efx.c 79.6 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86 87
};

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108 109
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120
 * monitor.
 * On Falcon-based NICs, this will:
121 122
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123 124
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
125
 */
S
stephen hemminger 已提交
126
static unsigned int efx_monitor_interval = 1 * HZ;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159
 * The default (0) means to assign an interrupt to each core.
160 161 162 163 164
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

165 166
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
167 168
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

169
static unsigned irq_adapt_low_thresh = 8000;
170 171 172 173
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

174
static unsigned irq_adapt_high_thresh = 16000;
175 176 177 178
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

179 180 181 182 183 184 185
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

186 187 188 189 190
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
191

192
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
193
static void efx_soft_disable_interrupts(struct efx_nic *efx);
194
static void efx_remove_channel(struct efx_channel *channel);
195
static void efx_remove_channels(struct efx_nic *efx);
196
static const struct efx_channel_type efx_default_channel_type;
197
static void efx_remove_port(struct efx_nic *efx);
198
static void efx_init_napi_channel(struct efx_channel *channel);
199
static void efx_fini_napi(struct efx_nic *efx);
200
static void efx_fini_napi_channel(struct efx_channel *channel);
201 202 203
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
204 205 206

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
207
		if ((efx->state == STATE_READY) ||	\
208
		    (efx->state == STATE_RECOVERY) ||	\
209
		    (efx->state == STATE_DISABLED))	\
210 211 212
			ASSERT_RTNL();			\
	} while (0)

213 214
static int efx_check_disabled(struct efx_nic *efx)
{
215
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216 217 218 219 220 221 222
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

223 224 225 226 227 228 229 230 231 232 233 234 235
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
236
static int efx_process_channel(struct efx_channel *channel, int budget)
237
{
238
	int spent;
239

240
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
241
		return 0;
242

243
	spent = efx_nic_process_eventq(channel, budget);
244 245 246 247
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

248
		efx_rx_flush_packet(channel);
249
		efx_fast_push_rx_descriptors(rx_queue);
250 251
	}

252
	return spent;
253 254 255 256 257 258 259 260 261 262 263
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
264
	struct efx_nic *efx = channel->efx;
265
	int spent;
266

267 268 269
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
270

271
	spent = efx_process_channel(channel, budget);
272

273
	if (spent < budget) {
274
		if (efx_channel_has_rx_queue(channel) &&
275 276 277 278
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
279 280
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
281
					efx->type->push_irq_moderation(channel);
282
				}
283 284
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
285 286 287
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291 292 293 294
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

295 296
		efx_filter_rfs_expire(channel);

297
		/* There is no race here; although napi_disable() will
298
		 * only wait for napi_complete(), this isn't a problem
299
		 * since efx_nic_eventq_read_ack() will have no effect if
300 301
		 * interrupts have already been disabled.
		 */
302
		napi_complete(napi);
303
		efx_nic_eventq_read_ack(channel);
304 305
	}

306
	return spent;
307 308 309 310 311 312 313 314 315
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
316 317 318
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

319
	netif_dbg(efx, probe, efx->net_dev,
320
		  "chan %d create event queue\n", channel->channel);
321

322 323 324 325 326 327
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

328
	return efx_nic_probe_eventq(channel);
329 330 331
}

/* Prepare channel's event queue */
332
static int efx_init_eventq(struct efx_channel *channel)
333
{
334
	struct efx_nic *efx = channel->efx;
335 336 337 338
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

339
	netif_dbg(efx, drv, efx->net_dev,
340
		  "chan %d init event queue\n", channel->channel);
341

342 343
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
344
		efx->type->push_irq_moderation(channel);
345 346 347 348
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
349 350
}

351 352 353 354 355 356
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

357
	/* Make sure the NAPI handler sees the enabled flag set */
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

375 376
static void efx_fini_eventq(struct efx_channel *channel)
{
377 378 379
	if (!channel->eventq_init)
		return;

380 381
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
382

383
	efx_nic_fini_eventq(channel);
384
	channel->eventq_init = false;
385 386 387 388
}

static void efx_remove_eventq(struct efx_channel *channel)
{
389 390
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
391

392
	efx_nic_remove_eventq(channel);
393 394 395 396 397 398 399 400
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

401
/* Allocate and initialise a channel structure. */
402 403 404 405 406 407 408 409
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

410 411 412
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
413

414 415 416
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
417

418 419 420 421 422 423
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
424

425 426 427 428
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
429

430 431 432 433 434 435 436 437 438 439 440 441 442
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
443

444 445 446 447 448 449 450 451
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
452

