efx.c 80.6 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
87 88
};

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

101 102 103 104 105 106 107 108 109
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
110 111
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
112
 *
113
 * This is only used in MSI-X interrupt mode
114
 */
115 116
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
117 118
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
119 120 121 122 123 124 125

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
126 127
 * monitor.
 * On Falcon-based NICs, this will:
128 129
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
130 131
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
132
 */
S
stephen hemminger 已提交
133
static unsigned int efx_monitor_interval = 1 * HZ;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166
 * The default (0) means to assign an interrupt to each core.
167 168 169 170 171
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

172 173
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
174 175
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

176
static unsigned irq_adapt_low_thresh = 8000;
177 178 179 180
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

181
static unsigned irq_adapt_high_thresh = 16000;
182 183 184 185
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

186 187 188 189 190 191 192
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

193 194 195 196 197
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
198

199
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
200
static void efx_soft_disable_interrupts(struct efx_nic *efx);
201
static void efx_remove_channel(struct efx_channel *channel);
202
static void efx_remove_channels(struct efx_nic *efx);
203
static const struct efx_channel_type efx_default_channel_type;
204
static void efx_remove_port(struct efx_nic *efx);
205
static void efx_init_napi_channel(struct efx_channel *channel);
206
static void efx_fini_napi(struct efx_nic *efx);
207
static void efx_fini_napi_channel(struct efx_channel *channel);
208 209 210
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
211 212 213

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
214
		if ((efx->state == STATE_READY) ||	\
215
		    (efx->state == STATE_RECOVERY) ||	\
216
		    (efx->state == STATE_DISABLED))	\
217 218 219
			ASSERT_RTNL();			\
	} while (0)

220 221
static int efx_check_disabled(struct efx_nic *efx)
{
222
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223 224 225 226 227 228 229
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

230 231 232 233 234 235 236 237 238 239 240 241 242
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
243
static int efx_process_channel(struct efx_channel *channel, int budget)
244
{
245
	int spent;
246

247
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
248
		return 0;
249

250
	spent = efx_nic_process_eventq(channel, budget);
251 252 253 254
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

255
		efx_rx_flush_packet(channel);
256
		efx_fast_push_rx_descriptors(rx_queue, true);
257 258
	}

259
	return spent;
260 261 262 263 264 265 266 267 268 269 270
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
271
	struct efx_nic *efx = channel->efx;
272
	int spent;
273

274 275 276
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
277

278
	spent = efx_process_channel(channel, budget);
279

280
	if (spent < budget) {
281
		if (efx_channel_has_rx_queue(channel) &&
282 283 284 285
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
286 287
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
292 293 294
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
295
					efx->type->push_irq_moderation(channel);
296
				}
297 298 299 300 301
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

302 303
		efx_filter_rfs_expire(channel);

304
		/* There is no race here; although napi_disable() will
305
		 * only wait for napi_complete(), this isn't a problem
306
		 * since efx_nic_eventq_read_ack() will have no effect if
307 308
		 * interrupts have already been disabled.
		 */
309
		napi_complete(napi);
310
		efx_nic_eventq_read_ack(channel);
311 312
	}

313
	return spent;
314 315 316 317 318 319 320 321 322
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
323 324 325
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

326
	netif_dbg(efx, probe, efx->net_dev,
327
		  "chan %d create event queue\n", channel->channel);
328

329 330 331 332 333 334
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

335
	return efx_nic_probe_eventq(channel);
336 337 338
}

/* Prepare channel's event queue */
339
static int efx_init_eventq(struct efx_channel *channel)
340
{
341
	struct efx_nic *efx = channel->efx;
342 343 344 345
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

346
	netif_dbg(efx, drv, efx->net_dev,
347
		  "chan %d init event queue\n", channel->channel);
348

349 350
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
351
		efx->type->push_irq_moderation(channel);
352 353 354 355
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
356 357
}

358 359 360 361 362 363
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

364
	/* Make sure the NAPI handler sees the enabled flag set */
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

382 383
static void efx_fini_eventq(struct efx_channel *channel)
{
384 385 386
	if (!channel->eventq_init)
		return;

387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
389

390
	efx_nic_fini_eventq(channel);
391
	channel->eventq_init = false;
392 393 394 395
}

static void efx_remove_eventq(struct efx_channel *channel)
{
396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
398

399
	efx_nic_remove_eventq(channel);
400 401 402 403 404 405 406 407
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

408
/* Allocate and initialise a channel structure. */
409 410 411 412 413 414 415 416
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

417 418 419
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
420

421 422 423
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
424

425 426 427 428 429 430
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
431

