hugetlb.c 88.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
L
Linus Torvalds 已提交
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
53
DEFINE_SPINLOCK(hugetlb_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
130
	return subpool_inode(file_inode(vma->vm_file));
131 132
}

133 134 135
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
136 137
 *
 * The region data structures are protected by a combination of the mmap_sem
138
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139
 * must either hold the mmap_sem for write, or the mmap_sem for read and
140
 * the hugetlb_instantiation_mutex:
141
 *
142
 *	down_write(&mm->mmap_sem);
143
 * or
144 145
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
226
		/* We overlap with this area, if it extends further than
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

268 269 270 271 272 273 274
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
275 276
		long seg_from;
		long seg_to;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

292 293 294 295
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
296 297
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
298
{
299 300
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
301 302
}

303 304 305 306 307 308
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

322
	return 1UL << huge_page_shift(hstate);
323
}
324
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325

326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

339 340 341 342 343 344 345
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
346
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347

348 349 350 351 352 353 354 355 356
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
357 358 359 360 361 362 363 364 365
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
366
 */
367 368 369 370 371 372 373 374 375 376 377
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

378 379 380 381 382
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

383
static struct resv_map *resv_map_alloc(void)
384 385 386 387 388 389 390 391 392 393 394
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

395
static void resv_map_release(struct kref *ref)
396 397 398 399 400 401 402 403 404
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 406
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407
	if (!(vma->vm_flags & VM_MAYSHARE))
408 409
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
410
	return NULL;
411 412
}

413
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 415
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417

418 419
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
420 421 422 423 424
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 427

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 429 430 431 432
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 434

	return (get_vma_private_data(vma) & flag) != 0;
435 436 437
}

/* Decrement the reserved pages in the hugepage pool by one */
438 439
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
440
{
441 442 443
	if (vma->vm_flags & VM_NORESERVE)
		return;

444
	if (vma->vm_flags & VM_MAYSHARE) {
445
		/* Shared mappings always use reserves */
446
		h->resv_huge_pages--;
447
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 449 450 451
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
452
		h->resv_huge_pages--;
453 454 455
	}
}

456
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 458 459
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460
	if (!(vma->vm_flags & VM_MAYSHARE))
461 462 463 464
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
465
static int vma_has_reserves(struct vm_area_struct *vma)
466
{
467
	if (vma->vm_flags & VM_MAYSHARE)
468 469 470 471
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

508
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
509 510
{
	int nid = page_to_nid(page);
511
	list_move(&page->lru, &h->hugepage_freelists[nid]);
512 513
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
514 515
}

516 517 518 519 520 521 522
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523
	list_move(&page->lru, &h->hugepage_activelist);
524
	set_page_refcounted(page);
525 526 527 528 529
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

530 531
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
532
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
533
{
534
	struct page *page = NULL;
535
	struct mempolicy *mpol;
536
	nodemask_t *nodemask;
537
	struct zonelist *zonelist;
538 539
	struct zone *zone;
	struct zoneref *z;
540
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
541

542 543 544 545 546
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
547
	if (!vma_has_reserves(vma) &&
548
			h->free_huge_pages - h->resv_huge_pages == 0)
549
		goto err;
550

551
	/* If reserves cannot be used, ensure enough pages are in the pool */
552
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
553
		goto err;
554

555 556 557 558 559
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);

560 561
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
562 563 564 565 566 567 568
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
569
		}
L
Linus Torvalds 已提交
570
	}
571

572
	mpol_cond_put(mpol);
573 574
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
575
	return page;
576 577 578

err:
	return NULL;
L
Linus Torvalds 已提交
579 580
}

581
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
582 583
{
	int i;
584

585 586
	VM_BUG_ON(h->order >= MAX_ORDER);

587 588 589
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
590 591 592 593
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
594
	}
595
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
596 597
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
598
	arch_release_hugepage(page);
599
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
600 601
}

602 603 604 605 606 607 608 609 610 611 612
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

613 614
static void free_huge_page(struct page *page)
{
615 616 617 618
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
619
	struct hstate *h = page_hstate(page);
620
	int nid = page_to_nid(page);
621 622
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
623

624
	set_page_private(page, 0);
625
	page->mapping = NULL;
626
	BUG_ON(page_count(page));
627
	BUG_ON(page_mapcount(page));
628 629

	spin_lock(&hugetlb_lock);
630 631
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
632
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 634
		/* remove the page from active list */
		list_del(&page->lru);
635 636 637
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
638
	} else {
639
		arch_clear_hugepage_flags(page);
640
		enqueue_huge_page(h, page);
641
	}
642
	spin_unlock(&hugetlb_lock);
643
	hugepage_subpool_put_pages(spool, 1);
644 645
}

646
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647
{
648
	INIT_LIST_HEAD(&page->lru);
649 650
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
651
	set_hugetlb_cgroup(page, NULL);
652 653
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
654 655 656 657
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

