efx.c 79.4 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86 87
};

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108 109
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120
 * monitor.
 * On Falcon-based NICs, this will:
121 122
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123 124
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
125
 */
S
stephen hemminger 已提交
126
static unsigned int efx_monitor_interval = 1 * HZ;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159
 * The default (0) means to assign an interrupt to each core.
160 161 162 163 164
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

165 166
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
167 168
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

169
static unsigned irq_adapt_low_thresh = 8000;
170 171 172 173
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

174
static unsigned irq_adapt_high_thresh = 16000;
175 176 177 178
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

179 180 181 182 183 184 185
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

186 187 188 189 190
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
191

192
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
193
static void efx_soft_disable_interrupts(struct efx_nic *efx);
194
static void efx_remove_channel(struct efx_channel *channel);
195
static void efx_remove_channels(struct efx_nic *efx);
196
static const struct efx_channel_type efx_default_channel_type;
197
static void efx_remove_port(struct efx_nic *efx);
198
static void efx_init_napi_channel(struct efx_channel *channel);
199
static void efx_fini_napi(struct efx_nic *efx);
200
static void efx_fini_napi_channel(struct efx_channel *channel);
201 202 203
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
204 205 206

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
207
		if ((efx->state == STATE_READY) ||	\
208
		    (efx->state == STATE_RECOVERY) ||	\
209
		    (efx->state == STATE_DISABLED))	\
210 211 212
			ASSERT_RTNL();			\
	} while (0)

213 214
static int efx_check_disabled(struct efx_nic *efx)
{
215
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216 217 218 219 220 221 222
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

223 224 225 226 227 228 229 230 231 232 233 234 235
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
236
static int efx_process_channel(struct efx_channel *channel, int budget)
237
{
238
	int spent;
239

240
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
241
		return 0;
242

243
	spent = efx_nic_process_eventq(channel, budget);
244 245 246 247
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

248
		efx_rx_flush_packet(channel);
249
		efx_fast_push_rx_descriptors(rx_queue);
250 251
	}

252
	return spent;
253 254 255 256 257 258 259 260 261 262 263
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
264
	struct efx_nic *efx = channel->efx;
265
	int spent;
266

267 268 269
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
270

271
	spent = efx_process_channel(channel, budget);
272

273
	if (spent < budget) {
274
		if (efx_channel_has_rx_queue(channel) &&
275 276 277 278
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
279 280
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
281
					efx->type->push_irq_moderation(channel);
282
				}
283 284
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
285 286 287
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291 292 293 294
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

295 296
		efx_filter_rfs_expire(channel);

297
		/* There is no race here; although napi_disable() will
298
		 * only wait for napi_complete(), this isn't a problem
299
		 * since efx_nic_eventq_read_ack() will have no effect if
300 301
		 * interrupts have already been disabled.
		 */
302
		napi_complete(napi);
303
		efx_nic_eventq_read_ack(channel);
304 305
	}

306
	return spent;
307 308 309 310 311 312 313 314 315
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
316 317 318
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

319
	netif_dbg(efx, probe, efx->net_dev,
320
		  "chan %d create event queue\n", channel->channel);
321

322 323 324 325 326 327
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

328
	return efx_nic_probe_eventq(channel);
329 330 331
}

/* Prepare channel's event queue */
332
static int efx_init_eventq(struct efx_channel *channel)
333
{
334
	struct efx_nic *efx = channel->efx;
335 336 337 338
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

339
	netif_dbg(efx, drv, efx->net_dev,
340
		  "chan %d init event queue\n", channel->channel);
341

342 343
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
344
		efx->type->push_irq_moderation(channel);
345 346 347 348
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
349 350
}

351 352 353 354 355 356
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

357
	/* Make sure the NAPI handler sees the enabled flag set */
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

375 376
static void efx_fini_eventq(struct efx_channel *channel)
{
377 378 379
	if (!channel->eventq_init)
		return;

380 381
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
382

383
	efx_nic_fini_eventq(channel);
384
	channel->eventq_init = false;
385 386 387 388
}

static void efx_remove_eventq(struct efx_channel *channel)
{
389 390
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
391

392
	efx_nic_remove_eventq(channel);
393 394 395 396 397 398 399 400
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

401
/* Allocate and initialise a channel structure. */
402 403 404 405 406 407 408 409
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

410 411 412
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
413

414 415 416
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
417

418 419 420 421 422 423
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
424

425 426 427 428
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
429

430 431 432 433 434 435 436 437 438 439 440 441 442
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
443

444 445 446 447 448 449 450 451
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
452

