efx.c 93.4 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25
#include "net_driver.h"
26 27
#include <net/gre.h>
#include <net/udp_tunnel.h>
28
#include "efx.h"
B
Ben Hutchings 已提交
29
#include "nic.h"
30
#include "selftest.h"
31
#include "sriov.h"
32

33
#include "mcdi.h"
34
#include "mcdi_pcol.h"
35
#include "workarounds.h"
36

37 38 39 40 41 42 43 44 45
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
46
const char *const efx_loopback_mode_names[] = {
47
	[LOOPBACK_NONE]		= "NONE",
48
	[LOOPBACK_DATA]		= "DATAPATH",
49 50 51
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
52 53 54
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
55 56 57 58 59 60
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
61 62
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
63 64
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
65 66
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
67
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
68 69
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
70
	[LOOPBACK_GMII_WS]	= "GMII_WS",
71 72
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
73
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
74 75 76
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
77
const char *const efx_reset_type_names[] = {
78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
83
	[RESET_TYPE_DATAPATH]           = "DATAPATH",
84
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
85 86 87
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
88
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
89 90
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
91
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
92 93
};

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/* UDP tunnel type names */
static const char *const efx_udp_tunnel_type_names[] = {
	[TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan",
	[TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve",
};

void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen)
{
	if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) &&
	    efx_udp_tunnel_type_names[type] != NULL)
		snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]);
	else
		snprintf(buf, buflen, "type %d", type);
}

109 110 111 112 113 114
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

115 116 117 118 119 120
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

121 122 123 124 125 126 127 128 129
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
130 131
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
132
 *
133
 * This is only used in MSI-X interrupt mode
134
 */
135 136 137
bool efx_separate_tx_channels;
module_param(efx_separate_tx_channels, bool, 0444);
MODULE_PARM_DESC(efx_separate_tx_channels,
138
		 "Use separate channels for TX and RX");
139 140 141 142 143 144 145

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
146 147
 * monitor.
 * On Falcon-based NICs, this will:
148 149
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
150 151
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
152
 */
S
stephen hemminger 已提交
153
static unsigned int efx_monitor_interval = 1 * HZ;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
186
 * The default (0) means to assign an interrupt to each core.
187 188 189 190 191
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

192 193
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
194 195
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

196
static unsigned irq_adapt_low_thresh = 8000;
197 198 199 200
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

201
static unsigned irq_adapt_high_thresh = 16000;
202 203 204 205
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

206 207 208 209 210 211 212
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

213 214 215 216 217
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
218

219
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
220
static void efx_soft_disable_interrupts(struct efx_nic *efx);
221
static void efx_remove_channel(struct efx_channel *channel);
222
static void efx_remove_channels(struct efx_nic *efx);
223
static const struct efx_channel_type efx_default_channel_type;
224
static void efx_remove_port(struct efx_nic *efx);
225
static void efx_init_napi_channel(struct efx_channel *channel);
226
static void efx_fini_napi(struct efx_nic *efx);
227
static void efx_fini_napi_channel(struct efx_channel *channel);
228 229 230
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
231 232 233

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
234
		if ((efx->state == STATE_READY) ||	\
235
		    (efx->state == STATE_RECOVERY) ||	\
236
		    (efx->state == STATE_DISABLED))	\
237 238 239
			ASSERT_RTNL();			\
	} while (0)

240 241
static int efx_check_disabled(struct efx_nic *efx)
{
242
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
243 244 245 246 247 248 249
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

250 251 252 253 254 255 256 257 258 259 260 261 262
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
263
static int efx_process_channel(struct efx_channel *channel, int budget)
264
{
265
	struct efx_tx_queue *tx_queue;
266
	int spent;
267

268
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
269
		return 0;
270

271 272 273 274 275
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		tx_queue->pkts_compl = 0;
		tx_queue->bytes_compl = 0;
	}

276
	spent = efx_nic_process_eventq(channel, budget);
277 278 279 280
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

281
		efx_rx_flush_packet(channel);
282
		efx_fast_push_rx_descriptors(rx_queue, true);
283 284
	}

285 286 287 288 289 290 291 292
	/* Update BQL */
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		if (tx_queue->bytes_compl) {
			netdev_tx_completed_queue(tx_queue->core_txq,
				tx_queue->pkts_compl, tx_queue->bytes_compl);
		}
	}

293
	return spent;
294 295 296 297 298 299 300
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
{
	int step = efx->irq_mod_step_us;

	if (channel->irq_mod_score < irq_adapt_low_thresh) {
		if (channel->irq_moderation_us > step) {
			channel->irq_moderation_us -= step;
			efx->type->push_irq_moderation(channel);
		}
	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
		if (channel->irq_moderation_us <
		    efx->irq_rx_moderation_us) {
			channel->irq_moderation_us += step;
			efx->type->push_irq_moderation(channel);
		}
	}

	channel->irq_count = 0;
	channel->irq_mod_score = 0;
}

322 323 324 325
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
326
	struct efx_nic *efx = channel->efx;
327
	int spent;
328

329 330 331
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
332

333
	spent = efx_process_channel(channel, budget);
334

335
	if (spent < budget) {
336
		if (efx_channel_has_rx_queue(channel) &&
337 338
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
339
			efx_update_irq_mod(efx, channel);
340 341
		}

342 343
		efx_filter_rfs_expire(channel);

344
		/* There is no race here; although napi_disable() will
345
		 * only wait for napi_complete(), this isn't a problem
346
		 * since efx_nic_eventq_read_ack() will have no effect if
347 348
		 * interrupts have already been disabled.
		 */
349 350
		if (napi_complete_done(napi, spent))
			efx_nic_eventq_read_ack(channel);
351 352
	}

353
	return spent;
354 355 356 357 358 359 360 361 362
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
363 364 365
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

366
	netif_dbg(efx, probe, efx->net_dev,
367
		  "chan %d create event queue\n", channel->channel);
368

369 370 371
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
372
	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
373 374
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

375
	return efx_nic_probe_eventq(channel);
376 377 378
}

/* Prepare channel's event queue */
379
static int efx_init_eventq(struct efx_channel *channel)
380
{
381
	struct efx_nic *efx = channel->efx;
382 383 384 385
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

386
	netif_dbg(efx, drv, efx->net_dev,
387
		  "chan %d init event queue\n", channel->channel);
388

389 390
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
391
		efx->type->push_irq_moderation(channel);
392 393 394 395
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
396 397
}

398
/* Enable event queue processing and NAPI */
399
void efx_start_eventq(struct efx_channel *channel)
400 401 402 403
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

404
	/* Make sure the NAPI handler sees the enabled flag set */
405 406 407 408 409 410 411 412
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
413
void efx_stop_eventq(struct efx_channel *channel)
414 415 416 417 418 419 420 421
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