432 433 434 435
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
436

437 438 439 440 441 442 443 444 445 446 447 448 449
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
450

451 452 453 454 455 456 457 458
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
459

460 461 462
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
463
			tx_queue->channel = channel;
464 465
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466 467 468
	}

	rx_queue = &channel->rx_queue;
469 470
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471 472 473 474 475 476
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

477 478 479 480 481 482
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

483 484
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
485

486 487 488 489
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

490 491
	rc = efx_probe_eventq(channel);
	if (rc)
492
		goto fail;
493 494 495 496

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
497
			goto fail;
498 499 500 501 502
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
503
			goto fail;
504 505 506 507 508 509
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

510 511
fail:
	efx_remove_channel(channel);
512 513 514
	return rc;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
533

534 535 536 537
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

538 539
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
540 541
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
542 543
}

544 545 546 547 548 549 550 551
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

552 553 554 555 556 557
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

575 576 577 578
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
579
static void efx_start_datapath(struct efx_nic *efx)
580
{
581
	bool old_rx_scatter = efx->rx_scatter;
582 583 584
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
585
	size_t rx_buf_len;
586

587 588 589 590
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
591
	efx->rx_dma_len = (efx->rx_prefix_size +
592 593
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
594
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
595
		      efx->rx_ip_align + efx->rx_dma_len);
596
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
597
		efx->rx_scatter = efx->type->always_rx_scatter;
598 599
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
600
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
601
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
602 603 604
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
605 606 607 608 609 610 611 612
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

613 614 615 616 617 618 619 620 621 622 623
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
624

J
Jon Cooper 已提交
625
	/* RX filters may also have scatter-enabled flags */
626
	if (efx->rx_scatter != old_rx_scatter)
627
		efx->type->filter_update_rx_scatter(efx);
628

629 630 631 632 633 634 635 636 637 638
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

639 640
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
641
		efx_for_each_channel_tx_queue(tx_queue, channel) {
642
			efx_init_tx_queue(tx_queue);
643 644
			atomic_inc(&efx->active_queues);
		}
645

646
		efx_for_each_channel_rx_queue(rx_queue, channel) {
647
			efx_init_rx_queue(rx_queue);
648
			atomic_inc(&efx->active_queues);
649 650 651
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
652
		}
653

654
		WARN_ON(channel->rx_pkt_n_frags);
655 656
	}

657 658
	efx_ptp_start_datapath(efx);

659 660
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
661 662
}

663
static void efx_stop_datapath(struct efx_nic *efx)
664 665 666 667
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
668
	int rc;
669 670 671 672

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

673 674
	efx_ptp_stop_datapath(efx);

675 676 677 678 679 680
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

681
	efx_for_each_channel(channel, efx) {
682 683 684 685 686 687 688 689 690 691
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
692
	}
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
712 713
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
714
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
715 716 717 718 719 720 721 722 723
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

724 725
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
726 727 728

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
729
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
730 731
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
732
	channel->type->post_remove(channel);
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
748
	unsigned i, next_buffer_table = 0;
749
	int rc, rc2;
750 751 752 753

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
776

777
	efx_device_detach_sync(efx);
778
	efx_stop_all(efx);
B
Ben Hutchings 已提交
779
	efx_soft_disable_interrupts(efx);
780

781
	/* Clone channels (where possible) */
782 783
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
784 785 786
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

805 806
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
807 808

	for (i = 0; i < efx->n_channels; i++) {
809 810 811 812 813 814 815
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
816
	}
817

818
out:
819 820 821 822 823 824 825 826 827
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
828

829 830 831 832 833 834 835 836 837 838
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
839 840 841 842 843 844 845 846 847 848 849 850 851 852
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

853
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
854
{
855
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
856 857
}

858 859
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
860
	.post_remove		= efx_channel_dummy_op_void,
861 862 863 864 865 866 867 868 869 870
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

871 872 873 874
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

875 876 877 878 879 880 881 882 883 884
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
885
void efx_link_status_changed(struct efx_nic *efx)
886
{
887 888
	struct efx_link_state *link_state = &efx->link_state;

889 890 891 892 893 894 895
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

896
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
897 898
		efx->n_link_state_changes++;

899
		if (link_state->up)
900 901 902 903 904 905
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
906
	if (link_state->up)
907
		netif_info(efx, link, efx->net_dev,
908
			   "link up at %uMbps %s-duplex (MTU %d)\n",
909
			   link_state->speed, link_state->fd ? "full" : "half",
910
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
911
	else
912
		netif_info(efx, link, efx->net_dev, "link down\n");
913 914
}