658 659 660 661 662 663 664 665 666 667 668
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
669
		set_page_count(p, 0);
670 671 672 673
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
674 675 676 677 678
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
679 680 681 682 683 684 685 686 687 688 689 690
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
691 692
EXPORT_SYMBOL_GPL(PageHuge);

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

710
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
711 712
{
	struct page *page;
713

714 715 716
	if (h->order >= MAX_ORDER)
		return NULL;

717
	page = alloc_pages_exact_node(nid,
718 719
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
720
		huge_page_order(h));
L
Linus Torvalds 已提交
721
	if (page) {
722
		if (arch_prepare_hugepage(page)) {
723
			__free_pages(page, huge_page_order(h));
724
			return NULL;
725
		}
726
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
727
	}
728 729 730 731

	return page;
}

732
/*
733 734 735 736 737
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
738
 */
739
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740
{
741
	nid = next_node(nid, *nodes_allowed);
742
	if (nid == MAX_NUMNODES)
743
		nid = first_node(*nodes_allowed);
744 745 746 747 748
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

749 750 751 752 753 754 755
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

756
/*
757 758 759 760
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
761
 */
762 763
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
764
{
765 766 767 768 769 770
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771 772

	return nid;
773 774
}

775
/*
776 777 778 779
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
780
 */
781
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
782
{
783 784 785 786 787 788
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
789 790

	return nid;
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

827 828 829 830 831 832
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
833 834
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
835
{
836
	int nr_nodes, node;
837 838
	int ret = 0;

839
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
840 841 842 843
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
844 845
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
846
			struct page *page =
847
				list_entry(h->hugepage_freelists[node].next,
848 849 850
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
851
			h->free_huge_pages_node[node]--;
852 853
			if (acct_surplus) {
				h->surplus_huge_pages--;
854
				h->surplus_huge_pages_node[node]--;
855
			}
856 857
			update_and_free_page(h, page);
			ret = 1;
858
			break;
859
		}
860
	}
861 862 863 864

	return ret;
}

865
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
866 867
{
	struct page *page;
868
	unsigned int r_nid;
869

870 871 872
	if (h->order >= MAX_ORDER)
		return NULL;

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
897
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
898 899 900
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
901 902
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
903 904 905
	}
	spin_unlock(&hugetlb_lock);

906 907 908 909 910 911 912 913
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
914

915 916
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
917
		page = NULL;
918 919
	}

920
	spin_lock(&hugetlb_lock);
921
	if (page) {
922
		INIT_LIST_HEAD(&page->lru);
923
		r_nid = page_to_nid(page);
924
		set_compound_page_dtor(page, free_huge_page);
925
		set_hugetlb_cgroup(page, NULL);
926 927 928
		/*
		 * We incremented the global counters already
		 */
929 930
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
931
		__count_vm_event(HTLB_BUDDY_PGALLOC);
932
	} else {
933 934
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
935
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
936
	}
937
	spin_unlock(&hugetlb_lock);
938 939 940 941

	return page;
}

942 943 944 945 946 947 948 949 950 951 952 953 954
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

955
	if (!page)
956 957 958 959 960
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

961
/*
L
Lucas De Marchi 已提交
962
 * Increase the hugetlb pool such that it can accommodate a reservation
963 964
 * of size 'delta'.
 */
965
static int gather_surplus_pages(struct hstate *h, int delta)
966 967 968 969 970
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
971
	bool alloc_ok = true;
972

973
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
974
	if (needed <= 0) {
975
		h->resv_huge_pages += delta;
976
		return 0;
977
	}
978 979 980 981 982 983 984 985

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
986
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
987 988 989 990
		if (!page) {
			alloc_ok = false;
			break;
		}
991 992
		list_add(&page->lru, &surplus_list);
	}
993
	allocated += i;
994 995 996 997 998 999

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1000 1001
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1012 1013
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1014
	 * needed to accommodate the reservation.  Add the appropriate number
1015
	 * of pages to the hugetlb pool and free the extras back to the buddy
1016 1017 1018
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1019 1020
	 */
	needed += allocated;
1021
	h->resv_huge_pages += delta;
1022
	ret = 0;
1023

1024
	/* Free the needed pages to the hugetlb pool */
1025
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1026 1027
		if ((--needed) < 0)
			break;
1028 1029 1030 1031 1032 1033
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1034
		enqueue_huge_page(h, page);
1035
	}
1036
free:
1037
	spin_unlock(&hugetlb_lock);
1038 1039

	/* Free unnecessary surplus pages to the buddy allocator */
1040 1041
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1042
	spin_lock(&hugetlb_lock);
1043 1044 1045 1046 1047 1048 1049 1050

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1051
 * Called with hugetlb_lock held.
1052
 */
1053 1054
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1055 1056 1057
{
	unsigned long nr_pages;

1058
	/* Uncommit the reservation */
1059
	h->resv_huge_pages -= unused_resv_pages;
1060

1061 1062 1063 1064
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1065
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1066

1067 1068
	/*
	 * We want to release as many surplus pages as possible, spread
1069 1070 1071 1072 1073
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1074 1075
	 */
	while (nr_pages--) {
1076
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1077
			break;
1078 1079 1080
	}
}