422 423
static void efx_fini_eventq(struct efx_channel *channel)
{
424 425 426
	if (!channel->eventq_init)
		return;

427 428
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
429

430
	efx_nic_fini_eventq(channel);
431
	channel->eventq_init = false;
432 433 434 435
}

static void efx_remove_eventq(struct efx_channel *channel)
{
436 437
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
438

439
	efx_nic_remove_eventq(channel);
440 441 442 443 444 445 446 447
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

448
/* Allocate and initialise a channel structure. */
449 450 451 452 453 454 455 456
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

457 458 459
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
460

461 462 463
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
464

465 466 467 468 469 470
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
471

472 473 474 475
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
476

477 478 479 480 481 482 483 484 485 486 487 488 489
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
490

491 492 493 494 495 496 497
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
498 499 500
	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
	channel->napi_str.napi_id = 0;
	channel->napi_str.state = 0;
501
	memset(&channel->eventq, 0, sizeof(channel->eventq));
502

503 504 505
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
506
			tx_queue->channel = channel;
507 508
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
509 510 511
	}

	rx_queue = &channel->rx_queue;
512 513
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
514 515 516 517 518 519
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

520 521 522 523 524 525
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

526 527
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
528

529 530 531 532
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

533 534
	rc = efx_probe_eventq(channel);
	if (rc)
535
		goto fail;
536 537 538 539

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
540
			goto fail;
541 542 543 544 545
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
546
			goto fail;
547 548 549 550
	}

	return 0;

551 552
fail:
	efx_remove_channel(channel);
553 554 555
	return rc;
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
574

575 576 577 578
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

579 580
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
581 582
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
583 584
}

585 586 587 588 589 590 591 592
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

593 594 595 596 597 598
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

616 617 618 619
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
620
static void efx_start_datapath(struct efx_nic *efx)
621
{
622
	netdev_features_t old_features = efx->net_dev->features;
623
	bool old_rx_scatter = efx->rx_scatter;
624 625 626
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
627
	size_t rx_buf_len;
628

629 630 631 632
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
633
	efx->rx_dma_len = (efx->rx_prefix_size +
634 635
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
636
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
637
		      efx->rx_ip_align + efx->rx_dma_len);
638
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
639
		efx->rx_scatter = efx->type->always_rx_scatter;
640 641
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
642
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
643
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
644 645 646
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
647 648 649 650 651 652 653 654
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

655 656 657 658 659 660 661 662 663 664 665
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
666

667 668 669 670 671 672 673 674 675
	/* Restore previously fixed features in hw_features and remove
	 * features which are fixed now
	 */
	efx->net_dev->hw_features |= efx->net_dev->features;
	efx->net_dev->hw_features &= ~efx->fixed_features;
	efx->net_dev->features |= efx->fixed_features;
	if (efx->net_dev->features != old_features)
		netdev_features_change(efx->net_dev);

J
Jon Cooper 已提交
676
	/* RX filters may also have scatter-enabled flags */
677
	if (efx->rx_scatter != old_rx_scatter)
678
		efx->type->filter_update_rx_scatter(efx);
679

680 681 682 683 684 685 686 687 688 689
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

690 691
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
692
		efx_for_each_channel_tx_queue(tx_queue, channel) {
693
			efx_init_tx_queue(tx_queue);
694 695
			atomic_inc(&efx->active_queues);
		}
696

697
		efx_for_each_channel_rx_queue(rx_queue, channel) {
698
			efx_init_rx_queue(rx_queue);
699
			atomic_inc(&efx->active_queues);
700 701 702
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
703
		}
704

705
		WARN_ON(channel->rx_pkt_n_frags);
706 707
	}

708 709
	efx_ptp_start_datapath(efx);

710 711
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
712 713
}

714
static void efx_stop_datapath(struct efx_nic *efx)
715 716 717 718
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
719
	int rc;
720 721 722 723

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

724 725
	efx_ptp_stop_datapath(efx);

726 727 728 729 730 731
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

732
	efx_for_each_channel(channel, efx) {
733 734 735 736 737 738 739 740 741 742
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
743
	}
744

745
	rc = efx->type->fini_dmaq(efx);
746
	if (rc) {
747 748 749 750 751 752 753
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
754 755
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
756
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
757 758 759 760 761 762 763 764 765
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

766 767
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
768 769 770

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
771
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
772 773
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
774
	channel->type->post_remove(channel);
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
790
	unsigned i, next_buffer_table = 0;
791
	int rc, rc2;
792 793 794 795

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
818

819
	efx_device_detach_sync(efx);
820
	efx_stop_all(efx);
B
Ben Hutchings 已提交
821
	efx_soft_disable_interrupts(efx);
822

823
	/* Clone channels (where possible) */
824 825
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
826 827 828
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

847 848
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
849 850

	for (i = 0; i < efx->n_channels; i++) {
851 852 853 854 855 856 857
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
858
	}
859

860
out:
861 862 863 864 865 866 867 868 869
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
870

871 872 873 874 875 876 877 878 879 880
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
881 882 883 884 885 886 887 888 889 890 891 892 893 894
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

895
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
896
{
897
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
898 899
}

900 901
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
902
	.post_remove		= efx_channel_dummy_op_void,
903 904 905 906 907 908 909 910 911 912
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

913 914 915 916
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

917 918 919 920 921 922 923 924 925 926
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
927
void efx_link_status_changed(struct efx_nic *efx)
928
{
929 930
	struct efx_link_state *link_state = &efx->link_state;

931 932 933 934 935 936 937
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

938
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
939 940
		efx->n_link_state_changes++;

941
		if (link_state->up)
942 943 944 945 946 947
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
948
	if (link_state->up)
949
		netif_info(efx, link, efx->net_dev,
950
			   "link up at %uMbps %s-duplex (MTU %d)\n",
951
			   link_state->speed, link_state->fd ? "full" : "half",
952
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
953
	else
954
		netif_info(efx, link, efx->net_dev, "link down\n");
955 956
}

B
Ben Hutchings 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

970
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

985 986
static void efx_fini_port(struct efx_nic *efx);

987 988 989 990 991 992 993 994 995 996
/* We assume that efx->type->reconfigure_mac will always try to sync RX
 * filters and therefore needs to read-lock the filter table against freeing
 */
void efx_mac_reconfigure(struct efx_nic *efx)
{
	down_read(&efx->filter_sem);
	efx->type->reconfigure_mac(efx);
	up_read(&efx->filter_sem);
}

B
Ben Hutchings 已提交
997 998 999 1000 1001 1002 1003 1004
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
1005
{
B
Ben Hutchings 已提交
1006 1007
	enum efx_phy_mode phy_mode;
	int rc;
1008

B
Ben Hutchings 已提交
1009
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1010