453 454 455
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
456
			tx_queue->channel = channel;
457 458
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
459 460 461
	}

	rx_queue = &channel->rx_queue;
462 463
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
464 465 466 467 468 469
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

470 471 472 473 474 475
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

476 477
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
478

479 480 481 482
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

483 484
	rc = efx_probe_eventq(channel);
	if (rc)
485
		goto fail;
486 487 488 489

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
490
			goto fail;
491 492 493 494 495
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
496
			goto fail;
497 498 499 500 501 502
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

503 504
fail:
	efx_remove_channel(channel);
505 506 507
	return rc;
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
526

527 528 529 530
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

531 532
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
533 534
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
535 536
}

537 538 539 540 541 542 543 544
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

545 546 547 548 549 550
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

568 569 570 571
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
572
static void efx_start_datapath(struct efx_nic *efx)
573
{
574
	bool old_rx_scatter = efx->rx_scatter;
575 576 577
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
578
	size_t rx_buf_len;
579

580 581 582 583
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
584
	efx->rx_dma_len = (efx->rx_prefix_size +
585 586
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
587
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
588
		      NET_IP_ALIGN + efx->rx_dma_len);
589
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
590
		efx->rx_scatter = efx->type->always_rx_scatter;
591 592
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
593
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
594
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
595 596 597
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
598 599 600 601 602 603 604 605
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

606 607 608 609 610 611 612 613 614 615 616
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
617

J
Jon Cooper 已提交
618
	/* RX filters may also have scatter-enabled flags */
619
	if (efx->rx_scatter != old_rx_scatter)
620
		efx->type->filter_update_rx_scatter(efx);
621

622 623 624 625 626 627 628 629 630 631
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

632 633
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
634
		efx_for_each_channel_tx_queue(tx_queue, channel) {
635
			efx_init_tx_queue(tx_queue);
636 637
			atomic_inc(&efx->active_queues);
		}
638

639
		efx_for_each_channel_rx_queue(rx_queue, channel) {
640
			efx_init_rx_queue(rx_queue);
641
			atomic_inc(&efx->active_queues);
642 643
			efx_nic_generate_fill_event(rx_queue);
		}
644

645
		WARN_ON(channel->rx_pkt_n_frags);
646 647
	}

648 649
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
650 651
}

652
static void efx_stop_datapath(struct efx_nic *efx)
653 654 655 656
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
657
	int rc;
658 659 660 661

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

662 663 664 665 666 667
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

668
	efx_for_each_channel(channel, efx) {
669 670 671 672 673 674 675 676 677 678
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
679
	}
680

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
699 700
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
701
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
702 703 704 705 706 707 708 709 710
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

711 712
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
713 714 715

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
716
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
717 718
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
719
	channel->type->post_remove(channel);
720 721
}

722 723 724 725 726 727 728 729 730 731 732 733 734
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
735
	unsigned i, next_buffer_table = 0;
736
	int rc, rc2;
737 738 739 740

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
763

764
	efx_device_detach_sync(efx);
765
	efx_stop_all(efx);
B
Ben Hutchings 已提交
766
	efx_soft_disable_interrupts(efx);
767

768
	/* Clone channels (where possible) */
769 770
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
771 772 773
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

792 793
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
794 795

	for (i = 0; i < efx->n_channels; i++) {
796 797 798 799 800 801 802
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
803
	}
804

805
out:
806 807 808 809 810 811 812 813 814
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
815

816 817 818 819 820 821 822 823 824 825
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
826 827 828 829 830 831 832 833 834 835 836 837 838 839
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

840
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
841
{
842
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
843 844
}

845 846
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
847
	.post_remove		= efx_channel_dummy_op_void,
848 849 850 851 852 853 854 855 856 857
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

858 859 860 861
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

862 863 864 865 866 867 868 869 870 871
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
872
void efx_link_status_changed(struct efx_nic *efx)
873
{
874 875
	struct efx_link_state *link_state = &efx->link_state;

876 877 878 879 880 881 882
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

883
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
884 885
		efx->n_link_state_changes++;

886
		if (link_state->up)
887 888 889 890 891 892
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
893
	if (link_state->up)
894
		netif_info(efx, link, efx->net_dev,
895
			   "link up at %uMbps %s-duplex (MTU %d)\n",
896
			   link_state->speed, link_state->fd ? "full" : "half",
897
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
898
	else
899
		netif_info(efx, link, efx->net_dev, "link down\n");
900 901
}

B
Ben Hutchings 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

915
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

930 931
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
932 933 934 935 936 937 938 939
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
940
{
B
Ben Hutchings 已提交
941 942
	enum efx_phy_mode phy_mode;
	int rc;
943

