1. 12 9月, 2013 8 次提交
  2. 16 8月, 2013 1 次提交
    • L
      Fix TLB gather virtual address range invalidation corner cases · 2b047252
      Linus Torvalds 提交于
      Ben Tebulin reported:
      
       "Since v3.7.2 on two independent machines a very specific Git
        repository fails in 9/10 cases on git-fsck due to an SHA1/memory
        failures.  This only occurs on a very specific repository and can be
        reproduced stably on two independent laptops.  Git mailing list ran
        out of ideas and for me this looks like some very exotic kernel issue"
      
      and bisected the failure to the backport of commit 53a59fc6 ("mm:
      limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT").
      
      That commit itself is not actually buggy, but what it does is to make it
      much more likely to hit the partial TLB invalidation case, since it
      introduces a new case in tlb_next_batch() that previously only ever
      happened when running out of memory.
      
      The real bug is that the TLB gather virtual memory range setup is subtly
      buggered.  It was introduced in commit 597e1c35 ("mm/mmu_gather:
      enable tlb flush range in generic mmu_gather"), and the range handling
      was already fixed at least once in commit e6c495a9 ("mm: fix the TLB
      range flushed when __tlb_remove_page() runs out of slots"), but that fix
      was not complete.
      
      The problem with the TLB gather virtual address range is that it isn't
      set up by the initial tlb_gather_mmu() initialization (which didn't get
      the TLB range information), but it is set up ad-hoc later by the
      functions that actually flush the TLB.  And so any such case that forgot
      to update the TLB range entries would potentially miss TLB invalidates.
      
      Rather than try to figure out exactly which particular ad-hoc range
      setup was missing (I personally suspect it's the hugetlb case in
      zap_huge_pmd(), which didn't have the same logic as zap_pte_range()
      did), this patch just gets rid of the problem at the source: make the
      TLB range information available to tlb_gather_mmu(), and initialize it
      when initializing all the other tlb gather fields.
      
      This makes the patch larger, but conceptually much simpler.  And the end
      result is much more understandable; even if you want to play games with
      partial ranges when invalidating the TLB contents in chunks, now the
      range information is always there, and anybody who doesn't want to
      bother with it won't introduce subtle bugs.
      
      Ben verified that this fixes his problem.
      Reported-bisected-and-tested-by: NBen Tebulin <tebulin@googlemail.com>
      Build-testing-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Build-testing-by: NRichard Weinberger <richard.weinberger@gmail.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NPeter Zijlstra <peterz@infradead.org>
      Cc: stable@vger.kernel.org
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2b047252
  3. 04 7月, 2013 2 次提交
    • J
      mm: correctly update zone->managed_pages · 3dcc0571
      Jiang Liu 提交于
      Enhance adjust_managed_page_count() to adjust totalhigh_pages for
      highmem pages.  And change code which directly adjusts totalram_pages to
      use adjust_managed_page_count() because it adjusts totalram_pages,
      totalhigh_pages and zone->managed_pages altogether in a safe way.
      
      Remove inc_totalhigh_pages() and dec_totalhigh_pages() from xen/balloon
      driver bacause adjust_managed_page_count() has already adjusted
      totalhigh_pages.
      
      This patch also fixes two bugs:
      
      1) enhances virtio_balloon driver to adjust totalhigh_pages when
         reserve/unreserve pages.
      2) enhance memory_hotplug.c to adjust totalhigh_pages when hot-removing
         memory.
      
      We still need to deal with modifications of totalram_pages in file
      arch/powerpc/platforms/pseries/cmm.c, but need help from PPC experts.
      
