efx.c 87.1 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 83 84 85
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
86
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87 88
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
90 91
};

92 93 94 95 96 97
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

98 99 100 101 102 103
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

104 105 106 107 108 109 110 111 112
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
113 114
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
115
 *
116
 * This is only used in MSI-X interrupt mode
117
 */
118 119
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
120 121
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
122 123 124 125 126 127 128

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
129 130
 * monitor.
 * On Falcon-based NICs, this will:
131 132
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
133 134
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
135
 */
S
stephen hemminger 已提交
136
static unsigned int efx_monitor_interval = 1 * HZ;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169
 * The default (0) means to assign an interrupt to each core.
170 171 172 173 174
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

175 176
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
177 178
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

179
static unsigned irq_adapt_low_thresh = 8000;
180 181 182 183
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

184
static unsigned irq_adapt_high_thresh = 16000;
185 186 187 188
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

189 190 191 192 193 194 195
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

196 197 198 199 200
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
201

202
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
203
static void efx_soft_disable_interrupts(struct efx_nic *efx);
204
static void efx_remove_channel(struct efx_channel *channel);
205
static void efx_remove_channels(struct efx_nic *efx);
206
static const struct efx_channel_type efx_default_channel_type;
207
static void efx_remove_port(struct efx_nic *efx);
208
static void efx_init_napi_channel(struct efx_channel *channel);
209
static void efx_fini_napi(struct efx_nic *efx);
210
static void efx_fini_napi_channel(struct efx_channel *channel);
211 212 213
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
214 215 216

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
217
		if ((efx->state == STATE_READY) ||	\
218
		    (efx->state == STATE_RECOVERY) ||	\
219
		    (efx->state == STATE_DISABLED))	\
220 221 222
			ASSERT_RTNL();			\
	} while (0)

223 224
static int efx_check_disabled(struct efx_nic *efx)
{
225
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 227 228 229 230 231 232
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

233 234 235 236 237 238 239 240 241 242 243 244 245
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
246
static int efx_process_channel(struct efx_channel *channel, int budget)
247
{
248
	int spent;
249

250
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
251
		return 0;
252

253
	spent = efx_nic_process_eventq(channel, budget);
254 255 256 257
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

258
		efx_rx_flush_packet(channel);
259
		efx_fast_push_rx_descriptors(rx_queue, true);
260 261
	}

262
	return spent;
263 264 265 266 267 268 269 270 271 272 273
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
274
	struct efx_nic *efx = channel->efx;
275
	int spent;
276

277 278 279
	if (!efx_channel_lock_napi(channel))
		return budget;

280 281 282
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
283

284
	spent = efx_process_channel(channel, budget);
285

286
	if (spent < budget) {
287
		if (efx_channel_has_rx_queue(channel) &&
288 289 290 291
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
292 293
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
294
					efx->type->push_irq_moderation(channel);
295
				}
296 297
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
298 299 300
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
301
					efx->type->push_irq_moderation(channel);
302
				}
303 304 305 306 307
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

308 309
		efx_filter_rfs_expire(channel);

310
		/* There is no race here; although napi_disable() will
311
		 * only wait for napi_complete(), this isn't a problem
312
		 * since efx_nic_eventq_read_ack() will have no effect if
313 314
		 * interrupts have already been disabled.
		 */
315
		napi_complete(napi);
316
		efx_nic_eventq_read_ack(channel);
317 318
	}

319
	efx_channel_unlock_napi(channel);
320
	return spent;
321 322 323 324 325 326 327 328 329
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
330 331 332
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

333
	netif_dbg(efx, probe, efx->net_dev,
334
		  "chan %d create event queue\n", channel->channel);
335

336 337 338 339 340 341
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

342
	return efx_nic_probe_eventq(channel);
343 344 345
}

/* Prepare channel's event queue */
346
static int efx_init_eventq(struct efx_channel *channel)
347
{
348
	struct efx_nic *efx = channel->efx;
349 350 351 352
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

353
	netif_dbg(efx, drv, efx->net_dev,
354
		  "chan %d init event queue\n", channel->channel);
355

356 357
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
358
		efx->type->push_irq_moderation(channel);
359 360 361 362
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
363 364
}