453 454 455
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
456
			tx_queue->channel = channel;
457 458
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
459 460 461
	}

	rx_queue = &channel->rx_queue;
462 463
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
464 465 466 467 468 469
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

470 471 472 473 474 475
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

476 477
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
478

479 480 481 482
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

483 484
	rc = efx_probe_eventq(channel);
	if (rc)
485
		goto fail;
486 487 488 489

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
490
			goto fail;
491 492 493 494 495
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
496
			goto fail;
497 498 499 500 501 502
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

503 504
fail:
	efx_remove_channel(channel);
505 506 507
	return rc;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
526

527 528 529 530
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

531 532
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
533 534
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
535 536
}

537 538 539 540 541 542 543 544
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

545 546 547 548 549 550
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

568 569 570 571
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
572
static void efx_start_datapath(struct efx_nic *efx)
573
{
574
	bool old_rx_scatter = efx->rx_scatter;
575 576 577
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
578
	size_t rx_buf_len;
579

580 581 582 583
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
584
	efx->rx_dma_len = (efx->rx_prefix_size +
585 586
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
587
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
588
		      efx->rx_ip_align + efx->rx_dma_len);
589
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
590
		efx->rx_scatter = efx->type->always_rx_scatter;
591 592
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
593
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
594
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
595 596 597
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
598 599 600 601 602 603 604 605
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

606 607 608 609 610 611 612 613 614 615 616
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
617

J
Jon Cooper 已提交
618
	/* RX filters may also have scatter-enabled flags */
619
	if (efx->rx_scatter != old_rx_scatter)
620
		efx->type->filter_update_rx_scatter(efx);
621

622 623 624 625 626 627 628 629 630 631
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

632 633
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
634
		efx_for_each_channel_tx_queue(tx_queue, channel) {
635
			efx_init_tx_queue(tx_queue);
636 637
			atomic_inc(&efx->active_queues);
		}
638

639
		efx_for_each_channel_rx_queue(rx_queue, channel) {
640
			efx_init_rx_queue(rx_queue);
641
			atomic_inc(&efx->active_queues);
642 643
			efx_nic_generate_fill_event(rx_queue);
		}
644

645
		WARN_ON(channel->rx_pkt_n_frags);
646 647
	}

648 649
	efx_ptp_start_datapath(efx);

650 651
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
652 653
}

654
static void efx_stop_datapath(struct efx_nic *efx)
655 656 657 658
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
659
	int rc;
660 661 662 663

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

664 665
	efx_ptp_stop_datapath(efx);

666 667 668 669 670 671
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

672
	efx_for_each_channel(channel, efx) {
673 674 675 676 677 678 679 680 681 682
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
683
	}
684

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
703 704
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
705
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
706 707 708 709 710 711 712 713 714
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

715 716
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
717 718 719

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
720
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721 722
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
723
	channel->type->post_remove(channel);
724 725
}

726 727 728 729 730 731 732 733 734 735 736 737 738
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
739
	unsigned i, next_buffer_table = 0;
740
	int rc, rc2;
741 742 743 744

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
767

768
	efx_device_detach_sync(efx);
769
	efx_stop_all(efx);
B
Ben Hutchings 已提交
770
	efx_soft_disable_interrupts(efx);
771

772
	/* Clone channels (where possible) */
773 774
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
775 776 777
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

796 797
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
798 799

	for (i = 0; i < efx->n_channels; i++) {
800 801 802 803 804 805 806
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
807
	}
808

809
out:
810 811 812 813 814 815 816 817 818
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
819

820 821 822 823 824 825 826 827 828 829
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
830 831 832 833 834 835 836 837 838 839 840 841 842 843
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

844
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
845
{
846
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
847 848
}

849 850
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
851
	.post_remove		= efx_channel_dummy_op_void,
852 853 854 855 856 857 858 859 860 861
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

862 863 864 865
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

866 867 868 869 870 871 872 873 874 875
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
876
void efx_link_status_changed(struct efx_nic *efx)
877
{
878 879
	struct efx_link_state *link_state = &efx->link_state;

880 881 882 883 884 885 886
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

887
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
888 889
		efx->n_link_state_changes++;

890
		if (link_state->up)
891 892 893 894 895 896
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
897
	if (link_state->up)
898
		netif_info(efx, link, efx->net_dev,
899
			   "link up at %uMbps %s-duplex (MTU %d)\n",
900
			   link_state->speed, link_state->fd ? "full" : "half",
901
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
902
	else
903
		netif_info(efx, link, efx->net_dev, "link down\n");
904 905
}