B
Ben Hutchings 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

928
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

943 944
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
945 946 947 948 949 950 951 952
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
953
{
B
Ben Hutchings 已提交
954 955
	enum efx_phy_mode phy_mode;
	int rc;
956

B
Ben Hutchings 已提交
957
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
958

B
Ben Hutchings 已提交
959 960
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
961 962 963 964 965
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
966
	rc = efx->type->reconfigure_port(efx);
967

B
Ben Hutchings 已提交
968 969
	if (rc)
		efx->phy_mode = phy_mode;
970

B
Ben Hutchings 已提交
971
	return rc;
972 973 974 975
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
976
int efx_reconfigure_port(struct efx_nic *efx)
977
{
B
Ben Hutchings 已提交
978 979
	int rc;

980 981 982
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
983
	rc = __efx_reconfigure_port(efx);
984
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
985 986

	return rc;
987 988
}

989 990 991
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
992 993 994 995 996
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
997
	if (efx->port_enabled)
998
		efx->type->reconfigure_mac(efx);
999 1000 1001
	mutex_unlock(&efx->mac_lock);
}

1002 1003 1004 1005
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1006
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1007

1008 1009 1010
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1011 1012
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1013
	if (rc)
1014
		return rc;
1015

1016 1017
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1018 1019 1020 1021 1022 1023 1024 1025

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1026
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1027

1028 1029
	mutex_lock(&efx->mac_lock);

1030
	rc = efx->phy_op->init(efx);
1031
	if (rc)
1032
		goto fail1;
1033

1034
	efx->port_initialized = true;
1035

B
Ben Hutchings 已提交
1036 1037
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1038
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1039 1040 1041 1042 1043 1044

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1045
	mutex_unlock(&efx->mac_lock);
1046
	return 0;
1047

1048
fail2:
1049
	efx->phy_op->fini(efx);
1050 1051
fail1:
	mutex_unlock(&efx->mac_lock);
1052
	return rc;
1053 1054 1055 1056
}

static void efx_start_port(struct efx_nic *efx)
{
1057
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1058 1059 1060
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1061
	efx->port_enabled = true;
1062

1063
	/* Ensure MAC ingress/egress is enabled */
1064
	efx->type->reconfigure_mac(efx);
1065

1066 1067 1068
	mutex_unlock(&efx->mac_lock);
}

1069 1070 1071 1072 1073
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1074 1075
static void efx_stop_port(struct efx_nic *efx)
{
1076
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1077

1078 1079
	EFX_ASSERT_RESET_SERIALISED(efx);

1080
	mutex_lock(&efx->mac_lock);
1081
	efx->port_enabled = false;
1082 1083 1084
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1085 1086
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1087 1088 1089 1090

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1091 1092 1093 1094
}

static void efx_fini_port(struct efx_nic *efx)
{
1095
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1096 1097 1098 1099

	if (!efx->port_initialized)
		return;

1100
	efx->phy_op->fini(efx);
1101
	efx->port_initialized = false;
1102

1103
	efx->link_state.up = false;
1104 1105 1106 1107 1108
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1109
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1110

1111
	efx->type->remove_port(efx);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1125
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1126 1127
	int rc;

1128
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1129 1130 1131

	rc = pci_enable_device(pci_dev);
	if (rc) {
1132 1133
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1145
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1146
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1147 1148 1149
			if (rc == 0)
				break;
		}
1150 1151 1152
		dma_mask >>= 1;
	}
	if (rc) {
1153 1154
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1155 1156
		goto fail2;
	}
1157 1158
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1159

1160 1161
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1162
	if (rc) {
1163 1164
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1165 1166 1167
		rc = -EIO;
		goto fail3;
	}
1168
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1169
	if (!efx->membase) {
1170 1171
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1172
			  (unsigned long long)efx->membase_phys, mem_map_size);
1173 1174 1175
		rc = -ENOMEM;
		goto fail4;
	}
1176 1177
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1178 1179
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1180 1181 1182 1183

	return 0;

 fail4:
1184
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1185
 fail3:
1186
	efx->membase_phys = 0;
1187 1188 1189 1190 1191 1192 1193 1194
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1195
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1196 1197 1198 1199 1200 1201 1202

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1203
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1204
		efx->membase_phys = 0;
1205 1206 1207 1208 1209
	}

	pci_disable_device(efx->pci_dev);
}

1210
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1211
{
1212
	cpumask_var_t thread_mask;
1213
	unsigned int count;
1214
	int cpu;
1215

1216 1217 1218 1219 1220 1221 1222 1223
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1235 1236
	}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1248 1249 1250 1251 1252 1253 1254 1255
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1256
static int efx_probe_interrupts(struct efx_nic *efx)
1257
{
1258 1259
	unsigned int extra_channels = 0;
	unsigned int i, j;
1260
	int rc;
1261