      [akpm@linux-foundation.org: remove ifdef, per Wanpeng Li, virtio_balloon.c cleanup, per Sergei]
      [akpm@linux-foundation.org: export adjust_managed_page_count() to modules, for drivers/virtio/virtio_balloon.c]
      Signed-off-by: NJiang Liu <jiang.liu@huawei.com>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Rusty Russell <rusty@rustcorp.com.au>
      Cc: "Michael S. Tsirkin" <mst@redhat.com>
      Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Cc: Jeremy Fitzhardinge <jeremy@goop.org>
      Cc: Wen Congyang <wency@cn.fujitsu.com>
      Cc: Tang Chen <tangchen@cn.fujitsu.com>
      Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: <sworddragon2@aol.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: David Howells <dhowells@redhat.com>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Jianguo Wu <wujianguo@huawei.com>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Marek Szyprowski <m.szyprowski@samsung.com>
      Cc: Michel Lespinasse <walken@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3dcc0571
    • W
      mm/hugetlb: use already existing interface huge_page_shift · 2415cf12
      Wanpeng Li 提交于
      Use the already existing interface huge_page_shift instead of h->order +
      PAGE_SHIFT.
      Signed-off-by: NWanpeng Li <liwanp@linux.vnet.ibm.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2415cf12
  4. 26 6月, 2013 1 次提交
    • Z
      futex: Take hugepages into account when generating futex_key · 13d60f4b
      Zhang Yi 提交于
      The futex_keys of process shared futexes are generated from the page
      offset, the mapping host and the mapping index of the futex user space
      address. This should result in an unique identifier for each futex.
      
      Though this is not true when futexes are located in different subpages
      of an hugepage. The reason is, that the mapping index for all those
      futexes evaluates to the index of the base page of the hugetlbfs
      mapping. So a futex at offset 0 of the hugepage mapping and another
      one at offset PAGE_SIZE of the same hugepage mapping have identical
      futex_keys. This happens because the futex code blindly uses
      page->index.
      
      Steps to reproduce the bug:
      
      1. Map a file from hugetlbfs. Initialize pthread_mutex1 at offset 0
         and pthread_mutex2 at offset PAGE_SIZE of the hugetlbfs
         mapping.
      
         The mutexes must be initialized as PTHREAD_PROCESS_SHARED because
         PTHREAD_PROCESS_PRIVATE mutexes are not affected by this issue as
         their keys solely depend on the user space address.
      
      2. Lock mutex1 and mutex2
      
      3. Create thread1 and in the thread function lock mutex1, which
         results in thread1 blocking on the locked mutex1.
      
      4. Create thread2 and in the thread function lock mutex2, which
         results in thread2 blocking on the locked mutex2.
      
      5. Unlock mutex2. Despite the fact that mutex2 got unlocked, thread2
         still blocks on mutex2 because the futex_key points to mutex1.
      
      To solve this issue we need to take the normal page index of the page
      which contains the futex into account, if the futex is in an hugetlbfs
      mapping. In other words, we calculate the normal page mapping index of
      the subpage in the hugetlbfs mapping.
      
      Mappings which are not based on hugetlbfs are not affected and still
      use page->index.
      
      Thanks to Mel Gorman who provided a patch for adding proper evaluation
      functions to the hugetlbfs code to avoid exposing hugetlbfs specific
      details to the futex code.
      
      [ tglx: Massaged changelog ]
      Signed-off-by: NZhang Yi <zhang.yi20@zte.com.cn>
      Reviewed-by: NJiang Biao <jiang.biao2@zte.com.cn>
      Tested-by: NMa Chenggong <ma.chenggong@zte.com.cn>
      Reviewed-by: N'Mel Gorman' <mgorman@suse.de>
      Acked-by: N'Darren Hart' <dvhart@linux.intel.com>
      Cc: 'Peter Zijlstra' <peterz@infradead.org>
      Cc: stable@vger.kernel.org
      Link: http://lkml.kernel.org/r/000101ce71a6%24a83c5880%24f8b50980%24@comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      13d60f4b
  5. 14 6月, 2013 2 次提交
  6. 13 6月, 2013 1 次提交
  7. 30 4月, 2013 2 次提交
    • D
      mm, hugetlb: include hugepages in meminfo · 949f7ec5
      David Rientjes 提交于
      Particularly in oom conditions, it's troublesome that hugetlb memory is
      not displayed.  All other meminfo that is emitted will not add up to
      what is expected, and there is no artifact left in the kernel log to
      show that a potentially significant amount of memory is actually
      allocated as hugepages which are not available to be reclaimed.
      