B
Ben Hutchings 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

919
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

934 935
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
936 937 938 939 940 941 942 943
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
944
{
B
Ben Hutchings 已提交
945 946
	enum efx_phy_mode phy_mode;
	int rc;
947

B
Ben Hutchings 已提交
948
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
949

B
Ben Hutchings 已提交
950 951
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
952 953 954 955 956
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
957
	rc = efx->type->reconfigure_port(efx);
958

B
Ben Hutchings 已提交
959 960
	if (rc)
		efx->phy_mode = phy_mode;
961

B
Ben Hutchings 已提交
962
	return rc;
963 964 965 966
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
967
int efx_reconfigure_port(struct efx_nic *efx)
968
{
B
Ben Hutchings 已提交
969 970
	int rc;

971 972 973
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
974
	rc = __efx_reconfigure_port(efx);
975
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
976 977

	return rc;
978 979
}

980 981 982
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
983 984 985 986 987
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
988
	if (efx->port_enabled)
989
		efx->type->reconfigure_mac(efx);
990 991 992
	mutex_unlock(&efx->mac_lock);
}

993 994 995 996
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

997
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
998

999 1000 1001
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1002 1003
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1004
	if (rc)
1005
		return rc;
1006

1007 1008
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1009 1010 1011 1012 1013 1014 1015 1016

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1017
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1018

1019 1020
	mutex_lock(&efx->mac_lock);

1021
	rc = efx->phy_op->init(efx);
1022
	if (rc)
1023
		goto fail1;
1024

1025
	efx->port_initialized = true;
1026

B
Ben Hutchings 已提交
1027 1028
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1029
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1030 1031 1032 1033 1034 1035

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1036
	mutex_unlock(&efx->mac_lock);
1037
	return 0;
1038

1039
fail2:
1040
	efx->phy_op->fini(efx);
1041 1042
fail1:
	mutex_unlock(&efx->mac_lock);
1043
	return rc;
1044 1045 1046 1047
}

static void efx_start_port(struct efx_nic *efx)
{
1048
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1049 1050 1051
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1052
	efx->port_enabled = true;
1053 1054 1055

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1056
	efx->type->reconfigure_mac(efx);
1057

1058 1059 1060
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1061
/* Prevent efx_mac_work() and efx_monitor() from working */
1062 1063
static void efx_stop_port(struct efx_nic *efx)
{
1064
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1065 1066

	mutex_lock(&efx->mac_lock);
1067
	efx->port_enabled = false;
1068 1069 1070
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1071 1072
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1073 1074 1075 1076
}

static void efx_fini_port(struct efx_nic *efx)
{
1077
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1078 1079 1080 1081

	if (!efx->port_initialized)
		return;

1082
	efx->phy_op->fini(efx);
1083
	efx->port_initialized = false;
1084

1085
	efx->link_state.up = false;
1086 1087 1088 1089 1090
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1091
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1092

1093
	efx->type->remove_port(efx);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1107
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1108 1109
	int rc;

1110
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1111 1112 1113

	rc = pci_enable_device(pci_dev);
	if (rc) {
1114 1115
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1127
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1128
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1129 1130 1131
			if (rc == 0)
				break;
		}
1132 1133 1134
		dma_mask >>= 1;
	}
	if (rc) {
1135 1136
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1137 1138
		goto fail2;
	}
1139 1140
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1141

1142 1143
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1144
	if (rc) {
1145 1146
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1147 1148 1149
		rc = -EIO;
		goto fail3;
	}
1150
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1151
	if (!efx->membase) {
1152 1153
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1154
			  (unsigned long long)efx->membase_phys, mem_map_size);
1155 1156 1157
		rc = -ENOMEM;
		goto fail4;
	}
1158 1159
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1160 1161
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1162 1163 1164 1165

	return 0;

 fail4:
1166
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1167
 fail3:
1168
	efx->membase_phys = 0;
1169 1170 1171 1172 1173 1174 1175 1176
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1177
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1178 1179 1180 1181 1182 1183 1184

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1185
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1186
		efx->membase_phys = 0;
1187 1188 1189 1190 1191
	}

	pci_disable_device(efx->pci_dev);
}

1192
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1193
{
1194
	cpumask_var_t thread_mask;
1195
	unsigned int count;
1196
	int cpu;
1197

1198 1199 1200 1201 1202 1203 1204 1205
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1217 1218
	}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1230 1231 1232 1233 1234 1235 1236 1237
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1238
static int efx_probe_interrupts(struct efx_nic *efx)
1239
{
1240 1241
	unsigned int extra_channels = 0;
	unsigned int i, j;
1242
	int rc;
1243

1244 1245 1246 1247
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1248
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1249
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1250
		unsigned int n_channels;
1251