1262 1263 1264 1265
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1266
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1267
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1268
		unsigned int n_channels;
1269

1270
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1271 1272
		if (separate_tx_channels)
			n_channels *= 2;
1273
		n_channels += extra_channels;
1274
		n_channels = min(n_channels, efx->max_channels);
1275

B
Ben Hutchings 已提交
1276
		for (i = 0; i < n_channels; i++)
1277
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1278
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1279
		if (rc > 0) {
1280 1281
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1282
				  " available (%d < %u).\n", rc, n_channels);
1283 1284
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1285 1286
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1287
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1288
					     n_channels);
1289 1290 1291
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1292
			efx->n_channels = n_channels;
1293 1294
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1295
			if (separate_tx_channels) {
1296 1297 1298 1299
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1300
			} else {
1301 1302
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1303
			}
1304
			for (i = 0; i < efx->n_channels; i++)
1305 1306
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1307 1308 1309
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1310 1311
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1312 1313 1314 1315 1316
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1317
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1318 1319
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1320 1321
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1322
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1323
		} else {
1324 1325
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1326 1327 1328 1329 1330 1331
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1332
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1333 1334
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1335 1336
		efx->legacy_irq = efx->pci_dev->irq;
	}
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1353
	/* RSS might be usable on VFs even if it is disabled on the PF */
1354
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1355 1356
			   efx->n_rx_channels : efx_vf_size(efx));

1357
	return 0;
1358 1359
}

1360
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1361
{
1362 1363
	struct efx_channel *channel, *end_channel;
	int rc;
1364

1365 1366
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1367 1368
	efx->irq_soft_enabled = true;
	smp_wmb();
1369 1370

	efx_for_each_channel(channel, efx) {
1371 1372 1373 1374 1375
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1376 1377 1378 1379
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1393 1394
}

B
Ben Hutchings 已提交
1395
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1396 1397 1398
{
	struct efx_channel *channel;

1399 1400 1401
	if (efx->state == STATE_DISABLED)
		return;

1402 1403
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1404 1405 1406 1407
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1408 1409 1410 1411 1412 1413 1414
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1415
		if (!channel->type->keep_eventq)
1416
			efx_fini_eventq(channel);
1417
	}
1418 1419 1420

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1421 1422
}

1423
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1424
{
1425 1426
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1427 1428 1429 1430 1431 1432 1433 1434

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1435
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1436 1437

	efx_for_each_channel(channel, efx) {
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1456
		if (channel->type->keep_eventq)
1457
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1458 1459
	}

1460 1461 1462
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1476
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1477 1478
}

1479 1480 1481 1482 1483
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1484
	efx_for_each_channel(channel, efx)
1485 1486 1487 1488 1489 1490 1491 1492
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1493
static void efx_set_channels(struct efx_nic *efx)
1494
{
1495 1496 1497
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1498
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1499
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1500

1501 1502
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1503 1504 1505
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1506 1507 1508 1509 1510
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1511 1512 1513 1514
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1515 1516 1517 1518
}

static int efx_probe_nic(struct efx_nic *efx)
{
1519
	size_t i;
1520 1521
	int rc;

1522
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1523 1524

	/* Carry out hardware-type specific initialisation */
1525
	rc = efx->type->probe(efx);
1526 1527 1528
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1529
	/* Determine the number of channels and queues by trying to hook
1530
	 * in MSI-X interrupts. */
1531 1532
	rc = efx_probe_interrupts(efx);
	if (rc)
1533
		goto fail1;
1534

1535 1536 1537
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1538

1539 1540
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1541
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1542
		efx->rx_indir_table[i] =
1543
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1544

1545
	efx_set_channels(efx);
1546 1547
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1548 1549

	/* Initialise the interrupt moderation settings */
1550 1551
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1552 1553

	return 0;
1554

1555 1556 1557
fail2:
	efx_remove_interrupts(efx);
fail1:
1558 1559
	efx->type->remove(efx);
	return rc;
1560 1561 1562 1563
}

static void efx_remove_nic(struct efx_nic *efx)
{
1564
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1565 1566

	efx_remove_interrupts(efx);
1567
	efx->type->remove(efx);
1568 1569
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1620
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1621 1622 1623 1624 1625
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1626
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1627 1628 1629
		goto fail2;
	}

1630 1631 1632 1633 1634
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1635
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1636

B
Ben Hutchings 已提交
1637 1638 1639 1640
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1641
		goto fail3;
B
Ben Hutchings 已提交
1642 1643
	}