      Booting with hugepages=8192 on the command line, this memory is now
      shown in oom conditions.  For example, with echo m >
      /proc/sysrq-trigger:
      
        Node 0 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
        Node 1 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
        Node 2 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
        Node 3 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB
      
      [akpm@linux-foundation.org: coding-style fixes]
      Signed-off-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      949f7ec5
    • G
      mm/hugetlb: add more arch-defined huge_pte functions · 106c992a
      Gerald Schaefer 提交于
      Commit abf09bed ("s390/mm: implement software dirty bits")
      introduced another difference in the pte layout vs.  the pmd layout on
      s390, thoroughly breaking the s390 support for hugetlbfs.  This requires
      replacing some more pte_xxx functions in mm/hugetlbfs.c with a
      huge_pte_xxx version.
      
      This patch introduces those huge_pte_xxx functions and their generic
      implementation in asm-generic/hugetlb.h, which will now be included on
      all architectures supporting hugetlbfs apart from s390.  This change
      will be a no-op for those architectures.
      
      [akpm@linux-foundation.org: fix warning]
      Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Hillf Danton <dhillf@gmail.com>
      Acked-by: Michal Hocko <mhocko@suse.cz>	[for !s390 parts]
      Cc: Tony Luck <tony.luck@intel.com>
      Cc: Fenghua Yu <fenghua.yu@intel.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Paul Mundt <lethal@linux-sh.org>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Chris Metcalf <cmetcalf@tilera.com>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      106c992a
  8. 18 4月, 2013 1 次提交
    • N
      hugetlbfs: add swap entry check in follow_hugetlb_page() · 9cc3a5bd
      Naoya Horiguchi 提交于
      With applying the previous patch "hugetlbfs: stop setting VM_DONTDUMP in
      initializing vma(VM_HUGETLB)" to reenable hugepage coredump, if a memory
      error happens on a hugepage and the affected processes try to access the
      error hugepage, we hit VM_BUG_ON(atomic_read(&page->_count) <= 0) in
      get_page().
      
      The reason for this bug is that coredump-related code doesn't recognise
      "hugepage hwpoison entry" with which a pmd entry is replaced when a memory
      error occurs on a hugepage.
      
      In other words, physical address information is stored in different bit
      layout between hugepage hwpoison entry and pmd entry, so
      follow_hugetlb_page() which is called in get_dump_page() returns a wrong
      page from a given address.
      
      The expected behavior is like this:
      
        absent   is_swap_pte   FOLL_DUMP   Expected behavior
        -------------------------------------------------------------------
         true     false         false       hugetlb_fault
         false    true          false       hugetlb_fault
         false    false         false       return page
         true     false         true        skip page (to avoid allocation)
         false    true          true        hugetlb_fault
         false    false         true        return page
      
      With this patch, we can call hugetlb_fault() and take proper actions (we
      wait for migration entries, fail with VM_FAULT_HWPOISON_LARGE for
      hwpoisoned entries,) and as the result we can dump all hugepages except
      for hwpoisoned ones.
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Rik van Riel <riel@redhat.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
      Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: <stable@vger.kernel.org>	[2.6.34+?]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9cc3a5bd
  9. 23 3月, 2013 1 次提交
    • W
      mm/hugetlb: fix total hugetlbfs pages count when using memory overcommit accouting · d0028588
      Wanpeng Li 提交于
      hugetlb_total_pages is used for overcommit calculations but the current
      implementation considers only the default hugetlb page size (which is
      either the first defined hugepage size or the one specified by
      default_hugepagesz kernel boot parameter).
      
      If the system is configured for more than one hugepage size, which is
      possible since commit a137e1cc ("hugetlbfs: per mount huge page
      sizes") then the overcommit estimation done by __vm_enough_memory()
      (resp.  shown by meminfo_proc_show) is not precise - there is an
      impression of more available/allowed memory.  This can lead to an
      unexpected ENOMEM/EFAULT resp.  SIGSEGV when memory is accounted.
      
