
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4217

4218
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4219 4220
		if (err)
			return err;
4221
		if (wbc->sync_mode == WB_SYNC_ALL)
4222 4223
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4224 4225
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4226 4227
			err = -EIO;
		}
4228
		brelse(iloc.bh);
4229 4230
	}
	return err;
4231 4232 4233
}

/*
4234
 * ext4_setattr()
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4248 4249 4250 4251 4252 4253 4254 4255
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4256
 */
4257
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4258 4259 4260
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4261
	int orphan = 0;
4262 4263 4264 4265 4266 4267
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4268
	if (is_quota_modification(inode, attr))
4269
		dquot_initialize(inode);
4270 4271
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4272 4273 4274 4275
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4276
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4277
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4278 4279 4280 4281
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4282
		error = dquot_transfer(inode, attr);
4283
		if (error) {
4284
			ext4_journal_stop(handle);
4285 4286 4287 4288 4289 4290 4291 4292
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4293 4294
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4295 4296
	}

4297
	if (attr->ia_valid & ATTR_SIZE) {
4298 4299
		inode_dio_wait(inode);

4300
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4301 4302
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4303 4304
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4305 4306 4307
		}
	}

4308
	if (S_ISREG(inode->i_mode) &&
4309
	    attr->ia_valid & ATTR_SIZE &&
4310
	    (attr->ia_size < inode->i_size)) {
4311 4312
		handle_t *handle;

4313
		handle = ext4_journal_start(inode, 3);
4314 4315 4316 4317
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4318 4319 4320 4321
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4322 4323
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4324 4325
		if (!error)
			error = rc;
4326
		ext4_journal_stop(handle);
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4339
				orphan = 0;
4340 4341 4342 4343
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4344 4345
	}

4346
	if (attr->ia_valid & ATTR_SIZE) {
4347
		if (attr->ia_size != i_size_read(inode))
4348
			truncate_setsize(inode, attr->ia_size);
4349
		ext4_truncate(inode);
4350
	}
4351

C
Christoph Hellwig 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4361
	if (orphan && inode->i_nlink)
4362
		ext4_orphan_del(NULL, inode);
4363 4364

	if (!rc && (ia_valid & ATTR_MODE))
4365
		rc = ext4_acl_chmod(inode);
4366 4367

err_out:
4368
	ext4_std_error(inode->i_sb, error);
4369 4370 4371 4372 4373
	if (!error)
		error = rc;
	return error;
}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4393 4394
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4395 4396 4397 4398

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4399

4400 4401
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4402
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4403
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4404
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4405
}
4406

4407
/*
4408 4409 4410
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4411
 *
4412
 * If datablocks are discontiguous, they are possible to spread over
4413
 * different block groups too. If they are contiuguous, with flexbg,
4414
 * they could still across block group boundary.
4415
 *
4416 4417
 * Also account for superblock, inode, quota and xattr blocks
 */
4418
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4419
{
4420 4421
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4448 4449
	if (groups > ngroups)
		groups = ngroups;
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4463
 * Calculate the total number of credits to reserve to fit
4464 4465
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4466
 *
4467
 * This could be called via ext4_write_begin()
4468
 *
4469
 * We need to consider the worse case, when
4470
 * one new block per extent.
4471
 */
A
Alex Tomas 已提交
4472
int ext4_writepage_trans_blocks(struct inode *inode)
4473
{
4474
	int bpp = ext4_journal_blocks_per_page(inode);
4475 4476
	int ret;

4477
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4478

4479
	/* Account for data blocks for journalled mode */
4480
	if (ext4_should_journal_data(inode))
4481
		ret += bpp;
4482 4483
	return ret;
}
4484 4485 4486 4487 4488

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4489
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4490 4491 4492 4493 4494 4495 4496 4497 4498
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4499
/*
4500
 * The caller must have previously called ext4_reserve_inode_write().
4501 4502
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4503
int ext4_mark_iloc_dirty(handle_t *handle,
4504
			 struct inode *inode, struct ext4_iloc *iloc)
4505 4506 4507
{
	int err = 0;