1644 1645 1646 1647
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1648 1649
	return 0;

B
Ben Hutchings 已提交
1650
 fail4:
1651
	efx_remove_filters(efx);
1652 1653 1654 1655 1656 1657 1658 1659
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1660 1661 1662 1663 1664 1665
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1666
 */
1667 1668 1669
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1670
	BUG_ON(efx->state == STATE_DISABLED);
1671 1672 1673

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1674
	if (efx->port_enabled || !netif_running(efx->net_dev))
1675 1676 1677
		return;

	efx_start_port(efx);
1678
	efx_start_datapath(efx);
1679

1680 1681
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1682 1683
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1684 1685 1686 1687 1688

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1689 1690 1691 1692 1693
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1694

1695
	efx->type->start_stats(efx);
1696 1697 1698 1699
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1700 1701
}

1702 1703 1704 1705 1706
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1707 1708 1709 1710 1711 1712 1713 1714
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1715 1716 1717 1718 1719 1720 1721
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1722
	efx->type->stop_stats(efx);
1723 1724
	efx_stop_port(efx);

1725 1726 1727 1728 1729 1730
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1731 1732 1733
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1734 1735 1736 1737
}

static void efx_remove_all(struct efx_nic *efx)
{
1738
	efx_remove_channels(efx);
1739
	efx_remove_filters(efx);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1750
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1751
{
1752 1753
	if (usecs == 0)
		return 0;
1754
	if (usecs * 1000 < quantum_ns)
1755
		return 1; /* never round down to 0 */
1756
	return usecs * 1000 / quantum_ns;
1757 1758
}

1759
/* Set interrupt moderation parameters */
1760 1761 1762
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1763
{
1764
	struct efx_channel *channel;
1765 1766 1767 1768 1769
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1770 1771 1772

	EFX_ASSERT_RESET_SERIALISED(efx);

1773
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1774 1775
		return -EINVAL;

1776 1777 1778
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1779 1780 1781 1782 1783 1784 1785
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1786
	efx->irq_rx_adaptive = rx_adaptive;
1787
	efx->irq_rx_moderation = rx_ticks;
1788
	efx_for_each_channel(channel, efx) {
1789
		if (efx_channel_has_rx_queue(channel))
1790
			channel->irq_moderation = rx_ticks;
1791
		else if (efx_channel_has_tx_queues(channel))
1792 1793
			channel->irq_moderation = tx_ticks;
	}
1794 1795

	return 0;
1796 1797
}

1798 1799 1800
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1801 1802 1803 1804
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1805
	*rx_adaptive = efx->irq_rx_adaptive;
1806 1807 1808
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1809 1810 1811 1812 1813 1814 1815 1816

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1817
		*tx_usecs = DIV_ROUND_UP(
1818
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1819 1820
			efx->timer_quantum_ns,
			1000);
1821 1822
}

1823 1824 1825 1826 1827 1828
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1829
/* Run periodically off the general workqueue */
1830 1831 1832 1833 1834
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1835 1836 1837
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1838
	BUG_ON(efx->type->monitor == NULL);
1839 1840 1841

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1842 1843 1844 1845 1846 1847
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1864
	struct efx_nic *efx = netdev_priv(net_dev);
1865
	struct mii_ioctl_data *data = if_mii(ifr);
1866

1867
	if (cmd == SIOCSHWTSTAMP)
1868 1869 1870
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1871

1872 1873 1874 1875 1876 1877
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1878 1879 1880 1881 1882 1883 1884 1885
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1886 1887 1888 1889 1890 1891 1892 1893 1894
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1895
static void efx_init_napi(struct efx_nic *efx)
1896 1897 1898
{
	struct efx_channel *channel;

1899 1900
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1901 1902 1903 1904 1905 1906 1907
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1908 1909 1910 1911 1912 1913
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1914 1915
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1932
	struct efx_nic *efx = netdev_priv(net_dev);
1933 1934
	struct efx_channel *channel;

1935
	efx_for_each_channel(channel, efx)
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1950
	struct efx_nic *efx = netdev_priv(net_dev);
1951 1952
	int rc;

1953 1954
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1955

1956 1957 1958
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1959 1960
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1961 1962
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1963

1964 1965 1966 1967
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1968
	efx_start_all(efx);
1969
	efx_selftest_async_start(efx);
1970 1971 1972 1973 1974 1975 1976 1977 1978
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1979
	struct efx_nic *efx = netdev_priv(net_dev);
1980

1981 1982
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1983

1984 1985
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1986 1987 1988 1989

	return 0;
}

1990
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1991 1992
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1993
{
1994
	struct efx_nic *efx = netdev_priv(net_dev);
1995