1252
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1253 1254
		if (separate_tx_channels)
			n_channels *= 2;
1255
		n_channels += extra_channels;
1256
		n_channels = min(n_channels, efx->max_channels);
1257

B
Ben Hutchings 已提交
1258
		for (i = 0; i < n_channels; i++)
1259
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1260
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1261
		if (rc > 0) {
1262 1263
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1264
				  " available (%d < %u).\n", rc, n_channels);
1265 1266
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1267 1268
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1269
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1270
					     n_channels);
1271 1272 1273
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1274
			efx->n_channels = n_channels;
1275 1276
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1277
			if (separate_tx_channels) {
1278 1279 1280 1281
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1282
			} else {
1283 1284
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1285
			}
1286
			for (i = 0; i < efx->n_channels; i++)
1287 1288
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1289 1290 1291
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1292 1293
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1294 1295 1296 1297 1298
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1299
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1300 1301
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1302 1303
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1304
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1305
		} else {
1306 1307
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1308 1309 1310 1311 1312 1313
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1314
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1315 1316
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1317 1318
		efx->legacy_irq = efx->pci_dev->irq;
	}
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1335
	/* RSS might be usable on VFs even if it is disabled on the PF */
1336
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1337 1338
			   efx->n_rx_channels : efx_vf_size(efx));

1339
	return 0;
1340 1341
}

1342
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1343
{
1344 1345
	struct efx_channel *channel, *end_channel;
	int rc;
1346

1347 1348
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1349 1350
	efx->irq_soft_enabled = true;
	smp_wmb();
1351 1352

	efx_for_each_channel(channel, efx) {
1353 1354 1355 1356 1357
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1358 1359 1360 1361
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1375 1376
}

B
Ben Hutchings 已提交
1377
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1378 1379 1380
{
	struct efx_channel *channel;

1381 1382 1383
	if (efx->state == STATE_DISABLED)
		return;

1384 1385
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1386 1387 1388 1389
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1390 1391 1392 1393 1394 1395 1396
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1397
		if (!channel->type->keep_eventq)
1398
			efx_fini_eventq(channel);
1399
	}
1400 1401 1402

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1403 1404
}

1405
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1406
{
1407 1408
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1409 1410 1411 1412 1413 1414 1415 1416

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1417
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1418 1419

	efx_for_each_channel(channel, efx) {
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1438
		if (channel->type->keep_eventq)
1439
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1440 1441
	}

1442 1443 1444
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1458
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1459 1460
}

1461 1462 1463 1464 1465
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1466
	efx_for_each_channel(channel, efx)
1467 1468 1469 1470 1471 1472 1473 1474
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1475
static void efx_set_channels(struct efx_nic *efx)
1476
{
1477 1478 1479
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1480
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1481
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1482

1483 1484
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1485 1486 1487
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1488 1489 1490 1491 1492
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1493 1494 1495 1496
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1497 1498 1499 1500
}

static int efx_probe_nic(struct efx_nic *efx)
{
1501
	size_t i;
1502 1503
	int rc;

1504
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1505 1506

	/* Carry out hardware-type specific initialisation */
1507
	rc = efx->type->probe(efx);
1508 1509 1510
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1511
	/* Determine the number of channels and queues by trying to hook
1512
	 * in MSI-X interrupts. */
1513 1514
	rc = efx_probe_interrupts(efx);
	if (rc)
1515
		goto fail1;
1516

1517 1518 1519
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1520

1521 1522
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1523
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1524
		efx->rx_indir_table[i] =
1525
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1526

1527
	efx_set_channels(efx);
1528 1529
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1530 1531

	/* Initialise the interrupt moderation settings */
1532 1533
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1534 1535

	return 0;
1536

1537 1538 1539
fail2:
	efx_remove_interrupts(efx);
fail1:
1540 1541
	efx->type->remove(efx);
	return rc;
1542 1543 1544 1545
}

static void efx_remove_nic(struct efx_nic *efx)
{
1546
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1547 1548

	efx_remove_interrupts(efx);
1549
	efx->type->remove(efx);
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1602
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1603 1604 1605 1606 1607
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1608
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1609 1610 1611
		goto fail2;
	}

1612 1613 1614 1615 1616
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1617
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1618

B
Ben Hutchings 已提交
1619 1620 1621 1622
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1623
		goto fail3;
B
Ben Hutchings 已提交
1624 1625
	}

1626 1627 1628 1629
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1630 1631
	return 0;