B
Ben Hutchings 已提交
1011 1012
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
1013 1014 1015 1016 1017
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
1018
	rc = efx->type->reconfigure_port(efx);
1019

B
Ben Hutchings 已提交
1020 1021
	if (rc)
		efx->phy_mode = phy_mode;
1022

B
Ben Hutchings 已提交
1023
	return rc;
1024 1025 1026 1027
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
1028
int efx_reconfigure_port(struct efx_nic *efx)
1029
{
B
Ben Hutchings 已提交
1030 1031
	int rc;

1032 1033 1034
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1035
	rc = __efx_reconfigure_port(efx);
1036
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1037 1038

	return rc;
1039 1040
}

1041 1042 1043
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1044 1045 1046 1047 1048
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1049
	if (efx->port_enabled)
1050
		efx_mac_reconfigure(efx);
1051 1052 1053
	mutex_unlock(&efx->mac_lock);
}

1054 1055 1056 1057
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1058
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1059

1060 1061 1062
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1063 1064
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1065
	if (rc)
1066
		return rc;
1067

1068
	/* Initialise MAC address to permanent address */
1069
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1070 1071 1072 1073 1074 1075 1076 1077

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1078
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1079

1080 1081
	mutex_lock(&efx->mac_lock);

1082
	rc = efx->phy_op->init(efx);
1083
	if (rc)
1084
		goto fail1;
1085

1086
	efx->port_initialized = true;
1087

B
Ben Hutchings 已提交
1088 1089
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1090
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
1091 1092 1093

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1094
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1095 1096
		goto fail2;

1097
	mutex_unlock(&efx->mac_lock);
1098
	return 0;
1099

1100
fail2:
1101
	efx->phy_op->fini(efx);
1102 1103
fail1:
	mutex_unlock(&efx->mac_lock);
1104
	return rc;
1105 1106 1107 1108
}

static void efx_start_port(struct efx_nic *efx)
{
1109
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1110 1111 1112
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1113
	efx->port_enabled = true;
1114

1115
	/* Ensure MAC ingress/egress is enabled */
1116
	efx_mac_reconfigure(efx);
1117

1118 1119 1120
	mutex_unlock(&efx->mac_lock);
}

1121 1122 1123 1124 1125
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1126 1127
static void efx_stop_port(struct efx_nic *efx)
{
1128
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1129

1130 1131
	EFX_ASSERT_RESET_SERIALISED(efx);

1132
	mutex_lock(&efx->mac_lock);
1133
	efx->port_enabled = false;
1134 1135 1136
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1137 1138
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1139 1140 1141 1142

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1143 1144 1145 1146
}

static void efx_fini_port(struct efx_nic *efx)
{
1147
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1148 1149 1150 1151

	if (!efx->port_initialized)
		return;

1152
	efx->phy_op->fini(efx);
1153
	efx->port_initialized = false;
1154

1155
	efx->link_state.up = false;
1156 1157 1158 1159 1160
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1161
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1162

1163
	efx->type->remove_port(efx);
1164 1165 1166 1167 1168 1169 1170 1171
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1243 1244 1245 1246 1247
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1248
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1249
	int rc, bar;
1250

1251
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1252

1253 1254
	bar = efx->type->mem_bar;

1255 1256
	rc = pci_enable_device(pci_dev);
	if (rc) {
1257 1258
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
C
Christoph Hellwig 已提交
1270 1271 1272
		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
		if (rc == 0)
			break;
1273 1274 1275
		dma_mask >>= 1;
	}
	if (rc) {
1276 1277
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1278 1279
		goto fail2;
	}
1280 1281
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1282

1283 1284
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1285
	if (rc) {
1286 1287
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1288 1289 1290
		rc = -EIO;
		goto fail3;
	}
1291
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1292
	if (!efx->membase) {
1293 1294
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1295
			  (unsigned long long)efx->membase_phys, mem_map_size);
1296 1297 1298
		rc = -ENOMEM;
		goto fail4;
	}
1299 1300
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1301 1302
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1303 1304 1305 1306

	return 0;

 fail4:
1307
	pci_release_region(efx->pci_dev, bar);
1308
 fail3:
1309
	efx->membase_phys = 0;
1310 1311 1312 1313 1314 1315 1316 1317
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1318 1319
	int bar;

1320
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1321 1322 1323 1324 1325 1326 1327

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1328 1329
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1330
		efx->membase_phys = 0;
1331 1332
	}

1333 1334 1335
	/* Don't disable bus-mastering if VFs are assigned */
	if (!pci_vfs_assigned(efx->pci_dev))
		pci_disable_device(efx->pci_dev);
1336 1337
}

1338 1339 1340 1341 1342 1343 1344
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1345 1346
}

1347
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1348
{
1349
	cpumask_var_t thread_mask;
1350
	unsigned int count;
1351
	int cpu;
1352

1353 1354 1355 1356 1357 1358 1359 1360
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1361

1362 1363 1364 1365 1366
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
1367
					   topology_sibling_cpumask(cpu));
1368 1369 1370 1371
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1372 1373
	}

1374 1375 1376
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1388
	}
1389
#endif
1390 1391 1392 1393 1394 1395 1396

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1397
static int efx_probe_interrupts(struct efx_nic *efx)
1398
{
1399 1400
	unsigned int extra_channels = 0;
	unsigned int i, j;
1401
	int rc;
1402

1403 1404 1405 1406
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1407
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1408
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1409
		unsigned int n_channels;
1410

1411
		n_channels = efx_wanted_parallelism(efx);
1412
		if (efx_separate_tx_channels)
B
Ben Hutchings 已提交
1413
			n_channels *= 2;
1414
		n_channels += extra_channels;
1415
		n_channels = min(n_channels, efx->max_channels);
1416

B
Ben Hutchings 已提交
1417
		for (i = 0; i < n_channels; i++)
1418
			xentries[i].entry = i;
1419 1420 1421 1422 1423 1424 1425 1426
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1427 1428
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1429
				  " available (%d < %u).\n", rc, n_channels);
1430 1431
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1432
			n_channels = rc;
1433 1434
		}

1435
		if (rc > 0) {
B
Ben Hutchings 已提交
1436
			efx->n_channels = n_channels;
1437 1438
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
1439 1440 1441 1442
			if (efx_separate_tx_channels) {
				efx->n_tx_channels = min(max(n_channels / 2,
							     1U),
							 efx->max_tx_channels);
1443 1444 1445
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1446
			} else {
1447 1448
				efx->n_tx_channels = min(n_channels,
							 efx->max_tx_channels);
1449
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1450
			}
1451
			for (i = 0; i < efx->n_channels; i++)
1452 1453
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1454 1455 1456 1457 1458
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1459
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1460 1461
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1462 1463
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1464
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1465
		} else {
1466 1467
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1468 1469 1470 1471 1472 1473
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1474
		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1475 1476
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1477 1478
		efx->legacy_irq = efx->pci_dev->irq;
	}
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1495
	/* RSS might be usable on VFs even if it is disabled on the PF */
1496 1497 1498 1499 1500 1501 1502 1503 1504
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1505