      Testcase:
        boot: hugepagesz=1G hugepages=1
        the default overcommit ratio is 50
        before patch:
      
          egrep 'CommitLimit' /proc/meminfo
          CommitLimit:     55434168 kB
      
        after patch:
      
          egrep 'CommitLimit' /proc/meminfo
          CommitLimit:     54909880 kB
      
      [akpm@linux-foundation.org: coding-style tweak]
      Signed-off-by: NWanpeng Li <liwanp@linux.vnet.ibm.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Hillf Danton <dhillf@gmail.com>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: <stable@vger.kernel.org>		[3.0+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d0028588
  10. 07 3月, 2013 1 次提交
  11. 24 2月, 2013 2 次提交
  12. 23 2月, 2013 1 次提交
  13. 05 2月, 2013 1 次提交
  14. 19 12月, 2012 1 次提交
  15. 13 12月, 2012 3 次提交
  16. 12 12月, 2012 1 次提交
  17. 11 12月, 2012 1 次提交
  18. 06 12月, 2012 1 次提交
  19. 09 10月, 2012 6 次提交
    • A
      mm: document PageHuge somewhat · 7795912c
      Andrew Morton 提交于
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7795912c
    • S
      mm: move all mmu notifier invocations to be done outside the PT lock · 2ec74c3e
      Sagi Grimberg 提交于
      In order to allow sleeping during mmu notifier calls, we need to avoid
      invoking them under the page table spinlock.  This patch solves the
      problem by calling invalidate_page notification after releasing the lock
      (but before freeing the page itself), or by wrapping the page invalidation
      with calls to invalidate_range_begin and invalidate_range_end.
      
      To prevent accidental changes to the invalidate_range_end arguments after
      the call to invalidate_range_begin, the patch introduces a convention of
      saving the arguments in consistently named locals:
      
      	unsigned long mmun_start;	/* For mmu_notifiers */
      	unsigned long mmun_end;	/* For mmu_notifiers */
      
      	...
      
      	mmun_start = ...
      	mmun_end = ...
      	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
      
      	...
      
      	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
      
      The patch changes code to use this convention for all calls to
      mmu_notifier_invalidate_range_start/end, except those where the calls are
      close enough so that anyone who glances at the code can see the values
      aren't changing.
      
      This patchset is a preliminary step towards on-demand paging design to be
      added to the RDMA stack.
      
      Why do we want on-demand paging for Infiniband?
      
        Applications register memory with an RDMA adapter using system calls,
        and subsequently post IO operations that refer to the corresponding
        virtual addresses directly to HW.  Until now, this was achieved by
        pinning the memory during the registration calls.  The goal of on demand
        paging is to avoid pinning the pages of registered memory regions (MRs).
         This will allow users the same flexibility they get when swapping any
        other part of their processes address spaces.  Instead of requiring the
        entire MR to fit in physical memory, we can allow the MR to be larger,
        and only fit the current working set in physical memory.
      
      Why should anyone care?  What problems are users currently experiencing?
      
        This can make programming with RDMA much simpler.  Today, developers
        that are working with more data than their RAM can hold need either to
        deregister and reregister memory regions throughout their process's
        life, or keep a single memory region and copy the data to it.  On demand
        paging will allow these developers to register a single MR at the
        beginning of their process's life, and let the operating system manage
        which pages needs to be fetched at a given time.  In the future, we
        might be able to provide a single memory access key for each process
        that would provide the entire process's address as one large memory
        region, and the developers wouldn't need to register memory regions at
        all.
      
      Is there any prospect that any other subsystems will utilise these
      infrastructural changes?  If so, which and how, etc?
      
        As for other subsystems, I understand that XPMEM wanted to sleep in
        MMU notifiers, as Christoph Lameter wrote at
        http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and
        perhaps Andrea knows about other use cases.
      
        Scheduling in mmu notifications is required since we need to sync the
        hardware with the secondary page tables change.  A TLB flush of an IO
        device is inherently slower than a CPU TLB flush, so our design works by
        sending the invalidation request to the device, and waiting for an
        interrupt before exiting the mmu notifier handler.
      
      Avi said:
      
        kvm may be a buyer.  kvm::mmu_lock, which serializes guest page
        faults, also protects long operations such as destroying large ranges.
        It would be good to convert it into a spinlock, but as it is used inside
        mmu notifiers, this cannot be done.
      
        (there are alternatives, such as keeping the spinlock and using a
        generation counter to do the teardown in O(1), which is what the "may"
        is doing up there).
      