B
Ben Hutchings 已提交
1632
 fail4:
1633
	efx_remove_filters(efx);
1634 1635 1636 1637 1638 1639 1640 1641
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1642 1643 1644 1645 1646 1647
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1648
 */
1649 1650 1651
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1652
	BUG_ON(efx->state == STATE_DISABLED);
1653 1654 1655

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1656
	if (efx->port_enabled || !netif_running(efx->net_dev))
1657 1658 1659
		return;

	efx_start_port(efx);
1660
	efx_start_datapath(efx);
1661

1662 1663
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1664 1665
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1666 1667 1668 1669 1670

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1671 1672 1673 1674 1675
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1676

1677
	efx->type->start_stats(efx);
1678 1679 1680 1681 1682 1683 1684
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1685
	/* Make sure the hardware monitor and event self-test are stopped */
1686
	cancel_delayed_work_sync(&efx->monitor_work);
1687
	efx_selftest_async_cancel(efx);
1688
	/* Stop scheduled port reconfigurations */
1689
	cancel_work_sync(&efx->mac_work);
1690 1691
}

1692 1693 1694 1695 1696
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1697 1698 1699 1700 1701 1702 1703 1704
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1705
	efx->type->stop_stats(efx);
1706 1707
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1708
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1709 1710
	efx_flush_all(efx);

1711 1712 1713 1714 1715 1716
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1717 1718 1719
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1720 1721 1722 1723
}

static void efx_remove_all(struct efx_nic *efx)
{
1724
	efx_remove_channels(efx);
1725
	efx_remove_filters(efx);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1736
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1737
{
1738 1739
	if (usecs == 0)
		return 0;
1740
	if (usecs * 1000 < quantum_ns)
1741
		return 1; /* never round down to 0 */
1742
	return usecs * 1000 / quantum_ns;
1743 1744
}

1745
/* Set interrupt moderation parameters */
1746 1747 1748
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1749
{
1750
	struct efx_channel *channel;
1751 1752 1753 1754 1755
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1756 1757 1758

	EFX_ASSERT_RESET_SERIALISED(efx);

1759
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1760 1761
		return -EINVAL;

1762 1763 1764
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1765 1766 1767 1768 1769 1770 1771
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1772
	efx->irq_rx_adaptive = rx_adaptive;
1773
	efx->irq_rx_moderation = rx_ticks;
1774
	efx_for_each_channel(channel, efx) {
1775
		if (efx_channel_has_rx_queue(channel))
1776
			channel->irq_moderation = rx_ticks;
1777
		else if (efx_channel_has_tx_queues(channel))
1778 1779
			channel->irq_moderation = tx_ticks;
	}
1780 1781

	return 0;
1782 1783
}

1784 1785 1786
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1787 1788 1789 1790
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1791
	*rx_adaptive = efx->irq_rx_adaptive;
1792 1793 1794
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1795 1796 1797 1798 1799 1800 1801 1802

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1803
		*tx_usecs = DIV_ROUND_UP(
1804
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1805 1806
			efx->timer_quantum_ns,
			1000);
1807 1808
}

1809 1810 1811 1812 1813 1814
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1815
/* Run periodically off the general workqueue */
1816 1817 1818 1819 1820
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1821 1822 1823
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1824
	BUG_ON(efx->type->monitor == NULL);
1825 1826 1827

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1828 1829 1830 1831 1832 1833
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1850
	struct efx_nic *efx = netdev_priv(net_dev);
1851
	struct mii_ioctl_data *data = if_mii(ifr);
1852

1853
	if (cmd == SIOCSHWTSTAMP)
1854 1855 1856
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1857

1858 1859 1860 1861 1862 1863
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1864 1865 1866 1867 1868 1869 1870 1871
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1872 1873 1874 1875 1876 1877 1878 1879 1880
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1881
static void efx_init_napi(struct efx_nic *efx)
1882 1883 1884
{
	struct efx_channel *channel;

1885 1886
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1887 1888 1889 1890 1891 1892 1893
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1894 1895 1896 1897 1898 1899
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1900 1901
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1918
	struct efx_nic *efx = netdev_priv(net_dev);
1919 1920
	struct efx_channel *channel;

1921
	efx_for_each_channel(channel, efx)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1936
	struct efx_nic *efx = netdev_priv(net_dev);
1937 1938
	int rc;

1939 1940
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1941

1942 1943 1944
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1945 1946
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1947 1948
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1949

1950 1951 1952 1953
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1954
	efx_start_all(efx);
1955
	efx_selftest_async_start(efx);
1956 1957 1958 1959 1960 1961 1962 1963 1964
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1965
	struct efx_nic *efx = netdev_priv(net_dev);
1966