1506
	return 0;
1507 1508
}

1509
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1510
{
1511 1512
	struct efx_channel *channel, *end_channel;
	int rc;
1513

1514 1515
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1516 1517
	efx->irq_soft_enabled = true;
	smp_wmb();
1518 1519

	efx_for_each_channel(channel, efx) {
1520 1521 1522 1523 1524
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1525 1526 1527 1528
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1542 1543
}

B
Ben Hutchings 已提交
1544
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1545 1546 1547
{
	struct efx_channel *channel;

1548 1549 1550
	if (efx->state == STATE_DISABLED)
		return;

1551 1552
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1553 1554 1555 1556
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1557 1558 1559 1560 1561 1562 1563
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1564
		if (!channel->type->keep_eventq)
1565
			efx_fini_eventq(channel);
1566
	}
1567 1568 1569

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1570 1571
}

1572
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1573
{
1574 1575
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1576 1577 1578 1579 1580 1581 1582 1583

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1584
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1585 1586

	efx_for_each_channel(channel, efx) {
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1605
		if (channel->type->keep_eventq)
1606
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1607 1608
	}

1609 1610 1611
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1625
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1626 1627
}

1628 1629 1630 1631 1632
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1633
	efx_for_each_channel(channel, efx)
1634 1635 1636 1637 1638 1639 1640 1641
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1642
static void efx_set_channels(struct efx_nic *efx)
1643
{
1644 1645 1646
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1647
	efx->tx_channel_offset =
1648 1649
		efx_separate_tx_channels ?
		efx->n_channels - efx->n_tx_channels : 0;
1650

1651 1652
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1653 1654 1655
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1656 1657 1658 1659 1660
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1661 1662 1663 1664
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1665 1666 1667 1668 1669 1670
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1671
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1672 1673

	/* Carry out hardware-type specific initialisation */
1674
	rc = efx->type->probe(efx);
1675 1676 1677
	if (rc)
		return rc;

1678 1679 1680 1681 1682 1683 1684 1685
	do {
		if (!efx->max_channels || !efx->max_tx_channels) {
			netif_err(efx, drv, efx->net_dev,
				  "Insufficient resources to allocate"
				  " any channels\n");
			rc = -ENOSPC;
			goto fail1;
		}
1686

1687 1688 1689 1690 1691 1692
		/* Determine the number of channels and queues by trying
		 * to hook in MSI-X interrupts.
		 */
		rc = efx_probe_interrupts(efx);
		if (rc)
			goto fail1;
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		efx_set_channels(efx);

		/* dimension_resources can fail with EAGAIN */
		rc = efx->type->dimension_resources(efx);
		if (rc != 0 && rc != -EAGAIN)
			goto fail2;

		if (rc == -EAGAIN)
			/* try again with new max_channels */
			efx_remove_interrupts(efx);

	} while (rc == -EAGAIN);
1706

1707
	if (efx->n_channels > 1)
1708 1709 1710
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1711

1712 1713
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1714 1715

	/* Initialise the interrupt moderation settings */
1716
	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1717 1718
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1719 1720

	return 0;
1721

1722 1723 1724
fail2:
	efx_remove_interrupts(efx);
fail1:
1725 1726
	efx->type->remove(efx);
	return rc;
1727 1728 1729 1730
}

static void efx_remove_nic(struct efx_nic *efx)
{
1731
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1732 1733

	efx_remove_interrupts(efx);
1734
	efx->type->remove(efx);
1735 1736
}

1737 1738 1739 1740 1741
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);
1742
	init_rwsem(&efx->filter_sem);
1743
	mutex_lock(&efx->mac_lock);
1744
	down_write(&efx->filter_sem);
1745 1746
	rc = efx->type->filter_table_probe(efx);
	if (rc)
1747
		goto out_unlock;
1748 1749 1750

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		struct efx_channel *channel;
		int i, success = 1;

		efx_for_each_channel(channel, efx) {
			channel->rps_flow_id =
				kcalloc(efx->type->max_rx_ip_filters,
					sizeof(*channel->rps_flow_id),
					GFP_KERNEL);
			if (!channel->rps_flow_id)
				success = 0;
			else
				for (i = 0;
				     i < efx->type->max_rx_ip_filters;
				     ++i)
					channel->rps_flow_id[i] =
						RPS_FLOW_ID_INVALID;
		}

		if (!success) {
			efx_for_each_channel(channel, efx)
				kfree(channel->rps_flow_id);
1772
			efx->type->filter_table_remove(efx);
1773 1774
			rc = -ENOMEM;
			goto out_unlock;
1775
		}
1776 1777

		efx->rps_expire_index = efx->rps_expire_channel = 0;
1778 1779
	}
#endif
1780 1781
out_unlock:
	up_write(&efx->filter_sem);
1782
	mutex_unlock(&efx->mac_lock);
1783
	return rc;
1784 1785 1786 1787 1788
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
1789 1790 1791 1792
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		kfree(channel->rps_flow_id);
1793
#endif
1794
	down_write(&efx->filter_sem);
1795
	efx->type->filter_table_remove(efx);
1796
	up_write(&efx->filter_sem);
1797 1798 1799 1800
}

static void efx_restore_filters(struct efx_nic *efx)
{
1801
	down_read(&efx->filter_sem);
1802
	efx->type->filter_table_restore(efx);
1803
	up_read(&efx->filter_sem);
1804 1805
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1818
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1819 1820 1821 1822 1823
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1824
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1825 1826 1827
		goto fail2;
	}

1828 1829 1830 1831 1832
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1833
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1834

1835 1836 1837 1838 1839 1840 1841 1842
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1843 1844 1845 1846
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1847
		goto fail4;
B
Ben Hutchings 已提交
1848 1849
	}

1850 1851
	rc = efx_probe_channels(efx);
	if (rc)
1852
		goto fail5;
1853

1854 1855
	return 0;

1856
 fail5:
1857
	efx_remove_filters(efx);
1858 1859 1860 1861
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1862 1863 1864 1865 1866 1867 1868 1869
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1870 1871 1872 1873 1874 1875
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1876
 */
1877 1878 1879
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1880
	BUG_ON(efx->state == STATE_DISABLED);
1881 1882 1883

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1884 1885
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1886 1887 1888
		return;

	efx_start_port(efx);
1889
	efx_start_datapath(efx);
1890

1891 1892
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1893 1894
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1895

1896
	/* Link state detection is normally event-driven; we have
1897 1898
	 * to poll now because we could have missed a change
	 */
1899 1900 1901 1902
	mutex_lock(&efx->mac_lock);
	if (efx->phy_op->poll(efx))
		efx_link_status_changed(efx);
	mutex_unlock(&efx->mac_lock);
1903