      [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups]
      Signed-off-by: NAndrea Arcangeli <andrea@qumranet.com>
      Signed-off-by: NSagi Grimberg <sagig@mellanox.com>
      Signed-off-by: NHaggai Eran <haggaie@mellanox.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
      Cc: Or Gerlitz <ogerlitz@mellanox.com>
      Cc: Haggai Eran <haggaie@mellanox.com>
      Cc: Shachar Raindel <raindel@mellanox.com>
      Cc: Liran Liss <liranl@mellanox.com>
      Cc: Christoph Lameter <cl@linux-foundation.org>
      Cc: Avi Kivity <avi@redhat.com>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2ec74c3e
    • M
      hugetlb: do not use vma_hugecache_offset() for vma_prio_tree_foreach · 36e4f20a
      Michal Hocko 提交于
      Commit 0c176d52 ("mm: hugetlb: fix pgoff computation when unmapping
      page from vma") fixed pgoff calculation but it has replaced it by
      vma_hugecache_offset() which is not approapriate for offsets used for
      vma_prio_tree_foreach() because that one expects index in page units
      rather than in huge_page_shift.
      
      Johannes said:
      
      : The resulting index may not be too big, but it can be too small: assume
      : hpage size of 2M and the address to unmap to be 0x200000.  This is regular
      : page index 512 and hpage index 1.  If you have a VMA that maps the file
      : only starting at the second huge page, that VMAs vm_pgoff will be 512 but
      : you ask for offset 1 and miss it even though it does map the page of
      : interest.  hugetlb_cow() will try to unmap, miss the vma, and retry the
      : cow until the allocation succeeds or the skipped vma(s) go away.
      Signed-off-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NHillf Danton <dhillf@gmail.com>
      Cc: Mel Gorman <mel@csn.ul.ie>
      Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      36e4f20a
    • S
    • M
      mm: replace vma prio_tree with an interval tree · 6b2dbba8
      Michel Lespinasse 提交于
      Implement an interval tree as a replacement for the VMA prio_tree.  The
      algorithms are similar to lib/interval_tree.c; however that code can't be
      directly reused as the interval endpoints are not explicitly stored in the
      VMA.  So instead, the common algorithm is moved into a template and the
      details (node type, how to get interval endpoints from the node, etc) are
      filled in using the C preprocessor.
      
      Once the interval tree functions are available, using them as a
      replacement to the VMA prio tree is a relatively simple, mechanical job.
      Signed-off-by: NMichel Lespinasse <walken@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Hillf Danton <dhillf@gmail.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6b2dbba8
    • W
      mm: hugetlb: add arch hook for clearing page flags before entering pool · 5d3a551c
      Will Deacon 提交于
      The core page allocator ensures that page flags are zeroed when freeing
      pages via free_pages_check.  A number of architectures (ARM, PPC, MIPS)
      rely on this property to treat new pages as dirty with respect to the data
      cache and perform the appropriate flushing before mapping the pages into
      userspace.
      
      This can lead to cache synchronisation problems when using hugepages,
      since the allocator keeps its own pool of pages above the usual page
      allocator and does not reset the page flags when freeing a page into the
      pool.
      
      This patch adds a new architecture hook, arch_clear_hugepage_flags, so
      that architectures which rely on the page flags being in a particular
      state for fresh allocations can adjust the flags accordingly when a page
      is freed into the pool.
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      Cc: Michal Hocko <mhocko@suse.cz>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5d3a551c
  20. 01 8月, 2012 3 次提交
    • M
      mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables · d833352a
      Mel Gorman 提交于
      If a process creates a large hugetlbfs mapping that is eligible for page
      table sharing and forks heavily with children some of whom fault and
      others which destroy the mapping then it is possible for page tables to
      get corrupted.  Some teardowns of the mapping encounter a "bad pmd" and
      output a message to the kernel log.  The final teardown will trigger a
      BUG_ON in mm/filemap.c.
      