1081 1082 1083
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1084 1085 1086 1087 1088 1089
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1090
 */
1091
static long vma_needs_reservation(struct hstate *h,
1092
			struct vm_area_struct *vma, unsigned long addr)
1093 1094 1095 1096
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1097
	if (vma->vm_flags & VM_MAYSHARE) {
1098
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1099 1100 1101
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1102 1103
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1104

1105
	} else  {
1106
		long err;
1107
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108 1109 1110 1111 1112 1113 1114
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1115
}
1116 1117
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1118 1119 1120 1121
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1122
	if (vma->vm_flags & VM_MAYSHARE) {
1123
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1124
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1125 1126

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1127
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1128 1129 1130 1131
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1132 1133 1134
	}
}

1135
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1136
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1137
{
1138
	struct hugepage_subpool *spool = subpool_vma(vma);
1139
	struct hstate *h = hstate_vma(vma);
1140
	struct page *page;
1141
	long chg;
1142 1143
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1144

1145
	idx = hstate_index(h);
1146
	/*
1147 1148 1149 1150 1151 1152
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1153
	 */
1154
	chg = vma_needs_reservation(h, vma, addr);
1155
	if (chg < 0)
1156
		return ERR_PTR(-ENOMEM);
1157
	if (chg)
1158
		if (hugepage_subpool_get_pages(spool, chg))
1159
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1160

1161 1162 1163 1164 1165
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1166
	spin_lock(&hugetlb_lock);
1167
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1168
	if (!page) {
1169
		spin_unlock(&hugetlb_lock);
1170
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1171
		if (!page) {
1172 1173 1174
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1175
			hugepage_subpool_put_pages(spool, chg);
1176
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1177
		}
1178 1179
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1180
		/* Fall through */
K
Ken Chen 已提交
1181
	}
1182 1183
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1184

1185
	set_page_private(page, (unsigned long)spool);
1186

1187
	vma_commit_reservation(h, vma, addr);
1188
	return page;
1189 1190
}

1191
int __weak alloc_bootmem_huge_page(struct hstate *h)
1192 1193
{
	struct huge_bootmem_page *m;
1194
	int nr_nodes, node;
1195

1196
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1197 1198
		void *addr;

1199
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1200 1201 1202 1203 1204 1205 1206 1207 1208
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1209
			goto found;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1222 1223 1224 1225 1226 1227 1228 1229
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1230 1231 1232 1233 1234 1235 1236
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1237 1238 1239 1240 1241 1242 1243 1244 1245
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1246 1247
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1248
		prep_compound_huge_page(page, h->order);
1249
		prep_new_huge_page(h, page, page_to_nid(page));
1250 1251 1252 1253 1254 1255 1256
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1257
			adjust_managed_page_count(page, 1 << h->order);
1258 1259 1260
	}
}

1261
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1262 1263
{
	unsigned long i;
1264

1265
	for (i = 0; i < h->max_huge_pages; ++i) {
1266 1267 1268
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1269
		} else if (!alloc_fresh_huge_page(h,
1270
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1271 1272
			break;
	}
1273
	h->max_huge_pages = i;
1274 1275 1276 1277 1278 1279 1280
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1281 1282 1283
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1284 1285 1286
	}
}

A
Andi Kleen 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1298 1299 1300 1301 1302
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1303
		char buf[32];
1304
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1305 1306
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1307 1308 1309
	}
}

L
Linus Torvalds 已提交
1310
#ifdef CONFIG_HIGHMEM
1311 1312
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1313
{
1314 1315
	int i;

1316 1317 1318
	if (h->order >= MAX_ORDER)
		return;

1319
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1320
		struct page *page, *next;
1321 1322 1323
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1324
				return;
L
Linus Torvalds 已提交
1325 1326 1327
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1328
			update_and_free_page(h, page);
1329 1330
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1331 1332 1333 1334
		}
	}
}
#else
1335 1336
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1337 1338 1339 1340
{
}
#endif

1341 1342 1343 1344 1345
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1346 1347
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1348
{
1349
	int nr_nodes, node;
1350 1351 1352

	VM_BUG_ON(delta != -1 && delta != 1);

1353 1354 1355 1356
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1357
		}
1358 1359 1360 1361 1362
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1363
		}
1364 1365
	}
	return 0;
1366

1367 1368 1369 1370
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1371 1372
}

1373
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1374 1375
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1376
{
1377
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1378

1379 1380 1381
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1382 1383 1384 1385
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1386 1387 1388 1389 1390 1391
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1392
	 */
L
Linus Torvalds 已提交
1393
	spin_lock(&hugetlb_lock);
1394
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1395
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1396 1397 1398
			break;
	}