365
/* Enable event queue processing and NAPI */
366
void efx_start_eventq(struct efx_channel *channel)
367 368 369 370
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

371
	/* Make sure the NAPI handler sees the enabled flag set */
372 373 374
	channel->enabled = true;
	smp_wmb();

375
	efx_channel_enable(channel);
376 377 378 379 380
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
381
void efx_stop_eventq(struct efx_channel *channel)
382 383 384 385 386
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
387 388
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
389 390 391
	channel->enabled = false;
}

392 393
static void efx_fini_eventq(struct efx_channel *channel)
{
394 395 396
	if (!channel->eventq_init)
		return;

397 398
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
399

400
	efx_nic_fini_eventq(channel);
401
	channel->eventq_init = false;
402 403 404 405
}

static void efx_remove_eventq(struct efx_channel *channel)
{
406 407
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
408

409
	efx_nic_remove_eventq(channel);
410 411 412 413 414 415 416 417
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

418
/* Allocate and initialise a channel structure. */
419 420 421 422 423 424 425 426
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

427 428 429
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
430

431 432 433
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
434

435 436 437 438 439 440
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
441

442 443 444 445
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
446

447 448 449 450 451 452 453 454 455 456 457 458 459
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
460

461 462 463 464 465 466 467 468
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
469

470 471 472
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
473
			tx_queue->channel = channel;
474 475
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
476 477 478
	}

	rx_queue = &channel->rx_queue;
479 480
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
481 482 483 484 485 486
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

487 488 489 490 491 492
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

493 494
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
495

496 497 498 499
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

500 501
	rc = efx_probe_eventq(channel);
	if (rc)
502
		goto fail;
503 504 505 506

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
507
			goto fail;
508 509 510 511 512
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
513
			goto fail;
514 515 516 517
	}

	return 0;

518 519
fail:
	efx_remove_channel(channel);
520 521 522
	return rc;
}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
541

542 543 544 545
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

546 547
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
548 549
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
550 551
}

552 553 554 555 556 557 558 559
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

560 561 562 563 564 565
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

583 584 585 586
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
587
static void efx_start_datapath(struct efx_nic *efx)
588
{
589
	bool old_rx_scatter = efx->rx_scatter;
590 591 592
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
593
	size_t rx_buf_len;
594

595 596 597 598
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
599
	efx->rx_dma_len = (efx->rx_prefix_size +
600 601
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
602
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
603
		      efx->rx_ip_align + efx->rx_dma_len);
604
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
605
		efx->rx_scatter = efx->type->always_rx_scatter;
606 607
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
608
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
609
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
610 611 612
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
613 614 615 616 617 618 619 620
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

621 622 623 624 625 626 627 628 629 630 631
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
632

J
Jon Cooper 已提交
633
	/* RX filters may also have scatter-enabled flags */
634
	if (efx->rx_scatter != old_rx_scatter)
635
		efx->type->filter_update_rx_scatter(efx);
636

637 638 639 640 641 642 643 644 645 646
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

647 648
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
649
		efx_for_each_channel_tx_queue(tx_queue, channel) {
650
			efx_init_tx_queue(tx_queue);
651 652
			atomic_inc(&efx->active_queues);
		}
653

654
		efx_for_each_channel_rx_queue(rx_queue, channel) {
655
			efx_init_rx_queue(rx_queue);
656
			atomic_inc(&efx->active_queues);
657 658 659
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
660
		}
661

662
		WARN_ON(channel->rx_pkt_n_frags);
663 664
	}

665 666
	efx_ptp_start_datapath(efx);

667 668
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
669 670
}

671
static void efx_stop_datapath(struct efx_nic *efx)
672 673 674 675
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
676
	int rc;
677 678 679 680

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

681 682
	efx_ptp_stop_datapath(efx);

683 684 685 686 687 688
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

689
	efx_for_each_channel(channel, efx) {
690 691 692 693 694 695 696 697 698 699
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
700
	}
701

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
720 721
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
722
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
723 724 725 726 727 728 729 730 731
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

732 733
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
734 735 736

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
737
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
738 739
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
740
	channel->type->post_remove(channel);
741 742
}

743 744 745 746 747 748 749 750 751 752 753 754 755
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
756
	unsigned i, next_buffer_table = 0;
757
	int rc, rc2;
758 759 760 761