1996
	spin_lock_bh(&efx->stats_lock);
1997
	efx->type->update_stats(efx, NULL, stats);
1998 1999
	spin_unlock_bh(&efx->stats_lock);

2000 2001 2002 2003 2004 2005
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2006
	struct efx_nic *efx = netdev_priv(net_dev);
2007

2008 2009 2010
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2011

2012
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2013 2014 2015 2016 2017 2018
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2019
	struct efx_nic *efx = netdev_priv(net_dev);
2020
	int rc;
2021

2022 2023 2024
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2025 2026 2027
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2028
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2029

2030 2031 2032
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2033
	mutex_lock(&efx->mac_lock);
2034
	net_dev->mtu = new_mtu;
2035
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2036 2037
	mutex_unlock(&efx->mac_lock);

2038
	efx_start_all(efx);
2039
	netif_device_attach(efx->net_dev);
2040
	return 0;
2041 2042 2043 2044
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2045
	struct efx_nic *efx = netdev_priv(net_dev);
2046 2047 2048 2049
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2050 2051 2052
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2053
		return -EADDRNOTAVAIL;
2054 2055 2056
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2057
	efx_sriov_mac_address_changed(efx);
2058 2059

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2060
	mutex_lock(&efx->mac_lock);
2061
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2062
	mutex_unlock(&efx->mac_lock);
2063 2064 2065 2066

	return 0;
}

2067
/* Context: netif_addr_lock held, BHs disabled. */
2068
static void efx_set_rx_mode(struct net_device *net_dev)
2069
{
2070
	struct efx_nic *efx = netdev_priv(net_dev);
2071

2072 2073 2074
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2075 2076
}

2077
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

2088
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2089 2090
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2091
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2092 2093 2094 2095 2096 2097
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2098
	.ndo_set_rx_mode	= efx_set_rx_mode,
2099
	.ndo_set_features	= efx_set_features,
2100 2101 2102 2103 2104 2105
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2106 2107 2108
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2109
	.ndo_setup_tc		= efx_setup_tc,
2110 2111 2112
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2113 2114
};

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2135 2136 2137 2138 2139 2140 2141
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2142 2143 2144
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2145
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2146

2147 2148
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2149 2150
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2151 2152 2153 2154 2155 2156 2157 2158

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2159 2160 2161 2162 2163 2164
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2165
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2166

2167 2168 2169
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2170
	struct efx_channel *channel;
2171 2172 2173 2174
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2175 2176 2177 2178 2179 2180
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2181
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2182
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2183

2184
	rtnl_lock();
2185

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2199 2200 2201
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2202
	efx_update_name(efx);
2203

2204 2205 2206
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2207 2208 2209 2210
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2211 2212
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2213 2214
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2215 2216
	}

2217
	rtnl_unlock();
2218

B
Ben Hutchings 已提交
2219 2220
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2221 2222
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2223 2224 2225
		goto fail_registered;
	}

2226
	return 0;
B
Ben Hutchings 已提交
2227

2228 2229 2230
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2231
fail_locked:
2232
	efx->state = STATE_UNINIT;
2233
	rtnl_unlock();
2234
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2235
	return rc;
2236 2237 2238 2239 2240 2241 2242
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2243
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2244

2245 2246
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2247 2248 2249 2250 2251

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2252 2253 2254 2255 2256 2257 2258 2259
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2260 2261
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2262
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2263 2264 2265
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2266
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2267
	efx_disable_interrupts(efx);
2268 2269

	mutex_lock(&efx->mac_lock);
2270 2271
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2272
	efx->type->fini(efx);
2273 2274
}

B
Ben Hutchings 已提交
2275 2276 2277 2278 2279
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2280
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2281 2282 2283
{
	int rc;

B
Ben Hutchings 已提交
2284
	EFX_ASSERT_RESET_SERIALISED(efx);
2285

2286
	rc = efx->type->init(efx);
2287
	if (rc) {
2288
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2289
		goto fail;
2290 2291
	}

2292 2293 2294
	if (!ok)
		goto fail;

2295
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2296 2297 2298 2299
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2300 2301
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2302 2303
	}

2304 2305 2306
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2307
	efx_restore_filters(efx);
2308
	efx_sriov_reset(efx);
2309 2310 2311 2312 2313 2314 2315 2316 2317

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2318 2319 2320

	mutex_unlock(&efx->mac_lock);

2321 2322 2323
	return rc;
}

2324 2325
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2326
 *
2327
 * Caller must hold the rtnl_lock.
2328
 */
2329
int efx_reset(struct efx_nic *efx, enum reset_type method)
2330
{
2331 2332
	int rc, rc2;
	bool disabled;
2333