1399
	while (count > persistent_huge_pages(h)) {
1400 1401 1402 1403 1404 1405
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1406
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1407 1408 1409 1410
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1411 1412 1413
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1414 1415 1416 1417 1418 1419 1420 1421
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1422 1423 1424 1425 1426 1427 1428 1429
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1430
	 */
1431
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1432
	min_count = max(count, min_count);
1433
	try_to_free_low(h, min_count, nodes_allowed);
1434
	while (min_count < persistent_huge_pages(h)) {
1435
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1436 1437
			break;
	}
1438
	while (count < persistent_huge_pages(h)) {
1439
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1440 1441 1442
			break;
	}
out:
1443
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1444
	spin_unlock(&hugetlb_lock);
1445
	return ret;
L
Linus Torvalds 已提交
1446 1447
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1458 1459 1460
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1461 1462
{
	int i;
1463

1464
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1465 1466 1467
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1468
			return &hstates[i];
1469 1470 1471
		}

	return kobj_to_node_hstate(kobj, nidp);
1472 1473
}

1474
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1475 1476
					struct kobj_attribute *attr, char *buf)
{
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1488
}
1489

1490 1491 1492
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1493 1494
{
	int err;
1495
	int nid;
1496
	unsigned long count;
1497
	struct hstate *h;
1498
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1499

1500
	err = kstrtoul(buf, 10, &count);
1501
	if (err)
1502
		goto out;
1503

1504
	h = kobj_to_hstate(kobj, &nid);
1505 1506 1507 1508 1509
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1510 1511 1512 1513 1514 1515 1516
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1517
			nodes_allowed = &node_states[N_MEMORY];
1518 1519 1520 1521 1522 1523 1524 1525 1526
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1527
		nodes_allowed = &node_states[N_MEMORY];
1528

1529
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1530

1531
	if (nodes_allowed != &node_states[N_MEMORY])
1532 1533 1534
		NODEMASK_FREE(nodes_allowed);

	return len;
1535 1536 1537
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1550 1551 1552
}
HSTATE_ATTR(nr_hugepages);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1574 1575 1576
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1577
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1578 1579
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1580

1581 1582 1583 1584 1585
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1586
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1587

1588 1589 1590
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1591
	err = kstrtoul(buf, 10, &input);
1592
	if (err)
1593
		return err;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1617 1618 1619 1620 1621 1622
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1623
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1624 1625 1626 1627 1628 1629 1630
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1642 1643 1644 1645 1646 1647 1648 1649 1650
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1651 1652 1653
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1654 1655 1656 1657 1658 1659 1660
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1661 1662 1663
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1664 1665
{
	int retval;
1666
	int hi = hstate_index(h);
1667

1668 1669
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1670 1671
		return -ENOMEM;

1672
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1673
	if (retval)
1674
		kobject_put(hstate_kobjs[hi]);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1689 1690
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1691
		if (err)
1692
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1693 1694 1695
	}
}

1696 1697 1698 1699
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1700 1701 1702
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1703 1704 1705 1706 1707 1708 1709 1710 1711
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1712
 * A subset of global hstate attributes for node devices
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1726
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1749
 * Unregister hstate attributes from a single node device.
1750 1751
 * No-op if no hstate attributes attached.
 */
1752
static void hugetlb_unregister_node(struct node *node)
1753 1754
{
	struct hstate *h;
1755
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1756 1757

	if (!nhs->hugepages_kobj)
1758
		return;		/* no hstate attributes */
1759

1760 1761 1762 1763 1764
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1765
		}
1766
	}
1767 1768 1769 1770 1771 1772

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1773
 * hugetlb module exit:  unregister hstate attributes from node devices
1774 1775 1776 1777 1778 1779 1780
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1781
	 * disable node device registrations.
1782 1783 1784 1785 1786 1787 1788
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1789
		hugetlb_unregister_node(node_devices[nid]);
1790 1791 1792
}

/*
1793
 * Register hstate attributes for a single node device.
1794 1795
 * No-op if attributes already registered.
 */
1796
static void hugetlb_register_node(struct node *node)
1797 1798
{
	struct hstate *h;
1799
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1800 1801 1802 1803 1804 1805
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1806
							&node->dev.kobj);
1807 1808 1809 1810 1811 1812 1813 1814
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1815 1816
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1817 1818 1819 1820 1821 1822 1823
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1824
 * hugetlb init time:  register hstate attributes for all registered node
1825 1826
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1827 1828 1829 1830 1831
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1832
	for_each_node_state(nid, N_MEMORY) {
1833
		struct node *node = node_devices[nid];
1834
		if (node->dev.id == nid)
1835 1836 1837 1838
			hugetlb_register_node(node);
	}

	/*
1839
	 * Let the node device driver know we're here so it can
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1861 1862 1863 1864
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1865 1866
	hugetlb_unregister_all_nodes();

1867
	for_each_hstate(h) {
1868
		kobject_put(hstate_kobjs[hstate_index(h)]);
1869 1870 1871 1872 1873 1874 1875 1876
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1877 1878 1879 1880 1881 1882
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1883

1884 1885 1886 1887
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1888
	}
1889
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1890 1891
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1892 1893

	hugetlb_init_hstates();
1894
	gather_bootmem_prealloc();
1895 1896 1897
	report_hugepages();

	hugetlb_sysfs_init();
1898
	hugetlb_register_all_nodes();
1899
	hugetlb_cgroup_file_init();
1900