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
784

785
	efx_device_detach_sync(efx);
786
	efx_stop_all(efx);
B
Ben Hutchings 已提交
787
	efx_soft_disable_interrupts(efx);
788

789
	/* Clone channels (where possible) */
790 791
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
792 793 794
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

813 814
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
815 816

	for (i = 0; i < efx->n_channels; i++) {
817 818 819 820 821 822 823
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
824
	}
825

826
out:
827 828 829 830 831 832 833 834 835
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
836

837 838 839 840 841 842 843 844 845 846
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
847 848 849 850 851 852 853 854 855 856 857 858 859 860
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

861
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
862
{
863
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
864 865
}

866 867
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
868
	.post_remove		= efx_channel_dummy_op_void,
869 870 871 872 873 874 875 876 877 878
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

879 880 881 882
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

883 884 885 886 887 888 889 890 891 892
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
893
void efx_link_status_changed(struct efx_nic *efx)
894
{
895 896
	struct efx_link_state *link_state = &efx->link_state;

897 898 899 900 901 902 903
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

904
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
905 906
		efx->n_link_state_changes++;

907
		if (link_state->up)
908 909 910 911 912 913
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
914
	if (link_state->up)
915
		netif_info(efx, link, efx->net_dev,
916
			   "link up at %uMbps %s-duplex (MTU %d)\n",
917
			   link_state->speed, link_state->fd ? "full" : "half",
918
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
919
	else
920
		netif_info(efx, link, efx->net_dev, "link down\n");
921 922
}

B
Ben Hutchings 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

936
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

951 952
static void efx_fini_port(struct efx_nic *efx);

953 954 955 956 957 958 959 960 961 962
/* We assume that efx->type->reconfigure_mac will always try to sync RX
 * filters and therefore needs to read-lock the filter table against freeing
 */
void efx_mac_reconfigure(struct efx_nic *efx)
{
	down_read(&efx->filter_sem);
	efx->type->reconfigure_mac(efx);
	up_read(&efx->filter_sem);
}

B
Ben Hutchings 已提交
963 964 965 966 967 968 969 970
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
971
{
B
Ben Hutchings 已提交
972 973
	enum efx_phy_mode phy_mode;
	int rc;
974

B
Ben Hutchings 已提交
975
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
976

B
Ben Hutchings 已提交
977 978
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
979 980 981 982 983
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
984
	rc = efx->type->reconfigure_port(efx);
985

B
Ben Hutchings 已提交
986 987
	if (rc)
		efx->phy_mode = phy_mode;
988

B
Ben Hutchings 已提交
989
	return rc;
990 991 992 993
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
994
int efx_reconfigure_port(struct efx_nic *efx)
995
{
B
Ben Hutchings 已提交
996 997
	int rc;

998 999 1000
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1001
	rc = __efx_reconfigure_port(efx);
1002
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1003 1004

	return rc;
1005 1006
}

1007 1008 1009
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1010 1011 1012 1013 1014
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1015
	if (efx->port_enabled)
1016
		efx_mac_reconfigure(efx);
1017 1018 1019
	mutex_unlock(&efx->mac_lock);
}

1020 1021 1022 1023
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1024
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1025

1026 1027 1028
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1029 1030
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1031
	if (rc)
1032
		return rc;
1033

1034
	/* Initialise MAC address to permanent address */
1035
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1036 1037 1038 1039 1040 1041 1042 1043

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1044
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1045

1046 1047
	mutex_lock(&efx->mac_lock);

1048
	rc = efx->phy_op->init(efx);
1049
	if (rc)
1050
		goto fail1;
1051

1052
	efx->port_initialized = true;
1053

B
Ben Hutchings 已提交
1054 1055
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1056
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
1057 1058 1059

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1060
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1061 1062
		goto fail2;

1063
	mutex_unlock(&efx->mac_lock);
1064
	return 0;
1065

1066
fail2:
1067
	efx->phy_op->fini(efx);
1068 1069
fail1:
	mutex_unlock(&efx->mac_lock);
1070
	return rc;
1071 1072 1073 1074
}

static void efx_start_port(struct efx_nic *efx)
{
1075
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1076 1077 1078
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1079
	efx->port_enabled = true;
1080