1967 1968
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1969

1970 1971
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1972 1973 1974 1975

	return 0;
}

1976
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1977 1978
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1979
{
1980
	struct efx_nic *efx = netdev_priv(net_dev);
1981

1982
	spin_lock_bh(&efx->stats_lock);
1983
	efx->type->update_stats(efx, NULL, stats);
1984 1985
	spin_unlock_bh(&efx->stats_lock);

1986 1987 1988 1989 1990 1991
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1992
	struct efx_nic *efx = netdev_priv(net_dev);
1993

1994 1995 1996
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1997

1998
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1999 2000 2001 2002 2003 2004
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2005
	struct efx_nic *efx = netdev_priv(net_dev);
2006
	int rc;
2007

2008 2009 2010
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2011 2012 2013
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2014
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2015

2016 2017 2018
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2019
	mutex_lock(&efx->mac_lock);
2020
	net_dev->mtu = new_mtu;
2021
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2022 2023
	mutex_unlock(&efx->mac_lock);

2024
	efx_start_all(efx);
2025
	netif_device_attach(efx->net_dev);
2026
	return 0;
2027 2028 2029 2030
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2031
	struct efx_nic *efx = netdev_priv(net_dev);
2032 2033 2034 2035
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2036 2037 2038
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2039
		return -EADDRNOTAVAIL;
2040 2041 2042
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2043
	efx_sriov_mac_address_changed(efx);
2044 2045

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2046
	mutex_lock(&efx->mac_lock);
2047
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2048
	mutex_unlock(&efx->mac_lock);
2049 2050 2051 2052

	return 0;
}

2053
/* Context: netif_addr_lock held, BHs disabled. */
2054
static void efx_set_rx_mode(struct net_device *net_dev)
2055
{
2056
	struct efx_nic *efx = netdev_priv(net_dev);
2057

2058 2059 2060
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2061 2062
}

2063
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

2074
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2075 2076
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2077
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2078 2079 2080 2081 2082 2083
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2084
	.ndo_set_rx_mode	= efx_set_rx_mode,
2085
	.ndo_set_features	= efx_set_features,
2086 2087 2088 2089 2090 2091
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2092 2093 2094
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2095
	.ndo_setup_tc		= efx_setup_tc,
2096 2097 2098
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2099 2100
};

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2121 2122 2123 2124 2125 2126 2127
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2128 2129 2130
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2131
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2132

2133 2134
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2135 2136
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2137 2138 2139 2140 2141 2142 2143 2144

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2145 2146 2147 2148 2149 2150
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2151
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2152

2153 2154 2155
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2156
	struct efx_channel *channel;
2157 2158 2159 2160
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2161 2162 2163 2164 2165 2166
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2167
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2168
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2169

2170
	rtnl_lock();
2171

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2185 2186 2187
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2188
	efx_update_name(efx);
2189

2190 2191 2192
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2193 2194 2195 2196
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2197 2198
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2199 2200
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2201 2202
	}

2203
	rtnl_unlock();
2204

B
Ben Hutchings 已提交
2205 2206
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2207 2208
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2209 2210 2211
		goto fail_registered;
	}

2212
	return 0;
B
Ben Hutchings 已提交
2213

2214 2215 2216
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2217
fail_locked:
2218
	efx->state = STATE_UNINIT;
2219
	rtnl_unlock();
2220
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2221
	return rc;
2222 2223 2224 2225 2226 2227 2228
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2229
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2230

2231 2232
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2233 2234 2235 2236 2237

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2238 2239 2240 2241 2242 2243 2244 2245
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2246 2247
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2248
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2249 2250 2251
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2252
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2253
	efx_disable_interrupts(efx);
2254 2255

	mutex_lock(&efx->mac_lock);
2256 2257
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2258
	efx->type->fini(efx);
2259 2260
}

B
Ben Hutchings 已提交
2261 2262 2263 2264 2265
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2266
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2267 2268 2269
{
	int rc;

B
Ben Hutchings 已提交
2270
	EFX_ASSERT_RESET_SERIALISED(efx);
2271

2272
	rc = efx->type->init(efx);
2273
	if (rc) {
2274
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2275
		goto fail;
2276 2277
	}

2278 2279 2280
	if (!ok)
		goto fail;

2281
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2282 2283 2284 2285
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2286 2287
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2288 2289
	}

2290 2291 2292
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2293
	efx_restore_filters(efx);
2294
	efx_sriov_reset(efx);
2295 2296 2297 2298 2299 2300 2301 2302 2303

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2304 2305 2306

	mutex_unlock(&efx->mac_lock);