1904
	efx->type->start_stats(efx);
1905 1906 1907 1908
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1909 1910
}

1911 1912 1913 1914 1915
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1916 1917 1918 1919 1920 1921 1922 1923
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1924 1925 1926 1927 1928 1929 1930
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1931
	efx->type->stop_stats(efx);
1932 1933
	efx_stop_port(efx);

1934 1935 1936 1937 1938 1939
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1940 1941 1942
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1943 1944 1945 1946
}

static void efx_remove_all(struct efx_nic *efx)
{
1947
	efx_remove_channels(efx);
1948
	efx_remove_filters(efx);
1949 1950 1951
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1952 1953 1954 1955 1956 1957 1958 1959 1960
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/
1961
unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1962
{
1963 1964
	if (usecs == 0)
		return 0;
1965
	if (usecs * 1000 < efx->timer_quantum_ns)
1966
		return 1; /* never round down to 0 */
1967 1968 1969 1970 1971 1972 1973 1974 1975
	return usecs * 1000 / efx->timer_quantum_ns;
}

unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
{
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */
	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1976 1977
}

1978
/* Set interrupt moderation parameters */
1979 1980 1981
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1982
{
1983
	struct efx_channel *channel;
1984 1985
	unsigned int timer_max_us;

1986 1987
	EFX_ASSERT_RESET_SERIALISED(efx);

1988 1989 1990
	timer_max_us = efx->timer_max_ns / 1000;

	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1991 1992
		return -EINVAL;

1993
	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1994 1995 1996 1997 1998 1999
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

2000
	efx->irq_rx_adaptive = rx_adaptive;
2001
	efx->irq_rx_moderation_us = rx_usecs;
2002
	efx_for_each_channel(channel, efx) {
2003
		if (efx_channel_has_rx_queue(channel))
2004
			channel->irq_moderation_us = rx_usecs;
2005
		else if (efx_channel_has_tx_queues(channel))
2006
			channel->irq_moderation_us = tx_usecs;
2007
	}
2008 2009

	return 0;
2010 2011
}

2012 2013 2014 2015
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
	*rx_adaptive = efx->irq_rx_adaptive;
2016
	*rx_usecs = efx->irq_rx_moderation_us;
2017 2018 2019 2020 2021

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
2022
	if (efx->tx_channel_offset == 0) {
2023
		*tx_usecs = *rx_usecs;
2024 2025 2026 2027 2028 2029
	} else {
		struct efx_channel *tx_channel;

		tx_channel = efx->channel[efx->tx_channel_offset];
		*tx_usecs = tx_channel->irq_moderation_us;
	}
2030 2031
}

2032 2033 2034 2035 2036 2037
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

2038
/* Run periodically off the general workqueue */
2039 2040 2041 2042 2043
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

2044 2045 2046
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
2047
	BUG_ON(efx->type->monitor == NULL);
2048 2049 2050

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
2051 2052 2053 2054 2055 2056
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
2073
	struct efx_nic *efx = netdev_priv(net_dev);
2074
	struct mii_ioctl_data *data = if_mii(ifr);
2075

2076
	if (cmd == SIOCSHWTSTAMP)
2077 2078 2079
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
2080

2081 2082 2083 2084 2085 2086
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2087 2088 2089 2090 2091 2092 2093 2094
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2095 2096 2097 2098 2099 2100 2101 2102 2103
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

2104
static void efx_init_napi(struct efx_nic *efx)
2105 2106 2107
{
	struct efx_channel *channel;

2108 2109
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2110 2111 2112 2113
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
E
Eric Dumazet 已提交
2114
	if (channel->napi_dev)
2115
		netif_napi_del(&channel->napi_str);
E
Eric Dumazet 已提交
2116

2117
	channel->napi_dev = NULL;
2118 2119 2120 2121 2122 2123
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2124 2125
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2142
	struct efx_nic *efx = netdev_priv(net_dev);
2143 2144
	struct efx_channel *channel;

2145
	efx_for_each_channel(channel, efx)
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
2158
int efx_net_open(struct net_device *net_dev)
2159
{
2160
	struct efx_nic *efx = netdev_priv(net_dev);
2161 2162
	int rc;

2163 2164
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2165

2166 2167 2168
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2169 2170
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2171 2172
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2173

2174 2175 2176 2177
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2178
	efx_start_all(efx);
2179
	efx_selftest_async_start(efx);
2180 2181 2182 2183 2184 2185 2186
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
2187
int efx_net_stop(struct net_device *net_dev)
2188
{
2189
	struct efx_nic *efx = netdev_priv(net_dev);
2190

2191 2192
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2193

2194 2195
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2196 2197 2198 2199

	return 0;
}

2200
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2201 2202
static void efx_net_stats(struct net_device *net_dev,
			  struct rtnl_link_stats64 *stats)
2203
{
2204
	struct efx_nic *efx = netdev_priv(net_dev);
2205

2206
	spin_lock_bh(&efx->stats_lock);
2207
	efx->type->update_stats(efx, NULL, stats);
2208
	spin_unlock_bh(&efx->stats_lock);
2209 2210 2211 2212 2213
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2214
	struct efx_nic *efx = netdev_priv(net_dev);
2215

2216 2217 2218
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2219

2220
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2221 2222 2223 2224 2225 2226
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2227
	struct efx_nic *efx = netdev_priv(net_dev);
2228
	int rc;
2229

2230 2231 2232
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2233

2234
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2235

2236 2237 2238
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2239
	mutex_lock(&efx->mac_lock);
2240
	net_dev->mtu = new_mtu;
2241
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2242 2243
	mutex_unlock(&efx->mac_lock);

2244
	efx_start_all(efx);
2245
	netif_device_attach(efx->net_dev);
2246
	return 0;
2247 2248 2249 2250
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2251
	struct efx_nic *efx = netdev_priv(net_dev);
2252
	struct sockaddr *addr = data;
2253
	u8 *new_addr = addr->sa_data;
2254 2255
	u8 old_addr[6];
	int rc;
2256 2257

	if (!is_valid_ether_addr(new_addr)) {
2258 2259 2260
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2261
		return -EADDRNOTAVAIL;
2262 2263
	}

2264 2265
	/* save old address */
	ether_addr_copy(old_addr, net_dev->dev_addr);
2266
	ether_addr_copy(net_dev->dev_addr, new_addr);
2267 2268
	if (efx->type->set_mac_address) {
		rc = efx->type->set_mac_address(efx);
2269 2270 2271 2272 2273
		if (rc) {
			ether_addr_copy(net_dev->dev_addr, old_addr);
			return rc;
		}
	}
2274 2275