1081
	/* Ensure MAC ingress/egress is enabled */
1082
	efx_mac_reconfigure(efx);
1083

1084 1085 1086
	mutex_unlock(&efx->mac_lock);
}

1087 1088 1089 1090 1091
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1092 1093
static void efx_stop_port(struct efx_nic *efx)
{
1094
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1095

1096 1097
	EFX_ASSERT_RESET_SERIALISED(efx);

1098
	mutex_lock(&efx->mac_lock);
1099
	efx->port_enabled = false;
1100 1101 1102
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1103 1104
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1105 1106 1107 1108

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1109 1110 1111 1112
}

static void efx_fini_port(struct efx_nic *efx)
{
1113
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1114 1115 1116 1117

	if (!efx->port_initialized)
		return;

1118
	efx->phy_op->fini(efx);
1119
	efx->port_initialized = false;
1120

1121
	efx->link_state.up = false;
1122 1123 1124 1125 1126
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1127
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1128

1129
	efx->type->remove_port(efx);
1130 1131 1132 1133 1134 1135 1136 1137
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1209 1210 1211 1212 1213
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1214
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1215
	int rc, bar;
1216

1217
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1218

1219 1220
	bar = efx->type->mem_bar;

1221 1222
	rc = pci_enable_device(pci_dev);
	if (rc) {
1223 1224
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1236
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1237
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1238 1239 1240
			if (rc == 0)
				break;
		}
1241 1242 1243
		dma_mask >>= 1;
	}
	if (rc) {
1244 1245
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1246 1247
		goto fail2;
	}
1248 1249
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1250

1251 1252
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1253
	if (rc) {
1254 1255
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1256 1257 1258
		rc = -EIO;
		goto fail3;
	}
1259
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1260
	if (!efx->membase) {
1261 1262
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1263
			  (unsigned long long)efx->membase_phys, mem_map_size);
1264 1265 1266
		rc = -ENOMEM;
		goto fail4;
	}
1267 1268
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1269 1270
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1271 1272 1273 1274

	return 0;

 fail4:
1275
	pci_release_region(efx->pci_dev, bar);
1276
 fail3:
1277
	efx->membase_phys = 0;
1278 1279 1280 1281 1282 1283 1284 1285
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1286 1287
	int bar;

1288
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1289 1290 1291 1292 1293 1294 1295

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1296 1297
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1298
		efx->membase_phys = 0;
1299 1300 1301 1302 1303
	}

	pci_disable_device(efx->pci_dev);
}

1304 1305 1306 1307 1308 1309 1310 1311 1312
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
}

1313
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1314
{
1315
	cpumask_var_t thread_mask;
1316
	unsigned int count;
1317
	int cpu;
1318

1319 1320 1321 1322 1323 1324 1325 1326
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1338 1339
	}

1340 1341 1342
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1354
	}
1355
#endif
1356 1357 1358 1359 1360 1361 1362

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1363
static int efx_probe_interrupts(struct efx_nic *efx)
1364
{
1365 1366
	unsigned int extra_channels = 0;
	unsigned int i, j;
1367
	int rc;
1368

1369 1370 1371 1372
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1373
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1374
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1375
		unsigned int n_channels;
1376

1377
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1378 1379
		if (separate_tx_channels)
			n_channels *= 2;
1380
		n_channels += extra_channels;
1381
		n_channels = min(n_channels, efx->max_channels);
1382

B
Ben Hutchings 已提交
1383
		for (i = 0; i < n_channels; i++)
1384
			xentries[i].entry = i;
1385 1386 1387 1388 1389 1390 1391 1392
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1393 1394
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1395
				  " available (%d < %u).\n", rc, n_channels);
1396 1397
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1398
			n_channels = rc;
1399 1400
		}

1401
		if (rc > 0) {
B
Ben Hutchings 已提交
1402
			efx->n_channels = n_channels;
1403 1404
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1405
			if (separate_tx_channels) {
1406 1407 1408 1409
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1410
			} else {
1411 1412
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1413
			}
1414
			for (i = 0; i < efx->n_channels; i++)
1415 1416
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1417 1418 1419 1420 1421
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1422
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1423 1424
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1425 1426
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1427
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1428
		} else {
1429 1430
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1431 1432 1433 1434 1435 1436
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1437
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1438 1439
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1440 1441
		efx->legacy_irq = efx->pci_dev->irq;
	}
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1458
	/* RSS might be usable on VFs even if it is disabled on the PF */
1459 1460 1461 1462 1463 1464 1465 1466 1467
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1468