2334 2335
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2336

2337
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2338
	efx_reset_down(efx, method);
2339

2340
	rc = efx->type->reset(efx, method);
2341
	if (rc) {
2342
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2343
		goto out;
2344 2345
	}

2346 2347 2348 2349
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2350 2351 2352 2353 2354 2355 2356

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2357
out:
2358
	/* Leave device stopped if necessary */
2359 2360 2361
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2362 2363 2364 2365 2366
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2367 2368
	}

2369
	if (disabled) {
2370
		dev_close(efx->net_dev);
2371
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2372 2373
		efx->state = STATE_DISABLED;
	} else {
2374
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2375
		netif_device_attach(efx->net_dev);
2376
	}
2377 2378 2379
	return rc;
}

2380 2381 2382 2383 2384
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2385
int efx_try_recovery(struct efx_nic *efx)
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2424 2425 2426 2427 2428
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2429
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2430 2431 2432 2433 2434 2435
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2436 2437 2438
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2439 2440 2441 2442
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2443

2444
	if (!pending)
2445 2446
		return;

2447
	rtnl_lock();
2448 2449 2450 2451 2452 2453

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2454
		(void)efx_reset(efx, method);
2455

2456
	rtnl_unlock();
2457 2458 2459 2460 2461 2462
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2463 2464 2465 2466 2467 2468 2469
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2470 2471 2472
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2473
	case RESET_TYPE_RECOVER_OR_ALL:
2474 2475
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2476
	case RESET_TYPE_RECOVER_OR_DISABLE:
2477
	case RESET_TYPE_MC_BIST:
2478
		method = type;
2479 2480
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2481 2482
		break;
	default:
2483
		method = efx->type->map_reset_reason(type);
2484 2485 2486
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2487 2488
		break;
	}
2489

2490
	set_bit(method, &efx->reset_pending);
2491 2492 2493 2494 2495 2496 2497
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2498

2499 2500 2501 2502
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2503
	queue_work(reset_workqueue, &efx->reset_work);
2504 2505 2506 2507 2508 2509 2510 2511 2512
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2513
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2514 2515
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2516
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2517 2518
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2519
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2520
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2521
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2522
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2523
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2524 2525
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2526 2527 2528 2529 2530
	{0}			/* end of list */
};

/**************************************************************************
 *
2531
 * Dummy PHY/MAC operations
2532
 *
2533
 * Can be used for some unimplemented operations
2534 2535 2536 2537 2538 2539 2540 2541 2542
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2543 2544

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2545 2546 2547
{
	return false;
}
2548

2549
static const struct efx_phy_operations efx_dummy_phy_operations = {
2550
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2551
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2552
	.poll		 = efx_port_dummy_op_poll,
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2565
static int efx_init_struct(struct efx_nic *efx,
2566 2567
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2568
	int i;
2569 2570 2571

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2572 2573 2574
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2575 2576
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2577
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2578
	efx->pci_dev = pci_dev;
2579
	efx->msg_enable = debug;
2580
	efx->state = STATE_UNINIT;
2581 2582 2583
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2584
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2585 2586
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2587 2588
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2589 2590
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2591 2592 2593
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2594
	efx->mdio.dev = net_dev;
2595
	INIT_WORK(&efx->mac_work, efx_mac_work);
2596
	init_waitqueue_head(&efx->flush_wq);
2597 2598

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2599 2600 2601
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2602 2603
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2604 2605 2606 2607 2608 2609
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2610 2611 2612 2613
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2614
	if (!efx->workqueue)
2615
		goto fail;
2616

2617
	return 0;
2618 2619 2620 2621

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2622 2623 2624 2625
}

static void efx_fini_struct(struct efx_nic *efx)
{
2626 2627 2628 2629 2630
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2648 2649 2650 2651 2652 2653
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2654
	efx_disable_interrupts(efx);
2655
	efx_nic_fini_interrupt(efx);
2656
	efx_fini_port(efx);
2657
	efx->type->fini(efx);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2676
	efx_disable_interrupts(efx);
2677 2678
	rtnl_unlock();

2679
	efx_sriov_fini(efx);
2680 2681
	efx_unregister_netdev(efx);

2682 2683
	efx_mtd_remove(efx);

2684 2685 2686
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2687
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2688 2689

	efx_fini_struct(efx);
2690
	pci_set_drvdata(pci_dev, NULL);
2691
	free_netdev(efx->net_dev);
2692 2693

	pci_disable_pcie_error_reporting(pci_dev);
2694 2695
};