B
Ben Hutchings 已提交
944
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
945

B
Ben Hutchings 已提交
946 947
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
948 949 950 951 952
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
953
	rc = efx->type->reconfigure_port(efx);
954

B
Ben Hutchings 已提交
955 956
	if (rc)
		efx->phy_mode = phy_mode;
957

B
Ben Hutchings 已提交
958
	return rc;
959 960 961 962
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
963
int efx_reconfigure_port(struct efx_nic *efx)
964
{
B
Ben Hutchings 已提交
965 966
	int rc;

967 968 969
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
970
	rc = __efx_reconfigure_port(efx);
971
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
972 973

	return rc;
974 975
}

976 977 978
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
979 980 981 982 983
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
984
	if (efx->port_enabled)
985
		efx->type->reconfigure_mac(efx);
986 987 988
	mutex_unlock(&efx->mac_lock);
}

989 990 991 992
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

993
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
994

995 996 997
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

998 999
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1000
	if (rc)
1001
		return rc;
1002

1003 1004
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1005 1006 1007 1008 1009 1010 1011 1012

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1013
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1014

1015 1016
	mutex_lock(&efx->mac_lock);

1017
	rc = efx->phy_op->init(efx);
1018
	if (rc)
1019
		goto fail1;
1020

1021
	efx->port_initialized = true;
1022

B
Ben Hutchings 已提交
1023 1024
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1025
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1026 1027 1028 1029 1030 1031

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1032
	mutex_unlock(&efx->mac_lock);
1033
	return 0;
1034

1035
fail2:
1036
	efx->phy_op->fini(efx);
1037 1038
fail1:
	mutex_unlock(&efx->mac_lock);
1039
	return rc;
1040 1041 1042 1043
}

static void efx_start_port(struct efx_nic *efx)
{
1044
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1045 1046 1047
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1048
	efx->port_enabled = true;
1049 1050 1051

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1052
	efx->type->reconfigure_mac(efx);
1053

1054 1055 1056
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1057
/* Prevent efx_mac_work() and efx_monitor() from working */
1058 1059
static void efx_stop_port(struct efx_nic *efx)
{
1060
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1061 1062

	mutex_lock(&efx->mac_lock);
1063
	efx->port_enabled = false;
1064 1065 1066
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1067 1068
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1069 1070 1071 1072
}

static void efx_fini_port(struct efx_nic *efx)
{
1073
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1074 1075 1076 1077

	if (!efx->port_initialized)
		return;

1078
	efx->phy_op->fini(efx);
1079
	efx->port_initialized = false;
1080

1081
	efx->link_state.up = false;
1082 1083 1084 1085 1086
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1087
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1088

1089
	efx->type->remove_port(efx);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1103
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1104 1105
	int rc;

1106
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1107 1108 1109

	rc = pci_enable_device(pci_dev);
	if (rc) {
1110 1111
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1123
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1124
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1125 1126 1127
			if (rc == 0)
				break;
		}
1128 1129 1130
		dma_mask >>= 1;
	}
	if (rc) {
1131 1132
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1133 1134
		goto fail2;
	}
1135 1136
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1137

1138 1139
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1140
	if (rc) {
1141 1142
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1143 1144 1145
		rc = -EIO;
		goto fail3;
	}
1146
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1147
	if (!efx->membase) {
1148 1149
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1150
			  (unsigned long long)efx->membase_phys, mem_map_size);
1151 1152 1153
		rc = -ENOMEM;
		goto fail4;
	}
1154 1155
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1156 1157
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1158 1159 1160 1161

	return 0;

 fail4:
1162
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1163
 fail3:
1164
	efx->membase_phys = 0;
1165 1166 1167 1168 1169 1170 1171 1172
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1173
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1174 1175 1176 1177 1178 1179 1180

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1181
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1182
		efx->membase_phys = 0;
1183 1184 1185 1186 1187
	}

	pci_disable_device(efx->pci_dev);
}

1188
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1189
{
1190
	cpumask_var_t thread_mask;
1191
	unsigned int count;
1192
	int cpu;
1193

1194 1195 1196 1197 1198 1199 1200 1201
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1213 1214
	}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1226 1227 1228 1229 1230 1231 1232 1233
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1234
static int efx_probe_interrupts(struct efx_nic *efx)
1235
{
1236 1237
	unsigned int extra_channels = 0;
	unsigned int i, j;
1238
	int rc;
1239

1240 1241 1242 1243
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1244
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1245
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1246
		unsigned int n_channels;
1247