1469
	return 0;
1470 1471
}

1472
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1473
{
1474 1475
	struct efx_channel *channel, *end_channel;
	int rc;
1476

1477 1478
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1479 1480
	efx->irq_soft_enabled = true;
	smp_wmb();
1481 1482

	efx_for_each_channel(channel, efx) {
1483 1484 1485 1486 1487
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1488 1489 1490 1491
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1505 1506
}

B
Ben Hutchings 已提交
1507
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1508 1509 1510
{
	struct efx_channel *channel;

1511 1512 1513
	if (efx->state == STATE_DISABLED)
		return;

1514 1515
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1516 1517 1518 1519
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1520 1521 1522 1523 1524 1525 1526
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1527
		if (!channel->type->keep_eventq)
1528
			efx_fini_eventq(channel);
1529
	}
1530 1531 1532

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1533 1534
}

1535
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1536
{
1537 1538
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1539 1540 1541 1542 1543 1544 1545 1546

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1547
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1548 1549

	efx_for_each_channel(channel, efx) {
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1568
		if (channel->type->keep_eventq)
1569
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1570 1571
	}

1572 1573 1574
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1588
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1589 1590
}

1591 1592 1593 1594 1595
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1596
	efx_for_each_channel(channel, efx)
1597 1598 1599 1600 1601 1602 1603 1604
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1605
static void efx_set_channels(struct efx_nic *efx)
1606
{
1607 1608 1609
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1610
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1611
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1612

1613 1614
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1615 1616 1617
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1618 1619 1620 1621 1622
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1623 1624 1625 1626
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1627 1628 1629 1630 1631 1632
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1633
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1634 1635

	/* Carry out hardware-type specific initialisation */
1636
	rc = efx->type->probe(efx);
1637 1638 1639
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1640
	/* Determine the number of channels and queues by trying to hook
1641
	 * in MSI-X interrupts. */
1642 1643
	rc = efx_probe_interrupts(efx);
	if (rc)
1644
		goto fail1;
1645

1646 1647
	efx_set_channels(efx);

1648 1649 1650
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1651

1652
	if (efx->n_channels > 1)
1653 1654 1655
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1656

1657 1658
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1659 1660

	/* Initialise the interrupt moderation settings */
1661 1662
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1663 1664

	return 0;
1665

1666 1667 1668
fail2:
	efx_remove_interrupts(efx);
fail1:
1669 1670
	efx->type->remove(efx);
	return rc;
1671 1672 1673 1674
}

static void efx_remove_nic(struct efx_nic *efx)
{
1675
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1676 1677

	efx_remove_interrupts(efx);
1678
	efx->type->remove(efx);
1679 1680
}

1681 1682 1683 1684 1685
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);
1686 1687
	init_rwsem(&efx->filter_sem);
	down_write(&efx->filter_sem);
1688 1689
	rc = efx->type->filter_table_probe(efx);
	if (rc)
1690
		goto out_unlock;
1691 1692 1693 1694 1695 1696 1697 1698

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
1699 1700
			rc = -ENOMEM;
			goto out_unlock;
1701 1702 1703
		}
	}
#endif
1704 1705 1706
out_unlock:
	up_write(&efx->filter_sem);
	return rc;
1707 1708 1709 1710 1711 1712 1713
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
1714
	down_write(&efx->filter_sem);
1715
	efx->type->filter_table_remove(efx);
1716
	up_write(&efx->filter_sem);
1717 1718 1719 1720
}

static void efx_restore_filters(struct efx_nic *efx)
{
1721
	down_read(&efx->filter_sem);
1722
	efx->type->filter_table_restore(efx);
1723
	up_read(&efx->filter_sem);
1724 1725
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1738
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1739 1740 1741 1742 1743
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1744
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1745 1746 1747
		goto fail2;
	}

1748 1749 1750 1751 1752
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1753
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1754

1755 1756 1757 1758 1759 1760 1761 1762
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1763 1764 1765 1766
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1767
		goto fail4;
B
Ben Hutchings 已提交
1768 1769
	}