1901 1902 1903 1904 1905 1906 1907 1908
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1909 1910
	unsigned long i;

1911
	if (size_to_hstate(PAGE_SIZE << order)) {
1912
		pr_warning("hugepagesz= specified twice, ignoring\n");
1913 1914
		return;
	}
1915
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1916
	BUG_ON(order == 0);
1917
	h = &hstates[hugetlb_max_hstate++];
1918 1919
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1920 1921 1922 1923
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1924
	INIT_LIST_HEAD(&h->hugepage_activelist);
1925 1926
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1927 1928
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1929

1930 1931 1932
	parsed_hstate = h;
}

1933
static int __init hugetlb_nrpages_setup(char *s)
1934 1935
{
	unsigned long *mhp;
1936
	static unsigned long *last_mhp;
1937 1938

	/*
1939
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1940 1941
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1942
	if (!hugetlb_max_hstate)
1943 1944 1945 1946
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1947
	if (mhp == last_mhp) {
1948 1949
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
1950 1951 1952
		return 1;
	}

1953 1954 1955
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1956 1957 1958 1959 1960
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1961
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1962 1963 1964 1965
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1966 1967
	return 1;
}
1968 1969 1970 1971 1972 1973 1974 1975
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1989 1990 1991
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1992
{
1993 1994
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1995
	int ret;
1996

1997
	tmp = h->max_huge_pages;
1998

1999 2000 2001
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2002 2003
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2004 2005 2006
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2007

2008
	if (write) {
2009 2010
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2011 2012 2013
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2014
			nodes_allowed = &node_states[N_MEMORY];
2015 2016 2017
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2018
		if (nodes_allowed != &node_states[N_MEMORY])
2019 2020
			NODEMASK_FREE(nodes_allowed);
	}
2021 2022
out:
	return ret;
L
Linus Torvalds 已提交
2023
}
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2042
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2043
			void __user *buffer,
2044 2045
			size_t *length, loff_t *ppos)
{
2046
	proc_dointvec(table, write, buffer, length, ppos);
2047 2048 2049 2050 2051 2052 2053
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2054
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2055
			void __user *buffer,
2056 2057
			size_t *length, loff_t *ppos)
{
2058
	struct hstate *h = &default_hstate;
2059
	unsigned long tmp;
2060
	int ret;
2061

2062
	tmp = h->nr_overcommit_huge_pages;
2063

2064 2065 2066
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2067 2068
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2069 2070 2071
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2072 2073 2074 2075 2076 2077

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2078 2079
out:
	return ret;
2080 2081
}

L
Linus Torvalds 已提交
2082 2083
#endif /* CONFIG_SYSCTL */

2084
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2085
{
2086
	struct hstate *h = &default_hstate;
2087
	seq_printf(m,
2088 2089 2090 2091 2092
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2093 2094 2095 2096 2097
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2098 2099 2100 2101
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2102
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2103 2104
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2105 2106
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2107 2108 2109
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2127 2128 2129
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2130 2131 2132 2133 2134 2135
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2136 2137
}

2138
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2161
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2162 2163
			goto out;

2164 2165
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2166 2167 2168 2169 2170 2171
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2172
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2173 2174 2175 2176 2177 2178

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2179 2180 2181 2182 2183 2184 2185 2186
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2187
	 * has a reference to the reservation map it cannot disappear until
2188 2189 2190 2191 2192 2193 2194
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2195 2196 2197 2198 2199 2200 2201 2202 2203
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2204 2205
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2206
	struct hstate *h = hstate_vma(vma);
2207
	struct resv_map *reservations = vma_resv_map(vma);
2208
	struct hugepage_subpool *spool = subpool_vma(vma);
2209 2210 2211 2212 2213
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2214 2215
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2216 2217 2218 2219

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2220
		resv_map_put(vma);
2221

2222
		if (reserve) {
2223
			hugetlb_acct_memory(h, -reserve);
2224
			hugepage_subpool_put_pages(spool, reserve);
2225
		}
2226
	}
2227 2228
}

L
Linus Torvalds 已提交
2229 2230 2231 2232 2233 2234
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2235
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2236 2237
{
	BUG();
N
Nick Piggin 已提交
2238
	return 0;
L
Linus Torvalds 已提交
2239 2240
}

2241
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2242
	.fault = hugetlb_vm_op_fault,
2243
	.open = hugetlb_vm_op_open,
2244
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2245 2246
};

2247 2248
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2249 2250 2251
{
	pte_t entry;

2252
	if (writable) {
2253 2254
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2255
	} else {
2256 2257
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2258 2259 2260
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2261
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2262 2263 2264 2265

	return entry;
}

2266 2267 2268 2269 2270
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2271
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2272
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2273
		update_mmu_cache(vma, address, ptep);
2274 2275 2276
}


D
David Gibson 已提交
2277 2278 2279 2280 2281
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2282
	unsigned long addr;
2283
	int cow;
2284 2285
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2286 2287