1248
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1249 1250
		if (separate_tx_channels)
			n_channels *= 2;
1251
		n_channels += extra_channels;
1252
		n_channels = min(n_channels, efx->max_channels);
1253

B
Ben Hutchings 已提交
1254
		for (i = 0; i < n_channels; i++)
1255
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1256
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1257
		if (rc > 0) {
1258 1259
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1260
				  " available (%d < %u).\n", rc, n_channels);
1261 1262
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1263 1264
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1265
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1266
					     n_channels);
1267 1268 1269
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1270
			efx->n_channels = n_channels;
1271 1272
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1273
			if (separate_tx_channels) {
1274 1275 1276 1277
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1278
			} else {
1279 1280
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1281
			}
1282
			for (i = 0; i < efx->n_channels; i++)
1283 1284
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1285 1286 1287
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1288 1289
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1290 1291 1292 1293 1294
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1295
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1296 1297
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1298 1299
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1300
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1301
		} else {
1302 1303
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1304 1305 1306 1307 1308 1309
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1310
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1311 1312
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1313 1314
		efx->legacy_irq = efx->pci_dev->irq;
	}
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1331
	/* RSS might be usable on VFs even if it is disabled on the PF */
1332
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1333 1334
			   efx->n_rx_channels : efx_vf_size(efx));

1335
	return 0;
1336 1337
}

1338
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1339
{
1340 1341
	struct efx_channel *channel, *end_channel;
	int rc;
1342

1343 1344
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1345 1346
	efx->irq_soft_enabled = true;
	smp_wmb();
1347 1348

	efx_for_each_channel(channel, efx) {
1349 1350 1351 1352 1353
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1354 1355 1356 1357
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1371 1372
}

B
Ben Hutchings 已提交
1373
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1374 1375 1376
{
	struct efx_channel *channel;

1377 1378 1379
	if (efx->state == STATE_DISABLED)
		return;

1380 1381
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1382 1383 1384 1385
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1386 1387 1388 1389 1390 1391 1392
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1393
		if (!channel->type->keep_eventq)
1394
			efx_fini_eventq(channel);
1395
	}
1396 1397 1398

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1399 1400
}

1401
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1402
{
1403 1404
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1405 1406 1407 1408 1409 1410 1411 1412

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1413
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1414 1415

	efx_for_each_channel(channel, efx) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1434
		if (channel->type->keep_eventq)
1435
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1436 1437
	}

1438 1439 1440
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1454
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1455 1456
}

1457 1458 1459 1460 1461
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1462
	efx_for_each_channel(channel, efx)
1463 1464 1465 1466 1467 1468 1469 1470
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1471
static void efx_set_channels(struct efx_nic *efx)
1472
{
1473 1474 1475
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1476
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1477
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1478

1479 1480
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1481 1482 1483
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1484 1485 1486 1487 1488
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1489 1490 1491 1492
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1493 1494 1495 1496
}

static int efx_probe_nic(struct efx_nic *efx)
{
1497
	size_t i;
1498 1499
	int rc;

1500
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1501 1502

	/* Carry out hardware-type specific initialisation */
1503
	rc = efx->type->probe(efx);
1504 1505 1506
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1507
	/* Determine the number of channels and queues by trying to hook
1508
	 * in MSI-X interrupts. */
1509 1510
	rc = efx_probe_interrupts(efx);
	if (rc)
1511
		goto fail1;
1512

1513 1514 1515
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1516

1517 1518
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1519
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1520
		efx->rx_indir_table[i] =
1521
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1522

1523
	efx_set_channels(efx);
1524 1525
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1526 1527

	/* Initialise the interrupt moderation settings */
1528 1529
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1530 1531

	return 0;
1532

1533 1534 1535
fail2:
	efx_remove_interrupts(efx);
fail1:
1536 1537
	efx->type->remove(efx);
	return rc;
1538 1539 1540 1541
}

static void efx_remove_nic(struct efx_nic *efx)
{
1542
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1543 1544

	efx_remove_interrupts(efx);
1545
	efx->type->remove(efx);
1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1598
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1599 1600 1601 1602 1603
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1604
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1605 1606 1607
		goto fail2;
	}

1608 1609 1610 1611 1612
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1613
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1614

B
Ben Hutchings 已提交
1615 1616 1617 1618
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1619
		goto fail3;
B
Ben Hutchings 已提交
1620 1621
	}

1622 1623 1624 1625
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1626 1627
	return 0;