1770 1771
	rc = efx_probe_channels(efx);
	if (rc)
1772
		goto fail5;
1773

1774 1775
	return 0;

1776
 fail5:
1777
	efx_remove_filters(efx);
1778 1779 1780 1781
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1782 1783 1784 1785 1786 1787 1788 1789
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1790 1791 1792 1793 1794 1795
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1796
 */
1797 1798 1799
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1800
	BUG_ON(efx->state == STATE_DISABLED);
1801 1802 1803

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1804 1805
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1806 1807 1808
		return;

	efx_start_port(efx);
1809
	efx_start_datapath(efx);
1810

1811 1812
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1813 1814
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1815 1816 1817 1818 1819

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1820 1821 1822 1823 1824
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1825

1826
	efx->type->start_stats(efx);
1827 1828 1829 1830
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1831 1832
}

1833 1834 1835 1836 1837
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1838 1839 1840 1841 1842 1843 1844 1845
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1846 1847 1848 1849 1850 1851 1852
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1853
	efx->type->stop_stats(efx);
1854 1855
	efx_stop_port(efx);

1856 1857 1858 1859 1860 1861
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1862 1863 1864
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1865 1866 1867 1868
}

static void efx_remove_all(struct efx_nic *efx)
{
1869
	efx_remove_channels(efx);
1870
	efx_remove_filters(efx);
1871 1872 1873
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1884
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1885
{
1886 1887
	if (usecs == 0)
		return 0;
1888
	if (usecs * 1000 < quantum_ns)
1889
		return 1; /* never round down to 0 */
1890
	return usecs * 1000 / quantum_ns;
1891 1892
}

1893
/* Set interrupt moderation parameters */
1894 1895 1896
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1897
{
1898
	struct efx_channel *channel;
1899 1900 1901 1902 1903
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1904 1905 1906

	EFX_ASSERT_RESET_SERIALISED(efx);

1907
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1908 1909
		return -EINVAL;

1910 1911 1912
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1913 1914 1915 1916 1917 1918 1919
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1920
	efx->irq_rx_adaptive = rx_adaptive;
1921
	efx->irq_rx_moderation = rx_ticks;
1922
	efx_for_each_channel(channel, efx) {
1923
		if (efx_channel_has_rx_queue(channel))
1924
			channel->irq_moderation = rx_ticks;
1925
		else if (efx_channel_has_tx_queues(channel))
1926 1927
			channel->irq_moderation = tx_ticks;
	}
1928 1929

	return 0;
1930 1931
}

1932 1933 1934
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1935 1936 1937 1938
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1939
	*rx_adaptive = efx->irq_rx_adaptive;
1940 1941 1942
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1943 1944 1945 1946 1947 1948 1949 1950

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1951
		*tx_usecs = DIV_ROUND_UP(
1952
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1953 1954
			efx->timer_quantum_ns,
			1000);
1955 1956
}

1957 1958 1959 1960 1961 1962
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1963
/* Run periodically off the general workqueue */
1964 1965 1966 1967 1968
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1969 1970 1971
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1972
	BUG_ON(efx->type->monitor == NULL);
1973 1974 1975

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1976 1977 1978 1979 1980 1981
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1998
	struct efx_nic *efx = netdev_priv(net_dev);
1999
	struct mii_ioctl_data *data = if_mii(ifr);
2000

2001
	if (cmd == SIOCSHWTSTAMP)
2002 2003 2004
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
2005

2006 2007 2008 2009 2010 2011
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2012 2013 2014 2015 2016 2017 2018 2019
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2020 2021 2022 2023 2024 2025 2026
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
2027 2028
	napi_hash_add(&channel->napi_str);
	efx_channel_init_lock(channel);
2029 2030
}

2031
static void efx_init_napi(struct efx_nic *efx)
2032 2033 2034
{
	struct efx_channel *channel;

2035 2036
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2037 2038 2039 2040
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
2041
	if (channel->napi_dev) {
2042
		netif_napi_del(&channel->napi_str);
2043 2044
		napi_hash_del(&channel->napi_str);
	}
2045
	channel->napi_dev = NULL;
2046 2047 2048 2049 2050 2051
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2052 2053
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2070
	struct efx_nic *efx = netdev_priv(net_dev);
2071 2072
	struct efx_channel *channel;