      This was reproduced in 3.4 but is known to have existed for a long time
      and goes back at least as far as 2.6.37.  It was probably was introduced
      in 2.6.20 by [39dde65c: shared page table for hugetlb page].  The messages
      look like this;
      
      [  ..........] Lots of bad pmd messages followed by this
      [  127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7).
      [  127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7).
      [  127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7).
      [  127.186778] ------------[ cut here ]------------
      [  127.186781] kernel BUG at mm/filemap.c:134!
      [  127.186782] invalid opcode: 0000 [#1] SMP
      [  127.186783] CPU 7
      [  127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod
      [  127.186801]
      [  127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR
      [  127.186804] RIP: 0010:[<ffffffff810ed6ce>]  [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
      [  127.186809] RSP: 0000:ffff8804144b5c08  EFLAGS: 00010002
      [  127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0
      [  127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00
      [  127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003
      [  127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8
      [  127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8
      [  127.186815] FS:  00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000
      [  127.186816] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
      [  127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0
      [  127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
      [  127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
      [  127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0)
      [  127.186821] Stack:
      [  127.186822]  ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b
      [  127.186824]  ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98
      [  127.186825]  ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000
      [  127.186827] Call Trace:
      [  127.186829]  [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80
      [  127.186832]  [<ffffffff811bc925>] truncate_hugepages+0x115/0x220
      [  127.186834]  [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30
      [  127.186837]  [<ffffffff811655c7>] evict+0xa7/0x1b0
      [  127.186839]  [<ffffffff811657a3>] iput_final+0xd3/0x1f0
      [  127.186840]  [<ffffffff811658f9>] iput+0x39/0x50
      [  127.186842]  [<ffffffff81162708>] d_kill+0xf8/0x130
      [  127.186843]  [<ffffffff81162812>] dput+0xd2/0x1a0
      [  127.186845]  [<ffffffff8114e2d0>] __fput+0x170/0x230
      [  127.186848]  [<ffffffff81236e0e>] ? rb_erase+0xce/0x150
      [  127.186849]  [<ffffffff8114e3ad>] fput+0x1d/0x30
      [  127.186851]  [<ffffffff81117db7>] remove_vma+0x37/0x80
      [  127.186853]  [<ffffffff81119182>] do_munmap+0x2d2/0x360
      [  127.186855]  [<ffffffff811cc639>] sys_shmdt+0xc9/0x170
      [  127.186857]  [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b
      [  127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0
      [  127.186868] RIP  [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160
      [  127.186870]  RSP <ffff8804144b5c08>
      [  127.186871] ---[ end trace 7cbac5d1db69f426 ]---
      
      The bug is a race and not always easy to reproduce.  To reproduce it I was
      doing the following on a single socket I7-based machine with 16G of RAM.
      
      $ hugeadm --pool-pages-max DEFAULT:13G
      $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax
      $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall
      $ for i in `seq 1 9000`; do ./hugetlbfs-test; done
      
      On my particular machine, it usually triggers within 10 minutes but
      enabling debug options can change the timing such that it never hits.
      Once the bug is triggered, the machine is in trouble and needs to be
      rebooted.  The machine will respond but processes accessing proc like "ps
      aux" will hang due to the BUG_ON.  shutdown will also hang and needs a
      hard reset or a sysrq-b.
      
      The basic problem is a race between page table sharing and teardown.  For
      the most part page table sharing depends on i_mmap_mutex.  In some cases,
      it is also taking the mm->page_table_lock for the PTE updates but with
      shared page tables, it is the i_mmap_mutex that is more important.
      
      Unfortunately it appears to be also insufficient. Consider the following
      situation
      
      Process A					Process B
      ---------					---------
      hugetlb_fault					shmdt
        						LockWrite(mmap_sem)
          						  do_munmap
      						    unmap_region
      						      unmap_vmas
      						        unmap_single_vma
      						          unmap_hugepage_range
            						            Lock(i_mmap_mutex)
      							    Lock(mm->page_table_lock)
      							    huge_pmd_unshare/unmap tables <--- (1)
      							    Unlock(mm->page_table_lock)
            						            Unlock(i_mmap_mutex)
        huge_pte_alloc				      ...
          Lock(i_mmap_mutex)				      ...
          vma_prio_walk, find svma, spte		      ...
          Lock(mm->page_table_lock)			      ...
          share spte					      ...
          Unlock(mm->page_table_lock)			      ...
          Unlock(i_mmap_mutex)			      ...
        hugetlb_no_page									  <--- (2)
      						      free_pgtables
      						        unlink_file_vma
      							hugetlb_free_pgd_range
      						    remove_vma_list
      
      In this scenario, it is possible for Process A to share page tables with
      Process B that is trying to tear them down.  The i_mmap_mutex on its own
      does not prevent Process A walking Process B's page tables.  At (1) above,
      the page tables are not shared yet so it unmaps the PMDs.  Process A sets
      up page table sharing and at (2) faults a new entry.  Process B then trips
      up on it in free_pgtables.
      