2307 2308 2309
	return rc;
}

2310 2311
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2312
 *
2313
 * Caller must hold the rtnl_lock.
2314
 */
2315
int efx_reset(struct efx_nic *efx, enum reset_type method)
2316
{
2317 2318
	int rc, rc2;
	bool disabled;
2319

2320 2321
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2322

2323
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2324
	efx_reset_down(efx, method);
2325

2326
	rc = efx->type->reset(efx, method);
2327
	if (rc) {
2328
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2329
		goto out;
2330 2331
	}

2332 2333 2334 2335
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2336 2337 2338 2339 2340 2341 2342

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2343
out:
2344
	/* Leave device stopped if necessary */
2345 2346 2347
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2348 2349 2350 2351 2352
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2353 2354
	}

2355
	if (disabled) {
2356
		dev_close(efx->net_dev);
2357
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2358 2359
		efx->state = STATE_DISABLED;
	} else {
2360
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2361
		netif_device_attach(efx->net_dev);
2362
	}
2363 2364 2365
	return rc;
}

2366 2367 2368 2369 2370
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2371
int efx_try_recovery(struct efx_nic *efx)
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2392 2393 2394 2395 2396
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2397
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2408

2409
	if (!pending)
2410 2411
		return;

2412
	rtnl_lock();
2413 2414 2415 2416 2417 2418

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2419
		(void)efx_reset(efx, method);
2420

2421
	rtnl_unlock();
2422 2423 2424 2425 2426 2427
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2428 2429 2430 2431 2432 2433 2434
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2435 2436 2437
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2438
	case RESET_TYPE_RECOVER_OR_ALL:
2439 2440
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2441
	case RESET_TYPE_RECOVER_OR_DISABLE:
2442
		method = type;
2443 2444
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2445 2446
		break;
	default:
2447
		method = efx->type->map_reset_reason(type);
2448 2449 2450
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2451 2452
		break;
	}
2453

2454
	set_bit(method, &efx->reset_pending);
2455 2456 2457 2458 2459 2460 2461
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2462

2463 2464 2465 2466
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2467
	queue_work(reset_workqueue, &efx->reset_work);
2468 2469 2470 2471 2472 2473 2474 2475 2476
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2477
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2478 2479
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2480
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2481 2482
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2483
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2484
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2485
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2486
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2487
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2488 2489
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2490 2491 2492 2493 2494
	{0}			/* end of list */
};

/**************************************************************************
 *
2495
 * Dummy PHY/MAC operations
2496
 *
2497
 * Can be used for some unimplemented operations
2498 2499 2500 2501 2502 2503 2504 2505 2506
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2507 2508

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2509 2510 2511
{
	return false;
}
2512

2513
static const struct efx_phy_operations efx_dummy_phy_operations = {
2514
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2515
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2516
	.poll		 = efx_port_dummy_op_poll,
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2529
static int efx_init_struct(struct efx_nic *efx,
2530 2531
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2532
	int i;
2533 2534 2535

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2536 2537 2538
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2539 2540
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2541
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2542
	efx->pci_dev = pci_dev;
2543
	efx->msg_enable = debug;
2544
	efx->state = STATE_UNINIT;
2545 2546 2547
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2548
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2549 2550
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2551 2552
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2553 2554 2555
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2556
	efx->mdio.dev = net_dev;
2557
	INIT_WORK(&efx->mac_work, efx_mac_work);
2558
	init_waitqueue_head(&efx->flush_wq);
2559 2560

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2561 2562 2563
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2564 2565
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2566 2567 2568 2569 2570 2571
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2572 2573 2574 2575
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2576
	if (!efx->workqueue)
2577
		goto fail;
2578

2579
	return 0;
2580 2581 2582 2583

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2584 2585 2586 2587
}

static void efx_fini_struct(struct efx_nic *efx)
{
2588 2589 2590 2591 2592
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2610 2611 2612 2613 2614 2615
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2616
	efx_disable_interrupts(efx);
2617
	efx_nic_fini_interrupt(efx);
2618
	efx_fini_port(efx);
2619
	efx->type->fini(efx);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2638
	efx_disable_interrupts(efx);
2639 2640
	rtnl_unlock();

2641
	efx_sriov_fini(efx);
2642 2643
	efx_unregister_netdev(efx);

2644 2645
	efx_mtd_remove(efx);

2646 2647 2648
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2649
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2650 2651

	efx_fini_struct(efx);
2652
	pci_set_drvdata(pci_dev, NULL);
2653
	free_netdev(efx->net_dev);
2654 2655

	pci_disable_pcie_error_reporting(pci_dev);
2656 2657
};

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2721
	efx_init_napi(efx);
2722