2073
	efx_for_each_channel(channel, efx)
2074 2075 2076 2077 2078
		efx_schedule_channel(channel);
}

#endif

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

	if (!efx_channel_lock_poll(channel))
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2110 2111 2112 2113 2114 2115 2116
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
2117
int efx_net_open(struct net_device *net_dev)
2118
{
2119
	struct efx_nic *efx = netdev_priv(net_dev);
2120 2121
	int rc;

2122 2123
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2124

2125 2126 2127
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2128 2129
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2130 2131
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2132

2133 2134 2135 2136
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2137
	efx_start_all(efx);
2138
	efx_selftest_async_start(efx);
2139 2140 2141 2142 2143 2144 2145
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
2146
int efx_net_stop(struct net_device *net_dev)
2147
{
2148
	struct efx_nic *efx = netdev_priv(net_dev);
2149

2150 2151
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2152

2153 2154
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2155 2156 2157 2158

	return 0;
}

2159
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2160 2161
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2162
{
2163
	struct efx_nic *efx = netdev_priv(net_dev);
2164

2165
	spin_lock_bh(&efx->stats_lock);
2166
	efx->type->update_stats(efx, NULL, stats);
2167 2168
	spin_unlock_bh(&efx->stats_lock);

2169 2170 2171 2172 2173 2174
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2175
	struct efx_nic *efx = netdev_priv(net_dev);
2176

2177 2178 2179
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2180

2181
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2182 2183 2184 2185 2186 2187
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2188
	struct efx_nic *efx = netdev_priv(net_dev);
2189
	int rc;
2190

2191 2192 2193
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2194 2195 2196
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2197
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2198

2199 2200 2201
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2202
	mutex_lock(&efx->mac_lock);
2203
	net_dev->mtu = new_mtu;
2204
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2205 2206
	mutex_unlock(&efx->mac_lock);

2207
	efx_start_all(efx);
2208
	netif_device_attach(efx->net_dev);
2209
	return 0;
2210 2211 2212 2213
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2214
	struct efx_nic *efx = netdev_priv(net_dev);
2215
	struct sockaddr *addr = data;
2216
	u8 *new_addr = addr->sa_data;
2217 2218
	u8 old_addr[6];
	int rc;
2219 2220

	if (!is_valid_ether_addr(new_addr)) {
2221 2222 2223
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2224
		return -EADDRNOTAVAIL;
2225 2226
	}

2227 2228
	/* save old address */
	ether_addr_copy(old_addr, net_dev->dev_addr);
2229
	ether_addr_copy(net_dev->dev_addr, new_addr);
2230 2231 2232 2233 2234 2235 2236
	if (efx->type->sriov_mac_address_changed) {
		rc = efx->type->sriov_mac_address_changed(efx);
		if (rc) {
			ether_addr_copy(net_dev->dev_addr, old_addr);
			return rc;
		}
	}
2237 2238

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2239
	mutex_lock(&efx->mac_lock);
2240
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2241
	mutex_unlock(&efx->mac_lock);
2242 2243 2244 2245

	return 0;
}

2246
/* Context: netif_addr_lock held, BHs disabled. */
2247
static void efx_set_rx_mode(struct net_device *net_dev)
2248
{
2249
	struct efx_nic *efx = netdev_priv(net_dev);
2250

2251 2252 2253
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2254 2255
}

2256
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2257 2258 2259 2260 2261
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2262
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2263 2264 2265 2266

	return 0;
}

2267
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2268 2269
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2270
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2271 2272 2273 2274 2275 2276
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2277
	.ndo_set_rx_mode	= efx_set_rx_mode,
2278
	.ndo_set_features	= efx_set_features,
2279
#ifdef CONFIG_SFC_SRIOV
2280 2281 2282 2283
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2284
#endif
S
Stephen Hemminger 已提交
2285 2286 2287
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2288
	.ndo_setup_tc		= efx_setup_tc,
2289 2290 2291
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2292 2293 2294
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2295 2296
};

2297 2298 2299 2300 2301 2302 2303
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2304 2305 2306
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2307
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2308

2309
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2310 2311
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2312 2313 2314 2315 2316 2317 2318 2319