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2276
	mutex_lock(&efx->mac_lock);
2277
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2278
	mutex_unlock(&efx->mac_lock);
2279 2280 2281 2282

	return 0;
}

2283
/* Context: netif_addr_lock held, BHs disabled. */
2284
static void efx_set_rx_mode(struct net_device *net_dev)
2285
{
2286
	struct efx_nic *efx = netdev_priv(net_dev);
2287

2288 2289 2290
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2291 2292
}

2293
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2294 2295
{
	struct efx_nic *efx = netdev_priv(net_dev);
2296
	int rc;
2297 2298

	/* If disabling RX n-tuple filtering, clear existing filters */
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
		if (rc)
			return rc;
	}

	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
		/* efx_set_rx_mode() will schedule MAC work to update filters
		 * when a new features are finally set in net_dev.
		 */
		efx_set_rx_mode(net_dev);
	}
2312 2313 2314 2315

	return 0;
}

2316 2317
static int efx_get_phys_port_id(struct net_device *net_dev,
				struct netdev_phys_item_id *ppid)
2318 2319 2320 2321 2322 2323 2324 2325 2326
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->get_phys_port_id)
		return efx->type->get_phys_port_id(efx, ppid);
	else
		return -EOPNOTSUPP;
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
static int efx_get_phys_port_name(struct net_device *net_dev,
				  char *name, size_t len)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (snprintf(name, len, "p%u", efx->port_num) >= len)
		return -EINVAL;
	return 0;
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_add_vid)
		return efx->type->vlan_rx_add_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
{
	struct efx_nic *efx = netdev_priv(net_dev);

	if (efx->type->vlan_rx_kill_vid)
		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
	else
		return -EOPNOTSUPP;
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in)
{
	switch (in) {
	case UDP_TUNNEL_TYPE_VXLAN:
		return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
	case UDP_TUNNEL_TYPE_GENEVE:
		return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
	default:
		return -1;
	}
}

static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
{
	struct efx_nic *efx = netdev_priv(dev);
	struct efx_udp_tunnel tnl;
	int efx_tunnel_type;

	efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
	if (efx_tunnel_type < 0)
		return;

	tnl.type = (u16)efx_tunnel_type;
	tnl.port = ti->port;

	if (efx->type->udp_tnl_add_port)
		(void)efx->type->udp_tnl_add_port(efx, tnl);
}

static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti)
{
	struct efx_nic *efx = netdev_priv(dev);
	struct efx_udp_tunnel tnl;
	int efx_tunnel_type;

	efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
	if (efx_tunnel_type < 0)
		return;

	tnl.type = (u16)efx_tunnel_type;
	tnl.port = ti->port;

	if (efx->type->udp_tnl_add_port)
		(void)efx->type->udp_tnl_del_port(efx, tnl);
}

2403
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2404 2405
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2406
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2407 2408 2409 2410 2411 2412
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2413
	.ndo_set_rx_mode	= efx_set_rx_mode,
2414
	.ndo_set_features	= efx_set_features,
2415 2416
	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
2417
#ifdef CONFIG_SFC_SRIOV
2418 2419 2420 2421
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2422
	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2423
#endif
2424
	.ndo_get_phys_port_id   = efx_get_phys_port_id,
2425
	.ndo_get_phys_port_name	= efx_get_phys_port_name,
S
Stephen Hemminger 已提交
2426 2427 2428
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2429
	.ndo_setup_tc		= efx_setup_tc,
2430 2431 2432
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
2433 2434
	.ndo_udp_tunnel_add	= efx_udp_tunnel_add,
	.ndo_udp_tunnel_del	= efx_udp_tunnel_del,
S
Stephen Hemminger 已提交
2435 2436
};

2437 2438 2439 2440 2441 2442 2443
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2444 2445 2446
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2447
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2448

2449
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2450 2451
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2452 2453 2454 2455 2456 2457 2458 2459

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2460 2461 2462 2463 2464 2465
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2466
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2467

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
#ifdef CONFIG_SFC_MCDI_LOGGING
static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
}
static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
			    const char *buf, size_t count)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	bool enable = count > 0 && *buf != '0';

	mcdi->logging_enabled = enable;
	return count;
}
static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
#endif

2490 2491 2492
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2493
	struct efx_channel *channel;
2494 2495 2496 2497
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2498 2499
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2500
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2501
	net_dev->ethtool_ops = &efx_ethtool_ops;
2502
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2503 2504
	net_dev->min_mtu = EFX_MIN_MTU;
	net_dev->max_mtu = EFX_MAX_MTU;
2505

2506
	rtnl_lock();
2507

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2521 2522 2523
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2524
	efx_update_name(efx);
2525

2526 2527 2528
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2529 2530 2531 2532
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2533 2534
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2535 2536
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2537 2538
	}

2539 2540
	efx_associate(efx);

2541
	rtnl_unlock();
2542

B
Ben Hutchings 已提交
2543 2544
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2545 2546
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2547 2548
		goto fail_registered;
	}
2549 2550 2551 2552 2553 2554 2555 2556
#ifdef CONFIG_SFC_MCDI_LOGGING
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
	if (rc) {
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
		goto fail_attr_mcdi_logging;
	}
#endif
B
Ben Hutchings 已提交
2557

2558
	return 0;
B
Ben Hutchings 已提交
2559

2560 2561 2562 2563
#ifdef CONFIG_SFC_MCDI_LOGGING
fail_attr_mcdi_logging:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
#endif
2564 2565
fail_registered:
	rtnl_lock();
2566
	efx_dissociate(efx);
2567
	unregister_netdevice(net_dev);
2568
fail_locked:
2569
	efx->state = STATE_UNINIT;
2570
	rtnl_unlock();
2571
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2572
	return rc;
2573 2574 2575 2576 2577 2578 2579
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2580
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2581

2582 2583 2584 2585 2586 2587 2588 2589
	if (efx_dev_registered(efx)) {
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
#ifdef CONFIG_SFC_MCDI_LOGGING
		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
#endif
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
		unregister_netdev(efx->net_dev);
	}
2590 2591 2592 2593 2594 2595 2596 2597
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2598 2599
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2600
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2601 2602 2603
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2604 2605 2606
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2607
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2608
	efx_disable_interrupts(efx);
2609 2610

	mutex_lock(&efx->mac_lock);
2611 2612
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH)
2613
		efx->phy_op->fini(efx);
2614
	efx->type->fini(efx);
2615 2616
}

B
Ben Hutchings 已提交
2617 2618 2619 2620 2621
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2622
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2623 2624 2625
{
	int rc;

B
Ben Hutchings 已提交
2626
	EFX_ASSERT_RESET_SERIALISED(efx);
2627

2628 2629 2630 2631
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2632
	rc = efx->type->init(efx);
2633
	if (rc) {
2634
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2635
		goto fail;
2636 2637
	}