B
Ben Hutchings 已提交
1628
 fail4:
1629
	efx_remove_filters(efx);
1630 1631 1632 1633 1634 1635 1636 1637
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1638 1639 1640 1641 1642 1643
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1644
 */
1645 1646 1647
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1648
	BUG_ON(efx->state == STATE_DISABLED);
1649 1650 1651

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1652
	if (efx->port_enabled || !netif_running(efx->net_dev))
1653 1654 1655
		return;

	efx_start_port(efx);
1656
	efx_start_datapath(efx);
1657

1658 1659
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1660 1661
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1662 1663 1664 1665 1666

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1667 1668 1669 1670 1671
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1672

1673
	efx->type->start_stats(efx);
1674 1675 1676 1677 1678 1679 1680
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1681
	/* Make sure the hardware monitor and event self-test are stopped */
1682
	cancel_delayed_work_sync(&efx->monitor_work);
1683
	efx_selftest_async_cancel(efx);
1684
	/* Stop scheduled port reconfigurations */
1685
	cancel_work_sync(&efx->mac_work);
1686 1687
}

1688 1689 1690 1691 1692
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1693 1694 1695 1696 1697 1698 1699 1700
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1701
	efx->type->stop_stats(efx);
1702 1703
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1704
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1705 1706
	efx_flush_all(efx);

1707 1708 1709 1710 1711 1712
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1713 1714 1715
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1716 1717 1718 1719
}

static void efx_remove_all(struct efx_nic *efx)
{
1720
	efx_remove_channels(efx);
1721
	efx_remove_filters(efx);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1732
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1733
{
1734 1735
	if (usecs == 0)
		return 0;
1736
	if (usecs * 1000 < quantum_ns)
1737
		return 1; /* never round down to 0 */
1738
	return usecs * 1000 / quantum_ns;
1739 1740
}

1741
/* Set interrupt moderation parameters */
1742 1743 1744
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1745
{
1746
	struct efx_channel *channel;
1747 1748 1749 1750 1751
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1752 1753 1754

	EFX_ASSERT_RESET_SERIALISED(efx);

1755
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1756 1757
		return -EINVAL;

1758 1759 1760
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1761 1762 1763 1764 1765 1766 1767
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1768
	efx->irq_rx_adaptive = rx_adaptive;
1769
	efx->irq_rx_moderation = rx_ticks;
1770
	efx_for_each_channel(channel, efx) {
1771
		if (efx_channel_has_rx_queue(channel))
1772
			channel->irq_moderation = rx_ticks;
1773
		else if (efx_channel_has_tx_queues(channel))
1774 1775
			channel->irq_moderation = tx_ticks;
	}
1776 1777

	return 0;
1778 1779
}

1780 1781 1782
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1783 1784 1785 1786
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1787
	*rx_adaptive = efx->irq_rx_adaptive;
1788 1789 1790
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1791 1792 1793 1794 1795 1796 1797 1798

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1799
		*tx_usecs = DIV_ROUND_UP(
1800
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1801 1802
			efx->timer_quantum_ns,
			1000);
1803 1804
}

1805 1806 1807 1808 1809 1810
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1811
/* Run periodically off the general workqueue */
1812 1813 1814 1815 1816
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1817 1818 1819
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1820
	BUG_ON(efx->type->monitor == NULL);
1821 1822 1823

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1824 1825 1826 1827 1828 1829
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1846
	struct efx_nic *efx = netdev_priv(net_dev);
1847
	struct mii_ioctl_data *data = if_mii(ifr);
1848

1849 1850 1851
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1852 1853 1854 1855 1856 1857
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1858 1859 1860 1861 1862 1863 1864 1865
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1866 1867 1868 1869 1870 1871 1872 1873 1874
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1875
static void efx_init_napi(struct efx_nic *efx)
1876 1877 1878
{
	struct efx_channel *channel;

1879 1880
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1881 1882 1883 1884 1885 1886 1887
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1888 1889 1890 1891 1892 1893
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1894 1895
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1912
	struct efx_nic *efx = netdev_priv(net_dev);
1913 1914
	struct efx_channel *channel;

1915
	efx_for_each_channel(channel, efx)
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1930
	struct efx_nic *efx = netdev_priv(net_dev);
1931 1932
	int rc;

1933 1934
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1935

1936 1937 1938
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1939 1940
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1941 1942
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1943

1944 1945 1946 1947
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1948
	efx_start_all(efx);
1949
	efx_selftest_async_start(efx);
1950 1951 1952 1953 1954 1955 1956 1957 1958
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1959
	struct efx_nic *efx = netdev_priv(net_dev);
1960

1961 1962
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1963

1964 1965
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1966 1967 1968 1969

	return 0;
}

1970
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1971 1972
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1973
{
1974
	struct efx_nic *efx = netdev_priv(net_dev);
1975