2723
	rc = efx->type->init(efx);
2724
	if (rc) {
2725 2726
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2727
		goto fail3;
2728 2729 2730 2731
	}

	rc = efx_init_port(efx);
	if (rc) {
2732 2733
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2734
		goto fail4;
2735 2736
	}

2737
	rc = efx_nic_init_interrupt(efx);
2738
	if (rc)
2739
		goto fail5;
2740 2741 2742
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2743 2744 2745

	return 0;

2746 2747
 fail6:
	efx_nic_fini_interrupt(efx);
2748
 fail5:
2749 2750
	efx_fini_port(efx);
 fail4:
2751
	efx->type->fini(efx);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2762
 * theoretically).  It sets up PCI mappings, resets the NIC,
2763 2764 2765 2766 2767
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2768
static int efx_pci_probe(struct pci_dev *pci_dev,
2769
			 const struct pci_device_id *entry)
2770 2771 2772
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2773
	int rc;
2774 2775

	/* Allocate and initialise a struct net_device and struct efx_nic */
2776 2777
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2778 2779
	if (!net_dev)
		return -ENOMEM;
2780 2781 2782
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2783
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2784
			      NETIF_F_RXCSUM);
2785
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2786
		net_dev->features |= NETIF_F_TSO6;
2787 2788
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2789 2790 2791 2792
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2793
	pci_set_drvdata(pci_dev, efx);
2794
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2795
	rc = efx_init_struct(efx, pci_dev, net_dev);
2796 2797 2798
	if (rc)
		goto fail1;

2799
	netif_info(efx, probe, efx->net_dev,
2800
		   "Solarflare NIC detected\n");
2801

2802 2803
	efx_print_product_vpd(efx);

2804 2805 2806 2807 2808
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2809 2810 2811
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2812 2813 2814

	rc = efx_register_netdev(efx);
	if (rc)
2815
		goto fail4;
2816

2817 2818 2819 2820 2821
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2822
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2823

2824
	/* Try to create MTDs, but allow this to fail */
2825
	rtnl_lock();
2826
	rc = efx_mtd_probe(efx);
2827
	rtnl_unlock();
2828 2829 2830 2831
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2832 2833 2834 2835 2836
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2837 2838 2839
	return 0;

 fail4:
2840
	efx_pci_remove_main(efx);
2841 2842 2843 2844 2845
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2846
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2847
	WARN_ON(rc > 0);
2848
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2849 2850 2851 2852
	free_netdev(net_dev);
	return rc;
}

2853 2854 2855 2856
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2857 2858
	rtnl_lock();

2859 2860
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2861

2862
		efx_device_detach_sync(efx);
2863

2864
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2865
		efx_disable_interrupts(efx);
2866
	}
2867

2868 2869
	rtnl_unlock();

2870 2871 2872 2873 2874
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
2875
	int rc;
2876 2877
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2878 2879
	rtnl_lock();

2880
	if (efx->state != STATE_DISABLED) {
2881 2882 2883
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
2884

2885 2886 2887
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2888

2889
		efx_start_all(efx);
2890

2891
		netif_device_attach(efx->net_dev);
2892

2893
		efx->state = STATE_READY;
2894

2895 2896
		efx->type->resume_wol(efx);
	}
2897

2898 2899
	rtnl_unlock();

2900 2901 2902
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2903
	return 0;
2904 2905 2906 2907 2908

fail:
	rtnl_unlock();

	return rc;
2909 2910 2911 2912 2913 2914 2915 2916 2917
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2918
	efx->reset_pending = 0;
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
2945 2946
	rc = efx_pm_thaw(dev);
	return rc;
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2960
static const struct dev_pm_ops efx_pm_ops = {
2961 2962 2963 2964 2965 2966 2967 2968
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2969 2970 2971 2972
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2973 2974
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2991
		efx_disable_interrupts(efx);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3009
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3068
static struct pci_driver efx_pci_driver = {
3069
	.name		= KBUILD_MODNAME,
3070 3071 3072
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3073
	.driver.pm	= &efx_pm_ops,
3074
	.err_handler	= &efx_err_handlers,
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3097 3098 3099 3100
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3101 3102 3103 3104 3105
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3106 3107 3108 3109 3110 3111 3112 3113

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3114 3115
	destroy_workqueue(reset_workqueue);
 err_reset:
3116 3117
	efx_fini_sriov();
 err_sriov:
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3128
	destroy_workqueue(reset_workqueue);
3129
	efx_fini_sriov();
3130 3131 3132 3133 3134 3135 3136
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3137 3138
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3139 3140 3141
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);