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2288

2289
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2290 2291 2292
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2293
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2294 2295
		if (!dst_pte)
			goto nomem;
2296 2297 2298 2299 2300

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2301
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2302
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2303
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2304
			if (cow)
2305 2306
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2307 2308
			ptepage = pte_page(entry);
			get_page(ptepage);
2309
			page_dup_rmap(ptepage);
2310 2311 2312
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2313
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2314 2315 2316 2317 2318 2319 2320
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2321 2322 2323 2324 2325 2326 2327
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2328
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2329
		return 1;
2330
	else
N
Naoya Horiguchi 已提交
2331 2332 2333
		return 0;
}

2334 2335 2336 2337 2338 2339 2340
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2341
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2342
		return 1;
2343
	else
2344 2345 2346
		return 0;
}

2347 2348 2349
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2350
{
2351
	int force_flush = 0;
D
David Gibson 已提交
2352 2353
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2354
	pte_t *ptep;
D
David Gibson 已提交
2355 2356
	pte_t pte;
	struct page *page;
2357 2358
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2359 2360
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2361

D
David Gibson 已提交
2362
	WARN_ON(!is_vm_hugetlb_page(vma));
2363 2364
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2365

2366
	tlb_start_vma(tlb, vma);
2367
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2368
again:
2369
	spin_lock(&mm->page_table_lock);
2370
	for (address = start; address < end; address += sz) {
2371
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2372
		if (!ptep)
2373 2374
			continue;

2375 2376 2377
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2378 2379 2380 2381 2382 2383 2384
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2385
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2386
			huge_pte_clear(mm, address, ptep);
2387
			continue;
2388
		}
2389 2390

		page = pte_page(pte);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2408
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2409
		tlb_remove_tlb_entry(tlb, ptep, address);
2410
		if (huge_pte_dirty(pte))
2411
			set_page_dirty(page);
2412

2413 2414 2415 2416
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2417 2418 2419
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2420
	}
2421
	spin_unlock(&mm->page_table_lock);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2432
	}
2433
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2434
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2435
}
D
David Gibson 已提交
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2456
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2457
			  unsigned long end, struct page *ref_page)
2458
{
2459 2460 2461 2462 2463
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2464
	tlb_gather_mmu(&tlb, mm, start, end);
2465 2466
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2467 2468
}

2469 2470 2471 2472 2473 2474
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2475 2476
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2477
{
2478
	struct hstate *h = hstate_vma(vma);
2479 2480 2481 2482 2483 2484 2485 2486
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2487
	address = address & huge_page_mask(h);
2488 2489
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2490
	mapping = file_inode(vma->vm_file)->i_mapping;
2491

2492 2493 2494 2495 2496
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2497
	mutex_lock(&mapping->i_mmap_mutex);
2498
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2511 2512
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2513
	}
2514
	mutex_unlock(&mapping->i_mmap_mutex);
2515 2516 2517 2518

	return 1;
}

2519 2520
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2521 2522 2523
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2524
 */
2525
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2526 2527
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2528
{
2529
	struct hstate *h = hstate_vma(vma);
2530
	struct page *old_page, *new_page;
2531
	int outside_reserve = 0;
2532 2533
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2534 2535 2536

	old_page = pte_page(pte);

2537
retry_avoidcopy:
2538 2539
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2540 2541
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2542
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2543
		return 0;
2544 2545
	}

2546 2547 2548 2549 2550 2551 2552 2553 2554
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2555
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2556 2557 2558 2559
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2560
	page_cache_get(old_page);
2561 2562 2563

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2564
	new_page = alloc_huge_page(vma, address, outside_reserve);
2565

2566
	if (IS_ERR(new_page)) {
2567
		long err = PTR_ERR(new_page);
2568
		page_cache_release(old_page);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2581
				spin_lock(&mm->page_table_lock);
2582 2583 2584 2585 2586 2587 2588 2589
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2590 2591 2592 2593
			}
			WARN_ON_ONCE(1);
		}

2594 2595
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2596 2597 2598 2599
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2600 2601
	}

2602 2603 2604 2605
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2606
	if (unlikely(anon_vma_prepare(vma))) {
2607 2608
		page_cache_release(new_page);
		page_cache_release(old_page);
2609 2610
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2611
		return VM_FAULT_OOM;
2612
	}
2613

A
Andrea Arcangeli 已提交
2614 2615
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2616
	__SetPageUptodate(new_page);
2617

2618 2619 2620
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2621 2622 2623 2624 2625
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2626
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2627
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2628
		/* Break COW */
2629
		huge_ptep_clear_flush(vma, address, ptep);
2630 2631
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2632
		page_remove_rmap(old_page);
2633
		hugepage_add_new_anon_rmap(new_page, vma, address);
2634 2635 2636
		/* Make the old page be freed below */
		new_page = old_page;
	}
2637 2638 2639 2640
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
2641 2642
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2643
	return 0;
2644 2645
}