      This patch fixes the problem by adding a new function
      __unmap_hugepage_range_final that is only called when the VMA is about to
      be destroyed.  This function clears VM_MAYSHARE during
      unmap_hugepage_range() under the i_mmap_mutex.  This makes the VMA
      ineligible for sharing and avoids the race.  Superficially this looks like
      it would then be vunerable to truncate and madvise issues but hugetlbfs
      has its own truncate handlers so does not use unmap_mapping_range() and
      does not support madvise(DONTNEED).
      
      This should be treated as a -stable candidate if it is merged.
      
      Test program is as follows. The test case was mostly written by Michal
      Hocko with a few minor changes to reproduce this bug.
      
      ==== CUT HERE ====
      
      static size_t huge_page_size = (2UL << 20);
      static size_t nr_huge_page_A = 512;
      static size_t nr_huge_page_B = 5632;
      
      unsigned int get_random(unsigned int max)
      {
      	struct timeval tv;
      
      	gettimeofday(&tv, NULL);
      	srandom(tv.tv_usec);
      	return random() % max;
      }
      
      static void play(void *addr, size_t size)
      {
      	unsigned char *start = addr,
      		      *end = start + size,
      		      *a;
      	start += get_random(size/2);
      
      	/* we could itterate on huge pages but let's give it more time. */
      	for (a = start; a < end; a += 4096)
      		*a = 0;
      }
      
      int main(int argc, char **argv)
      {
      	key_t key = IPC_PRIVATE;
      	size_t sizeA = nr_huge_page_A * huge_page_size;
      	size_t sizeB = nr_huge_page_B * huge_page_size;
      	int shmidA, shmidB;
      	void *addrA = NULL, *addrB = NULL;
      	int nr_children = 300, n = 0;
      
      	if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
      		perror("shmget:");
      		return 1;
      	}
      
      	if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) {
      		perror("shmat");
      		return 1;
      	}
      	if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) {
      		perror("shmget:");
      		return 1;
      	}
      
      	if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) {
      		perror("shmat");
      		return 1;
      	}
      
      fork_child:
      	switch(fork()) {
      		case 0:
      			switch (n%3) {
      			case 0:
      				play(addrA, sizeA);
      				break;
      			case 1:
      				play(addrB, sizeB);
      				break;
      			case 2:
      				break;
      			}
      			break;
      		case -1:
      			perror("fork:");
      			break;
      		default:
      			if (++n < nr_children)
      				goto fork_child;
      			play(addrA, sizeA);
      			break;
      	}
      	shmdt(addrA);
      	shmdt(addrB);
      	do {
      		wait(NULL);
      	} while (--n > 0);
      	shmctl(shmidA, IPC_RMID, NULL);
      	shmctl(shmidB, IPC_RMID, NULL);
      	return 0;
      }
      
      [akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build]
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d833352a
    • A
      hugetlb/cgroup: assign the page hugetlb cgroup when we move the page to active list. · 94ae8ba7
      Aneesh Kumar K.V 提交于
      A page's hugetlb cgroup assignment and movement to the active list should
      occur with hugetlb_lock held.  Otherwise when we remove the hugetlb cgroup
      we will iterate the active list and find pages with NULL hugetlb cgroup
      values.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      94ae8ba7
    • A
      hugetlb: move all the in use pages to active list · 79dbb236
      Aneesh Kumar K.V 提交于
      When we fail to allocate pages from the reserve pool, hugetlb tries to
      allocate huge pages using alloc_buddy_huge_page.  Add these to the active
      list.  We also need to add the huge page we allocate when we soft offline
      the oldpage to active list.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Reviewed-by: NMichal Hocko <mhocko@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      79dbb236