2638 2639 2640
	if (!ok)
		goto fail;

2641 2642
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH) {
2643 2644 2645
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2646 2647
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2648 2649
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2650 2651
	}

2652 2653 2654
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2655 2656 2657 2658 2659 2660 2661 2662 2663

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

2664
	down_read(&efx->filter_sem);
B
Ben Hutchings 已提交
2665
	efx_restore_filters(efx);
2666
	up_read(&efx->filter_sem);
2667 2668
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2669 2670 2671 2672 2673

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

2674 2675 2676
	if (efx->type->udp_tnl_push_ports)
		efx->type->udp_tnl_push_ports(efx);

2677 2678 2679 2680
	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2681 2682 2683

	mutex_unlock(&efx->mac_lock);

2684 2685 2686
	return rc;
}

2687 2688
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2689
 *
2690
 * Caller must hold the rtnl_lock.
2691
 */
2692
int efx_reset(struct efx_nic *efx, enum reset_type method)
2693
{
2694 2695
	int rc, rc2;
	bool disabled;
2696

2697 2698
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2699

2700
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2701
	efx_reset_down(efx, method);
2702

2703
	rc = efx->type->reset(efx, method);
2704
	if (rc) {
2705
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2706
		goto out;
2707 2708
	}

2709 2710 2711
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2712 2713 2714 2715
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2716 2717 2718 2719 2720 2721 2722

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2723
out:
2724
	/* Leave device stopped if necessary */
2725 2726 2727
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2728 2729 2730 2731 2732
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2733 2734
	}

2735
	if (disabled) {
2736
		dev_close(efx->net_dev);
2737
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2738 2739
		efx->state = STATE_DISABLED;
	} else {
2740
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2741
		netif_device_attach(efx->net_dev);
2742
	}
2743 2744 2745
	return rc;
}

2746 2747 2748 2749 2750
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2751
int efx_try_recovery(struct efx_nic *efx)
2752 2753 2754 2755 2756 2757 2758
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2759
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2788 2789 2790 2791 2792
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2793
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2794 2795 2796 2797 2798 2799
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2800 2801 2802
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2803 2804 2805 2806
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2807

2808
	if (!pending)
2809 2810
		return;

2811
	rtnl_lock();
2812 2813 2814 2815 2816 2817

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2818
		(void)efx_reset(efx, method);
2819

2820
	rtnl_unlock();
2821 2822 2823 2824 2825 2826
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2827 2828 2829 2830 2831 2832 2833
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2834 2835 2836
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2837
	case RESET_TYPE_RECOVER_OR_ALL:
2838 2839
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2840
	case RESET_TYPE_RECOVER_OR_DISABLE:
2841
	case RESET_TYPE_DATAPATH:
2842
	case RESET_TYPE_MC_BIST:
2843
	case RESET_TYPE_MCDI_TIMEOUT:
2844
		method = type;
2845 2846
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2847 2848
		break;
	default:
2849
		method = efx->type->map_reset_reason(type);
2850 2851 2852
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2853 2854
		break;
	}
2855

2856
	set_bit(method, &efx->reset_pending);
2857 2858 2859 2860 2861 2862 2863
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2864

2865 2866 2867 2868
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2869
	queue_work(reset_workqueue, &efx->reset_work);
2870 2871 2872 2873 2874 2875 2876 2877 2878
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2879
static const struct pci_device_id efx_pci_table[] = {
2880
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2881
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2882
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2883
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2884 2885
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2886 2887
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2888 2889
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2890 2891 2892 2893 2894 2895
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2896 2897 2898 2899 2900
	{0}			/* end of list */
};

/**************************************************************************
 *
2901
 * Dummy PHY/MAC operations
2902
 *
2903
 * Can be used for some unimplemented operations
2904 2905 2906 2907 2908 2909 2910 2911 2912
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2913 2914

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2915 2916 2917
{
	return false;
}
2918

2919
static const struct efx_phy_operations efx_dummy_phy_operations = {
2920
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2921
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2922
	.poll		 = efx_port_dummy_op_poll,
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2935
static int efx_init_struct(struct efx_nic *efx,
2936 2937
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2938
	int rc = -ENOMEM, i;
2939 2940

	/* Initialise common structures */
2941 2942
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2943
	spin_lock_init(&efx->biu_lock);
2944 2945 2946
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2947 2948
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2949
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2950
	efx->pci_dev = pci_dev;
2951
	efx->msg_enable = debug;
2952
	efx->state = STATE_UNINIT;
2953 2954 2955
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2956
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2957 2958
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2959 2960
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2961 2962
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2963 2964 2965
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2966
	efx->mdio.dev = net_dev;
2967
	INIT_WORK(&efx->mac_work, efx_mac_work);
2968
	init_waitqueue_head(&efx->flush_wq);
2969 2970

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2971 2972 2973
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2974 2975
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2976 2977 2978
	}

	/* Higher numbered interrupt modes are less capable! */
2979 2980 2981 2982 2983
	if (WARN_ON_ONCE(efx->type->max_interrupt_mode >
			 efx->type->min_interrupt_mode)) {
		rc = -EIO;
		goto fail;
	}
2984 2985
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);
2986 2987
	efx->interrupt_mode = min(efx->type->min_interrupt_mode,
				  interrupt_mode);
2988

2989 2990 2991 2992
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2993
	if (!efx->workqueue)
2994
		goto fail;
2995

2996
	return 0;
2997 2998 2999

fail:
	efx_fini_struct(efx);
3000
	return rc;
3001 3002 3003 3004
}

static void efx_fini_struct(struct efx_nic *efx)
{
3005 3006 3007 3008 3009
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

3010 3011
	kfree(efx->vpd_sn);

3012 3013 3014 3015 3016 3017
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
3040 3041 3042 3043 3044 3045
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
3046
	efx_disable_interrupts(efx);
3047
	efx_nic_fini_interrupt(efx);
3048
	efx_fini_port(efx);
3049
	efx->type->fini(efx);
3050 3051 3052 3053 3054
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
3055 3056
 * This is called only at module unload (or hotplug removal).  A PF can call
 * this on its VFs to ensure they are unbound first.
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
3068
	efx_dissociate(efx);
3069
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
3070
	efx_disable_interrupts(efx);
3071
	efx->state = STATE_UNINIT;
3072 3073
	rtnl_unlock();

3074 3075 3076
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

3077 3078
	efx_unregister_netdev(efx);

3079 3080
	efx_mtd_remove(efx);

3081 3082 3083
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
3084
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3085 3086 3087

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
3088 3089

	pci_disable_pcie_error_reporting(pci_dev);
3090 3091
};

3092 3093 3094 3095 3096 3097
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
3098
static void efx_probe_vpd_strings(struct efx_nic *efx)
3099 3100 3101 3102
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
3103
	int ro_start, ro_size, i, j;
3104 3105 3106 3107 3108 3109 3110 3111 3112