2646
/* Return the pagecache page at a given address within a VMA */
2647 2648
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2649 2650
{
	struct address_space *mapping;
2651
	pgoff_t idx;
2652 2653

	mapping = vma->vm_file->f_mapping;
2654
	idx = vma_hugecache_offset(h, vma, address);
2655 2656 2657 2658

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2659 2660 2661 2662 2663
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2679
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2680
			unsigned long address, pte_t *ptep, unsigned int flags)
2681
{
2682
	struct hstate *h = hstate_vma(vma);
2683
	int ret = VM_FAULT_SIGBUS;
2684
	int anon_rmap = 0;
2685
	pgoff_t idx;
A
Adam Litke 已提交
2686 2687 2688
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2689
	pte_t new_pte;
A
Adam Litke 已提交
2690

2691 2692 2693
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2694
	 * COW. Warn that such a situation has occurred as it may not be obvious
2695 2696
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2697 2698
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2699 2700 2701
		return ret;
	}

A
Adam Litke 已提交
2702
	mapping = vma->vm_file->f_mapping;
2703
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2704 2705 2706 2707 2708

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2709 2710 2711
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2712
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2713 2714
		if (idx >= size)
			goto out;
2715
		page = alloc_huge_page(vma, address, 0);
2716
		if (IS_ERR(page)) {
2717 2718 2719 2720 2721
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2722 2723
			goto out;
		}
A
Andrea Arcangeli 已提交
2724
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2725
		__SetPageUptodate(page);
2726

2727
		if (vma->vm_flags & VM_MAYSHARE) {
2728
			int err;
K
Ken Chen 已提交
2729
			struct inode *inode = mapping->host;
2730 2731 2732 2733 2734 2735 2736 2737

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2738 2739

			spin_lock(&inode->i_lock);
2740
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2741
			spin_unlock(&inode->i_lock);
2742
		} else {
2743
			lock_page(page);
2744 2745 2746 2747
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2748
			anon_rmap = 1;
2749
		}
2750
	} else {
2751 2752 2753 2754 2755 2756
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2757
			ret = VM_FAULT_HWPOISON |
2758
				VM_FAULT_SET_HINDEX(hstate_index(h));
2759 2760
			goto backout_unlocked;
		}
2761
	}
2762

2763 2764 2765 2766 2767 2768
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2769
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2770 2771 2772 2773
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2774

2775
	spin_lock(&mm->page_table_lock);
2776
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2777 2778 2779
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2780
	ret = 0;
2781
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2782 2783
		goto backout;

2784 2785 2786 2787
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2788 2789 2790 2791
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2792
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2793
		/* Optimization, do the COW without a second fault */
2794
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2795 2796
	}

2797
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2798 2799
	unlock_page(page);
out:
2800
	return ret;
A
Adam Litke 已提交
2801 2802 2803

backout:
	spin_unlock(&mm->page_table_lock);
2804
backout_unlocked:
A
Adam Litke 已提交
2805 2806 2807
	unlock_page(page);
	put_page(page);
	goto out;
2808 2809
}

2810
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2811
			unsigned long address, unsigned int flags)
2812 2813 2814
{
	pte_t *ptep;
	pte_t entry;
2815
	int ret;
2816
	struct page *page = NULL;
2817
	struct page *pagecache_page = NULL;
2818
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2819
	struct hstate *h = hstate_vma(vma);
2820

2821 2822
	address &= huge_page_mask(h);

2823 2824 2825
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2826
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2827
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2828 2829
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2830
			return VM_FAULT_HWPOISON_LARGE |
2831
				VM_FAULT_SET_HINDEX(hstate_index(h));
2832 2833
	}

2834
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2835 2836 2837
	if (!ptep)
		return VM_FAULT_OOM;

2838 2839 2840 2841 2842 2843
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2844 2845
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2846
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2847
		goto out_mutex;
2848
	}
2849

N
Nick Piggin 已提交
2850
	ret = 0;
2851

2852 2853 2854 2855 2856 2857 2858 2859
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2860
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2861 2862
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2863
			goto out_mutex;
2864
		}
2865

2866
		if (!(vma->vm_flags & VM_MAYSHARE))
2867 2868 2869 2870
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2871 2872 2873 2874 2875 2876 2877 2878
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2879
	get_page(page);
2880
	if (page != pagecache_page)
2881 2882
		lock_page(page);

2883 2884
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2885 2886 2887 2888
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2889
	if (flags & FAULT_FLAG_WRITE) {
2890
		if (!huge_pte_write(entry)) {
2891 2892
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2893 2894
			goto out_page_table_lock;
		}
2895
		entry = huge_pte_mkdirty(entry);
2896 2897
	}
	entry = pte_mkyoung(entry);
2898 2899
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2900
		update_mmu_cache(vma, address, ptep);
2901 2902

out_page_table_lock:
2903
	spin_unlock(&mm->page_table_lock);
2904 2905 2906 2907 2908

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2909 2910
	if (page != pagecache_page)
		unlock_page(page);
2911
	put_page(page);
2912

2913
out_mutex:
2914
	mutex_unlock(&hugetlb_instantiation_mutex);
2915 2916

	return ret;
2917 2918
}

2919 2920 2921 2922
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
2923
{
2924 2925
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
2926
	unsigned long remainder = *nr_pages;
2927
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2928