1976
	spin_lock_bh(&efx->stats_lock);
1977
	efx->type->update_stats(efx, NULL, stats);
1978 1979
	spin_unlock_bh(&efx->stats_lock);

1980 1981 1982 1983 1984 1985
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1986
	struct efx_nic *efx = netdev_priv(net_dev);
1987

1988 1989 1990
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1991

1992
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1993 1994 1995 1996 1997 1998
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1999
	struct efx_nic *efx = netdev_priv(net_dev);
2000
	int rc;
2001

2002 2003 2004
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2005 2006 2007
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2008
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2009

2010 2011 2012
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2013
	mutex_lock(&efx->mac_lock);
2014
	net_dev->mtu = new_mtu;
2015
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2016 2017
	mutex_unlock(&efx->mac_lock);

2018
	efx_start_all(efx);
2019
	netif_device_attach(efx->net_dev);
2020
	return 0;
2021 2022 2023 2024
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2025
	struct efx_nic *efx = netdev_priv(net_dev);
2026 2027 2028 2029
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2030 2031 2032
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2033
		return -EADDRNOTAVAIL;
2034 2035 2036
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2037
	efx_sriov_mac_address_changed(efx);
2038 2039

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2040
	mutex_lock(&efx->mac_lock);
2041
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2042
	mutex_unlock(&efx->mac_lock);
2043 2044 2045 2046

	return 0;
}

2047
/* Context: netif_addr_lock held, BHs disabled. */
2048
static void efx_set_rx_mode(struct net_device *net_dev)
2049
{
2050
	struct efx_nic *efx = netdev_priv(net_dev);
2051

2052 2053 2054
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2055 2056
}

2057
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

2068
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2069 2070
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2071
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2072 2073 2074 2075 2076 2077
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2078
	.ndo_set_rx_mode	= efx_set_rx_mode,
2079
	.ndo_set_features	= efx_set_features,
2080 2081 2082 2083 2084 2085
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2086 2087 2088
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2089
	.ndo_setup_tc		= efx_setup_tc,
2090 2091 2092
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2093 2094
};

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2115 2116 2117 2118 2119 2120 2121
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2122 2123 2124
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2125
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2126

2127 2128
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2129 2130
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2131 2132 2133 2134 2135 2136 2137 2138

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2139 2140 2141 2142 2143 2144
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2145
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2146

2147 2148 2149
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2150
	struct efx_channel *channel;
2151 2152 2153 2154
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2155 2156 2157 2158 2159 2160
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2161
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2162
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2163

2164
	rtnl_lock();
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2179 2180 2181
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2182
	efx_update_name(efx);
2183

2184 2185 2186
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2187 2188 2189 2190
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2191 2192
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2193 2194
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2195 2196
	}

2197
	rtnl_unlock();
2198

B
Ben Hutchings 已提交
2199 2200
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2201 2202
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2203 2204 2205
		goto fail_registered;
	}

2206
	return 0;
B
Ben Hutchings 已提交
2207

2208 2209 2210
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2211
fail_locked:
2212
	efx->state = STATE_UNINIT;
2213
	rtnl_unlock();
2214
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2215
	return rc;
2216 2217 2218 2219 2220 2221 2222
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2223
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2224

2225 2226
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2227 2228 2229 2230 2231

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2232 2233 2234 2235 2236 2237 2238 2239
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2240 2241
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2242
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2243 2244 2245
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2246
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2247
	efx_disable_interrupts(efx);
2248 2249

	mutex_lock(&efx->mac_lock);
2250 2251
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2252
	efx->type->fini(efx);
2253 2254
}

B
Ben Hutchings 已提交
2255 2256 2257 2258 2259
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2260
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2261 2262 2263
{
	int rc;

B
Ben Hutchings 已提交
2264
	EFX_ASSERT_RESET_SERIALISED(efx);
2265

2266
	rc = efx->type->init(efx);
2267
	if (rc) {
2268
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2269
		goto fail;
2270 2271
	}

2272 2273 2274
	if (!ok)
		goto fail;

2275
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2276 2277 2278 2279
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2280 2281
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2282 2283
	}

2284 2285 2286
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2287
	efx_restore_filters(efx);
2288
	efx_sriov_reset(efx);
2289 2290 2291 2292 2293 2294 2295 2296 2297

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2298 2299 2300

	mutex_unlock(&efx->mac_lock);