4508
	if (IS_I_VERSION(inode))
4509 4510
		inode_inc_iversion(inode);

4511 4512 4513
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4514
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4515
	err = ext4_do_update_inode(handle, inode, iloc);
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4526 4527
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4528
{
4529 4530 4531 4532 4533 4534 4535 4536 4537
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4538 4539
		}
	}
4540
	ext4_std_error(inode->i_sb, err);
4541 4542 4543
	return err;
}

4544 4545 4546 4547
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4548 4549 4550 4551
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4564 4565
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
4598
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4599
{
4600
	struct ext4_iloc iloc;
4601 4602 4603
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4604 4605

	might_sleep();
4606
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4607
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4608 4609
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4610
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4624 4625
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4626 4627
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4628
					ext4_warning(inode->i_sb,
4629 4630 4631
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4632 4633
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4634 4635 4636 4637
				}
			}
		}
	}
4638
	if (!err)
4639
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4640 4641 4642 4643
	return err;
}

/*
4644
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4645 4646 4647 4648 4649
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4650
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4651 4652 4653 4654 4655 4656
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4657
void ext4_dirty_inode(struct inode *inode, int flags)
4658 4659 4660
{
	handle_t *handle;

4661
	handle = ext4_journal_start(inode, 2);
4662 4663
	if (IS_ERR(handle))
		goto out;
4664 4665 4666

	ext4_mark_inode_dirty(handle, inode);

4667
	ext4_journal_stop(handle);
4668 4669 4670 4671 4672 4673 4674 4675
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4676
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4677 4678 4679
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4680
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4681
{
4682
	struct ext4_iloc iloc;
4683 4684 4685

	int err = 0;
	if (handle) {
4686
		err = ext4_get_inode_loc(inode, &iloc);
4687 4688
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4689
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4690
			if (!err)
4691
				err = ext4_handle_dirty_metadata(handle,
4692
								 NULL,
4693
								 iloc.bh);
4694 4695 4696
			brelse(iloc.bh);
		}
	}
4697
	ext4_std_error(inode->i_sb, err);
4698 4699 4700 4701
	return err;
}
#endif

4702
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4718
	journal = EXT4_JOURNAL(inode);
4719 4720
	if (!journal)
		return 0;
4721
	if (is_journal_aborted(journal))
4722
		return -EROFS;
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4734

4735
	jbd2_journal_lock_updates(journal);
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4746
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4747 4748
	else {
		jbd2_journal_flush(journal);
4749
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4750
	}
4751
	ext4_set_aops(inode);
4752

4753
	jbd2_journal_unlock_updates(journal);
4754 4755 4756

	/* Finally we can mark the inode as dirty. */

4757
	handle = ext4_journal_start(inode, 1);
4758 4759 4760
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4761
	err = ext4_mark_inode_dirty(handle, inode);
4762
	ext4_handle_sync(handle);
4763 4764
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4765 4766 4767

	return err;
}
4768 4769 4770 4771 4772 4773

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4774
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4775
{
4776
	struct page *page = vmf->page;
4777 4778
	loff_t size;
	unsigned long len;
4779
	int ret;
4780 4781 4782
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4783 4784 4785
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4786

4787
	sb_start_pagefault(inode->i_sb);
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4798
	}
4799 4800

	lock_page(page);
4801 4802 4803 4804 4805 4806
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4807
	}
4808 4809 4810 4811 4812

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4813
	/*
4814 4815
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4816
	 */
4817 4818
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4819
					ext4_bh_unmapped)) {
4820 4821 4822 4823
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4824
		}
4825
	}
4826
	unlock_page(page);
4827 4828 4829 4830 4831 4832 4833 4834
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4835
		ret = VM_FAULT_SIGBUS;
4836 4837 4838 4839 4840 4841 4842 4843
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
		if (walk_page_buffers(handle, page_buffers(page), 0,
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4844
			ext4_journal_stop(handle);
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4855
	sb_end_pagefault(inode->i_sb);
4856 4857
	return ret;
}