2929
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2930
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2931
		pte_t *pte;
H
Hugh Dickins 已提交
2932
		int absent;
A
Adam Litke 已提交
2933
		struct page *page;
D
David Gibson 已提交
2934

A
Adam Litke 已提交
2935 2936
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2937
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2938 2939
		 * first, for the page indexing below to work.
		 */
2940
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2941 2942 2943 2944
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2945 2946 2947 2948
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2949
		 */
H
Hugh Dickins 已提交
2950 2951
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2952 2953 2954
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2955

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2967 2968
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2969
			int ret;
D
David Gibson 已提交
2970

A
Adam Litke 已提交
2971
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2972 2973
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2974
			spin_lock(&mm->page_table_lock);
2975
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2976
				continue;
D
David Gibson 已提交
2977

A
Adam Litke 已提交
2978 2979 2980 2981
			remainder = 0;
			break;
		}

2982
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2983
		page = pte_page(huge_ptep_get(pte));
2984
same_page:
2985
		if (pages) {
H
Hugh Dickins 已提交
2986
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2987
			get_page(pages[i]);
2988
		}
D
David Gibson 已提交
2989 2990 2991 2992 2993

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2994
		++pfn_offset;
D
David Gibson 已提交
2995 2996
		--remainder;
		++i;
2997
		if (vaddr < vma->vm_end && remainder &&
2998
				pfn_offset < pages_per_huge_page(h)) {
2999 3000 3001 3002 3003 3004
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3005
	}
3006
	spin_unlock(&mm->page_table_lock);
3007
	*nr_pages = remainder;
D
David Gibson 已提交
3008 3009
	*position = vaddr;

H
Hugh Dickins 已提交
3010
	return i ? i : -EFAULT;
D
David Gibson 已提交
3011
}
3012

3013
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3014 3015 3016 3017 3018 3019
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3020
	struct hstate *h = hstate_vma(vma);
3021
	unsigned long pages = 0;
3022 3023 3024 3025

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3026
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3027
	spin_lock(&mm->page_table_lock);
3028
	for (; address < end; address += huge_page_size(h)) {
3029 3030 3031
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3032 3033
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3034
			continue;
3035
		}
3036
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3037
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3038
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3039
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3040
			set_huge_pte_at(mm, address, ptep, pte);
3041
			pages++;
3042 3043 3044
		}
	}
	spin_unlock(&mm->page_table_lock);
3045 3046 3047 3048 3049 3050
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3051
	flush_tlb_range(vma, start, end);
3052
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3053 3054

	return pages << h->order;
3055 3056
}

3057 3058
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3059
					struct vm_area_struct *vma,
3060
					vm_flags_t vm_flags)
3061
{
3062
	long ret, chg;
3063
	struct hstate *h = hstate_inode(inode);
3064
	struct hugepage_subpool *spool = subpool_inode(inode);
3065

3066 3067 3068
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3069
	 * without using reserves
3070
	 */
3071
	if (vm_flags & VM_NORESERVE)
3072 3073
		return 0;

3074 3075 3076 3077 3078 3079
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3080
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3081
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3082 3083 3084 3085 3086
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3087
		chg = to - from;
3088

3089 3090 3091 3092
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3093 3094 3095 3096
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3097

3098
	/* There must be enough pages in the subpool for the mapping */
3099 3100 3101 3102
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3103 3104

	/*
3105
	 * Check enough hugepages are available for the reservation.
3106
	 * Hand the pages back to the subpool if there are not
3107
	 */
3108
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3109
	if (ret < 0) {
3110
		hugepage_subpool_put_pages(spool, chg);
3111
		goto out_err;
K
Ken Chen 已提交
3112
	}
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3125
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3126
		region_add(&inode->i_mapping->private_list, from, to);
3127
	return 0;
3128
out_err:
3129 3130
	if (vma)
		resv_map_put(vma);
3131
	return ret;
3132 3133 3134 3135
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3136
	struct hstate *h = hstate_inode(inode);
3137
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3138
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3139 3140

	spin_lock(&inode->i_lock);
3141
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3142 3143
	spin_unlock(&inode->i_lock);

3144
	hugepage_subpool_put_pages(spool, (chg - freed));
3145
	hugetlb_acct_memory(h, -(chg - freed));
3146
}
3147

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3268 3269 3270 3271 3272 3273 3274
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3275 3276
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3358 3359
#ifdef CONFIG_MEMORY_FAILURE

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3374 3375 3376 3377
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3378
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3379 3380 3381
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3382
	int ret = -EBUSY;
3383 3384

	spin_lock(&hugetlb_lock);
3385
	if (is_hugepage_on_freelist(hpage)) {
3386 3387 3388 3389 3390 3391 3392
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3393
		set_page_refcounted(hpage);
3394 3395 3396 3397
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3398
	spin_unlock(&hugetlb_lock);
3399
	return ret;
3400
}
3401
#endif