2301 2302 2303
	return rc;
}

2304 2305
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2306
 *
2307
 * Caller must hold the rtnl_lock.
2308
 */
2309
int efx_reset(struct efx_nic *efx, enum reset_type method)
2310
{
2311 2312
	int rc, rc2;
	bool disabled;
2313

2314 2315
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2316

2317
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2318
	efx_reset_down(efx, method);
2319

2320
	rc = efx->type->reset(efx, method);
2321
	if (rc) {
2322
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2323
		goto out;
2324 2325
	}

2326 2327 2328 2329
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2330 2331 2332 2333 2334 2335 2336

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2337
out:
2338
	/* Leave device stopped if necessary */
2339 2340 2341
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2342 2343 2344 2345 2346
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2347 2348
	}

2349
	if (disabled) {
2350
		dev_close(efx->net_dev);
2351
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2352 2353
		efx->state = STATE_DISABLED;
	} else {
2354
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2355
		netif_device_attach(efx->net_dev);
2356
	}
2357 2358 2359
	return rc;
}

2360 2361 2362 2363 2364
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2365
int efx_try_recovery(struct efx_nic *efx)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2386 2387 2388 2389 2390
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2391
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2402

2403
	if (!pending)
2404 2405
		return;

2406
	rtnl_lock();
2407 2408 2409 2410 2411 2412

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2413
		(void)efx_reset(efx, method);
2414

2415
	rtnl_unlock();
2416 2417 2418 2419 2420 2421
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2422 2423 2424 2425 2426 2427 2428
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2429 2430 2431
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2432
	case RESET_TYPE_RECOVER_OR_ALL:
2433 2434
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2435
	case RESET_TYPE_RECOVER_OR_DISABLE:
2436
		method = type;
2437 2438
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2439 2440
		break;
	default:
2441
		method = efx->type->map_reset_reason(type);
2442 2443 2444
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2445 2446
		break;
	}
2447

2448
	set_bit(method, &efx->reset_pending);
2449 2450 2451 2452 2453 2454 2455
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2456

2457 2458 2459 2460
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2461
	queue_work(reset_workqueue, &efx->reset_work);
2462 2463 2464 2465 2466 2467 2468 2469 2470
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2471
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2472 2473
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2474
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2475 2476
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2477
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2478
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2479
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2480
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2481
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2482 2483
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2484 2485 2486 2487 2488
	{0}			/* end of list */
};

/**************************************************************************
 *
2489
 * Dummy PHY/MAC operations
2490
 *
2491
 * Can be used for some unimplemented operations
2492 2493 2494 2495 2496 2497 2498 2499 2500
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2501 2502

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2503 2504 2505
{
	return false;
}
2506

2507
static const struct efx_phy_operations efx_dummy_phy_operations = {
2508
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2509
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2510
	.poll		 = efx_port_dummy_op_poll,
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2523
static int efx_init_struct(struct efx_nic *efx,
2524 2525
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2526
	int i;
2527 2528 2529

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2530 2531 2532
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2533 2534
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2535
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2536
	efx->pci_dev = pci_dev;
2537
	efx->msg_enable = debug;
2538
	efx->state = STATE_UNINIT;
2539 2540 2541
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2542 2543 2544
	efx->rx_prefix_size = efx->type->rx_prefix_size;
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2545 2546 2547
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2548
	efx->mdio.dev = net_dev;
2549
	INIT_WORK(&efx->mac_work, efx_mac_work);
2550
	init_waitqueue_head(&efx->flush_wq);
2551 2552

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2553 2554 2555
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2556 2557
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2558 2559 2560 2561 2562 2563
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2564 2565 2566 2567
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2568
	if (!efx->workqueue)
2569
		goto fail;
2570

2571
	return 0;
2572 2573 2574 2575

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2576 2577 2578 2579
}

static void efx_fini_struct(struct efx_nic *efx)
{
2580 2581 2582 2583 2584
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2602 2603 2604 2605 2606 2607
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2608
	efx_disable_interrupts(efx);
2609
	efx_nic_fini_interrupt(efx);
2610
	efx_fini_port(efx);
2611
	efx->type->fini(efx);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2630
	efx_disable_interrupts(efx);
2631 2632
	rtnl_unlock();

2633
	efx_sriov_fini(efx);
2634 2635
	efx_unregister_netdev(efx);

2636 2637
	efx_mtd_remove(efx);

2638 2639 2640
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2641
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2642 2643

	efx_fini_struct(efx);
2644
	pci_set_drvdata(pci_dev, NULL);
2645
	free_netdev(efx->net_dev);
2646 2647

	pci_disable_pcie_error_reporting(pci_dev);
2648 2649
};

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2713
	efx_init_napi(efx);
2714