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
3113 3114
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
3115 3116 3117 3118
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

3119 3120 3121
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3162 3163 3164
}


3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

3177
	efx_init_napi(efx);
3178

3179
	rc = efx->type->init(efx);
3180
	if (rc) {
3181 3182
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
3183
		goto fail3;
3184 3185 3186 3187
	}

	rc = efx_init_port(efx);
	if (rc) {
3188 3189
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
3190
		goto fail4;
3191 3192
	}

3193
	rc = efx_nic_init_interrupt(efx);
3194
	if (rc)
3195
		goto fail5;
3196 3197 3198
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
3199 3200 3201

	return 0;

3202 3203
 fail6:
	efx_nic_fini_interrupt(efx);
3204
 fail5:
3205 3206
	efx_fini_port(efx);
 fail4:
3207
	efx->type->fini(efx);
3208 3209 3210 3211 3212 3213 3214
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
static int efx_pci_probe_post_io(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc = efx_pci_probe_main(efx);

	if (rc)
		return rc;

	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}

	/* Determine netdevice features */
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
			      NETIF_F_TSO | NETIF_F_RXCSUM);
	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
		net_dev->features |= NETIF_F_TSO6;
	/* Check whether device supports TSO */
	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
		net_dev->features &= ~NETIF_F_ALL_TSO;
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);

	net_dev->hw_features = net_dev->features & ~efx->fixed_features;

	/* Disable VLAN filtering by default.  It may be enforced if
	 * the feature is fixed (i.e. VLAN filters are required to
	 * receive VLAN tagged packets due to vPort restrictions).
	 */
	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
	net_dev->features |= efx->fixed_features;

	rc = efx_register_netdev(efx);
	if (!rc)
		return 0;

	efx_pci_remove_main(efx);
	return rc;
}

3260 3261 3262
/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
3263
 * theoretically).  It sets up PCI mappings, resets the NIC,
3264 3265 3266 3267 3268
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3269
static int efx_pci_probe(struct pci_dev *pci_dev,
3270
			 const struct pci_device_id *entry)
3271 3272 3273
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3274
	int rc;
3275 3276

	/* Allocate and initialise a struct net_device and struct efx_nic */
3277 3278
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3279 3280
	if (!net_dev)
		return -ENOMEM;
3281 3282
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
3283
	efx->fixed_features |= NETIF_F_HIGHDMA;
3284

3285
	pci_set_drvdata(pci_dev, efx);
3286
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3287
	rc = efx_init_struct(efx, pci_dev, net_dev);
3288 3289 3290
	if (rc)
		goto fail1;

3291
	netif_info(efx, probe, efx->net_dev,
3292
		   "Solarflare NIC detected\n");
3293

3294 3295
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3296

3297 3298 3299 3300 3301
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	rc = efx_pci_probe_post_io(efx);
	if (rc) {
		/* On failure, retry once immediately.
		 * If we aborted probe due to a scheduled reset, dismiss it.
		 */
		efx->reset_pending = 0;
		rc = efx_pci_probe_post_io(efx);
		if (rc) {
			/* On another failure, retry once more
			 * after a 50-305ms delay.
			 */
			unsigned char r;

			get_random_bytes(&r, 1);
			msleep((unsigned int)r + 50);
			efx->reset_pending = 0;
			rc = efx_pci_probe_post_io(efx);
		}
	}
3321 3322
	if (rc)
		goto fail3;
3323

3324
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3325

3326
	/* Try to create MTDs, but allow this to fail */
3327
	rtnl_lock();
3328
	rc = efx_mtd_probe(efx);
3329
	rtnl_unlock();
3330
	if (rc && rc != -EPERM)
3331 3332 3333
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3334 3335
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
3336 3337 3338
		netif_notice(efx, probe, efx->net_dev,
			     "PCIE error reporting unavailable (%d).\n",
			     rc);
3339

3340 3341 3342
	if (efx->type->udp_tnl_push_ports)
		efx->type->udp_tnl_push_ports(efx);

3343 3344 3345 3346 3347 3348 3349
	return 0;

 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3350
	WARN_ON(rc > 0);
3351
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3352 3353 3354 3355
	free_netdev(net_dev);
	return rc;
}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3376 3377 3378 3379
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3380 3381
	rtnl_lock();

3382 3383
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3384

3385
		efx_device_detach_sync(efx);
3386

3387
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3388
		efx_disable_interrupts(efx);
3389
	}
3390

3391 3392
	rtnl_unlock();

3393 3394 3395 3396 3397
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3398
	int rc;
3399 3400
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3401 3402
	rtnl_lock();

3403
	if (efx->state != STATE_DISABLED) {
3404 3405 3406
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3407

3408 3409 3410
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3411

3412
		efx_start_all(efx);
3413

3414
		netif_device_attach(efx->net_dev);
3415

3416
		efx->state = STATE_READY;
3417

3418 3419
		efx->type->resume_wol(efx);
	}
3420

3421 3422
	rtnl_unlock();

3423 3424 3425
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3426
	return 0;
3427 3428 3429 3430 3431

fail:
	rtnl_unlock();

	return rc;
3432 3433 3434 3435 3436 3437 3438 3439 3440
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3441
	efx->reset_pending = 0;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3468 3469
	rc = efx_pm_thaw(dev);
	return rc;
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3483
static const struct dev_pm_ops efx_pm_ops = {
3484 3485 3486 3487 3488 3489 3490 3491
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3492 3493 3494 3495
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3496 3497
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3514
		efx_disable_interrupts(efx);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3531
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3532
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
3585
static const struct pci_error_handlers efx_err_handlers = {
3586 3587 3588 3589 3590
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3591
static struct pci_driver efx_pci_driver = {
3592
	.name		= KBUILD_MODNAME,
3593 3594 3595
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3596
	.driver.pm	= &efx_pm_ops,
3597
	.err_handler	= &efx_err_handlers,
3598 3599 3600
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3623
#ifdef CONFIG_SFC_SRIOV
3624 3625 3626
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3627
#endif
3628

3629 3630 3631 3632 3633
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3634 3635 3636 3637 3638 3639 3640 3641

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3642 3643
	destroy_workqueue(reset_workqueue);
 err_reset:
3644
#ifdef CONFIG_SFC_SRIOV
3645 3646
	efx_fini_sriov();
 err_sriov:
3647
#endif
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3658
	destroy_workqueue(reset_workqueue);
3659
#ifdef CONFIG_SFC_SRIOV
3660
	efx_fini_sriov();
3661
#endif
3662 3663 3664 3665 3666 3667 3668
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3669 3670
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3671
MODULE_DESCRIPTION("Solarflare network driver");
3672 3673
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);
3674
MODULE_VERSION(EFX_DRIVER_VERSION);