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2759
	efx_init_napi(efx);
2760

2761
	rc = efx->type->init(efx);
2762
	if (rc) {
2763 2764
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2765
		goto fail3;
2766 2767 2768 2769
	}

	rc = efx_init_port(efx);
	if (rc) {
2770 2771
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2772
		goto fail4;
2773 2774
	}

2775
	rc = efx_nic_init_interrupt(efx);
2776
	if (rc)
2777
		goto fail5;
2778 2779 2780
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2781 2782 2783

	return 0;

2784 2785
 fail6:
	efx_nic_fini_interrupt(efx);
2786
 fail5:
2787 2788
	efx_fini_port(efx);
 fail4:
2789
	efx->type->fini(efx);
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2800
 * theoretically).  It sets up PCI mappings, resets the NIC,
2801 2802 2803 2804 2805
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2806
static int efx_pci_probe(struct pci_dev *pci_dev,
2807
			 const struct pci_device_id *entry)
2808 2809 2810
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2811
	int rc;
2812 2813

	/* Allocate and initialise a struct net_device and struct efx_nic */
2814 2815
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2816 2817
	if (!net_dev)
		return -ENOMEM;
2818 2819 2820
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2821
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2822
			      NETIF_F_RXCSUM);
2823
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2824
		net_dev->features |= NETIF_F_TSO6;
2825 2826
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2827 2828 2829 2830
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2831
	pci_set_drvdata(pci_dev, efx);
2832
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2833
	rc = efx_init_struct(efx, pci_dev, net_dev);
2834 2835 2836
	if (rc)
		goto fail1;

2837
	netif_info(efx, probe, efx->net_dev,
2838
		   "Solarflare NIC detected\n");
2839

2840 2841
	efx_print_product_vpd(efx);

2842 2843 2844 2845 2846
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2847 2848 2849
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2850 2851 2852

	rc = efx_register_netdev(efx);
	if (rc)
2853
		goto fail4;
2854

2855 2856 2857 2858 2859
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2860
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2861

2862
	/* Try to create MTDs, but allow this to fail */
2863
	rtnl_lock();
2864
	rc = efx_mtd_probe(efx);
2865
	rtnl_unlock();
2866 2867 2868 2869
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2870 2871 2872 2873 2874
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2875 2876 2877
	return 0;

 fail4:
2878
	efx_pci_remove_main(efx);
2879 2880 2881 2882 2883
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2884
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2885
	WARN_ON(rc > 0);
2886
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2887 2888 2889 2890
	free_netdev(net_dev);
	return rc;
}

2891 2892 2893 2894
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2895 2896
	rtnl_lock();

2897 2898
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2899

2900
		efx_device_detach_sync(efx);
2901

2902
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2903
		efx_disable_interrupts(efx);
2904
	}
2905

2906 2907
	rtnl_unlock();

2908 2909 2910 2911 2912
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
2913
	int rc;
2914 2915
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2916 2917
	rtnl_lock();

2918
	if (efx->state != STATE_DISABLED) {
2919 2920 2921
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
2922

2923 2924 2925
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2926

2927
		efx_start_all(efx);
2928

2929
		netif_device_attach(efx->net_dev);
2930

2931
		efx->state = STATE_READY;
2932

2933 2934
		efx->type->resume_wol(efx);
	}
2935

2936 2937
	rtnl_unlock();

2938 2939 2940
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2941
	return 0;
2942 2943 2944 2945 2946

fail:
	rtnl_unlock();

	return rc;
2947 2948 2949 2950 2951 2952 2953 2954 2955
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2956
	efx->reset_pending = 0;
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
2983 2984
	rc = efx_pm_thaw(dev);
	return rc;
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2998
static const struct dev_pm_ops efx_pm_ops = {
2999 3000 3001 3002 3003 3004 3005 3006
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3007 3008 3009 3010
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3011 3012
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3029
		efx_disable_interrupts(efx);
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3047
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3106
static struct pci_driver efx_pci_driver = {
3107
	.name		= KBUILD_MODNAME,
3108 3109 3110
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3111
	.driver.pm	= &efx_pm_ops,
3112
	.err_handler	= &efx_err_handlers,
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3135 3136 3137 3138
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3139 3140 3141 3142 3143
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3144 3145 3146 3147 3148 3149 3150 3151

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3152 3153
	destroy_workqueue(reset_workqueue);
 err_reset:
3154 3155
	efx_fini_sriov();
 err_sriov:
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3166
	destroy_workqueue(reset_workqueue);
3167
	efx_fini_sriov();
3168 3169 3170 3171 3172 3173 3174
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3175 3176
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3177 3178 3179
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);