2715
	rc = efx->type->init(efx);
2716
	if (rc) {
2717 2718
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2719
		goto fail3;
2720 2721 2722 2723
	}

	rc = efx_init_port(efx);
	if (rc) {
2724 2725
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2726
		goto fail4;
2727 2728
	}

2729
	rc = efx_nic_init_interrupt(efx);
2730
	if (rc)
2731
		goto fail5;
2732 2733 2734
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2735 2736 2737

	return 0;

2738 2739
 fail6:
	efx_nic_fini_interrupt(efx);
2740
 fail5:
2741 2742
	efx_fini_port(efx);
 fail4:
2743
	efx->type->fini(efx);
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2754
 * theoretically).  It sets up PCI mappings, resets the NIC,
2755 2756 2757 2758 2759
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2760
static int efx_pci_probe(struct pci_dev *pci_dev,
2761
			 const struct pci_device_id *entry)
2762 2763 2764
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2765
	int rc;
2766 2767

	/* Allocate and initialise a struct net_device and struct efx_nic */
2768 2769
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2770 2771
	if (!net_dev)
		return -ENOMEM;
2772 2773 2774
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2775
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2776
			      NETIF_F_RXCSUM);
2777
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2778
		net_dev->features |= NETIF_F_TSO6;
2779 2780
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2781 2782 2783 2784
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2785
	pci_set_drvdata(pci_dev, efx);
2786
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2787
	rc = efx_init_struct(efx, pci_dev, net_dev);
2788 2789 2790
	if (rc)
		goto fail1;

2791
	netif_info(efx, probe, efx->net_dev,
2792
		   "Solarflare NIC detected\n");
2793

2794 2795
	efx_print_product_vpd(efx);

2796 2797 2798 2799 2800
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2801 2802 2803
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2804 2805 2806

	rc = efx_register_netdev(efx);
	if (rc)
2807
		goto fail4;
2808

2809 2810 2811 2812 2813
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2814
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2815

2816
	/* Try to create MTDs, but allow this to fail */
2817
	rtnl_lock();
2818
	rc = efx_mtd_probe(efx);
2819
	rtnl_unlock();
2820 2821 2822 2823
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2824 2825 2826 2827 2828
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2829 2830 2831
	return 0;

 fail4:
2832
	efx_pci_remove_main(efx);
2833 2834 2835 2836 2837
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2838
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2839
	WARN_ON(rc > 0);
2840
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2841 2842 2843 2844
	free_netdev(net_dev);
	return rc;
}

2845 2846 2847 2848
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2849 2850
	rtnl_lock();

2851 2852
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2853

2854
		efx_device_detach_sync(efx);
2855

2856
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2857
		efx_disable_interrupts(efx);
2858
	}
2859

2860 2861
	rtnl_unlock();

2862 2863 2864 2865 2866
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
2867
	int rc;
2868 2869
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2870 2871
	rtnl_lock();

2872
	if (efx->state != STATE_DISABLED) {
2873 2874 2875
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
2876

2877 2878 2879
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2880

2881
		efx_start_all(efx);
2882

2883
		netif_device_attach(efx->net_dev);
2884

2885
		efx->state = STATE_READY;
2886

2887 2888
		efx->type->resume_wol(efx);
	}
2889

2890 2891
	rtnl_unlock();

2892 2893 2894
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2895
	return 0;
2896 2897 2898 2899 2900

fail:
	rtnl_unlock();

	return rc;
2901 2902 2903 2904 2905 2906 2907 2908 2909
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2910
	efx->reset_pending = 0;
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
2937 2938
	rc = efx_pm_thaw(dev);
	return rc;
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2952
static const struct dev_pm_ops efx_pm_ops = {
2953 2954 2955 2956 2957 2958 2959 2960
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2961 2962 2963 2964
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2965 2966
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2983
		efx_disable_interrupts(efx);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3001
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3060
static struct pci_driver efx_pci_driver = {
3061
	.name		= KBUILD_MODNAME,
3062 3063 3064
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3065
	.driver.pm	= &efx_pm_ops,
3066
	.err_handler	= &efx_err_handlers,
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3089 3090 3091 3092
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3093 3094 3095 3096 3097
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3098 3099 3100 3101 3102 3103 3104 3105

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3106 3107
	destroy_workqueue(reset_workqueue);
 err_reset:
3108 3109
	efx_fini_sriov();
 err_sriov:
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3120
	destroy_workqueue(reset_workqueue);
3121
	efx_fini_sriov();
3122 3123 3124 3125 3126 3127 3128
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3129 3130
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3131 3132 3133
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);