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2320 2321 2322 2323 2324 2325
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2326
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2327

2328 2329 2330
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2331
	struct efx_channel *channel;
2332 2333 2334 2335
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2336 2337
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2338
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2339
	net_dev->ethtool_ops = &efx_ethtool_ops;
2340
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2341

2342
	rtnl_lock();
2343

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2357 2358 2359
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2360
	efx_update_name(efx);
2361

2362 2363 2364
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2365 2366 2367 2368
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2369 2370
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2371 2372
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2373 2374
	}

2375 2376
	efx_associate(efx);

2377
	rtnl_unlock();
2378

B
Ben Hutchings 已提交
2379 2380
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2381 2382
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2383 2384 2385
		goto fail_registered;
	}

2386
	return 0;
B
Ben Hutchings 已提交
2387

2388 2389
fail_registered:
	rtnl_lock();
2390
	efx_dissociate(efx);
2391
	unregister_netdevice(net_dev);
2392
fail_locked:
2393
	efx->state = STATE_UNINIT;
2394
	rtnl_unlock();
2395
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2396
	return rc;
2397 2398 2399 2400 2401 2402 2403
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2404
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2405

2406 2407
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2408 2409 2410 2411 2412

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2413 2414 2415 2416 2417 2418 2419 2420
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2421 2422
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2423
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2424 2425 2426
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2427 2428 2429
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2430
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2431
	efx_disable_interrupts(efx);
2432 2433

	mutex_lock(&efx->mac_lock);
2434 2435
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH)
2436
		efx->phy_op->fini(efx);
2437
	efx->type->fini(efx);
2438 2439
}

B
Ben Hutchings 已提交
2440 2441 2442 2443 2444
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2445
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2446 2447 2448
{
	int rc;

B
Ben Hutchings 已提交
2449
	EFX_ASSERT_RESET_SERIALISED(efx);
2450

2451 2452 2453 2454
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2455
	rc = efx->type->init(efx);
2456
	if (rc) {
2457
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2458
		goto fail;
2459 2460
	}

2461 2462 2463
	if (!ok)
		goto fail;

2464 2465
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH) {
2466 2467 2468
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2469 2470
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2471 2472
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2473 2474
	}

2475 2476 2477
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2478 2479 2480 2481 2482 2483 2484 2485 2486

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

2487
	down_read(&efx->filter_sem);
B
Ben Hutchings 已提交
2488
	efx_restore_filters(efx);
2489
	up_read(&efx->filter_sem);
2490 2491
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2492 2493 2494 2495 2496 2497 2498 2499 2500

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2501 2502 2503

	mutex_unlock(&efx->mac_lock);

2504 2505 2506
	return rc;
}

2507 2508
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2509
 *
2510
 * Caller must hold the rtnl_lock.
2511
 */
2512
int efx_reset(struct efx_nic *efx, enum reset_type method)
2513
{
2514 2515
	int rc, rc2;
	bool disabled;
2516

2517 2518
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2519

2520
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2521
	efx_reset_down(efx, method);
2522

2523
	rc = efx->type->reset(efx, method);
2524
	if (rc) {
2525
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2526
		goto out;
2527 2528
	}

2529 2530 2531
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2532 2533 2534 2535
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2536 2537 2538 2539 2540 2541 2542

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2543
out:
2544
	/* Leave device stopped if necessary */
2545 2546 2547
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2548 2549 2550 2551 2552
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2553 2554
	}

2555
	if (disabled) {
2556
		dev_close(efx->net_dev);
2557
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2558 2559
		efx->state = STATE_DISABLED;
	} else {
2560
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2561
		netif_device_attach(efx->net_dev);
2562
	}
2563 2564 2565
	return rc;
}

2566 2567 2568 2569 2570
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2571
int efx_try_recovery(struct efx_nic *efx)
2572 2573 2574 2575 2576 2577 2578
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2579
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2608 2609 2610 2611 2612
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2613
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2614 2615 2616 2617 2618 2619
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2620 2621 2622
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2623 2624 2625 2626
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2627

2628
	if (!pending)
2629 2630
		return;

2631
	rtnl_lock();
2632 2633 2634 2635 2636 2637

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2638
		(void)efx_reset(efx, method);
2639

2640
	rtnl_unlock();
2641 2642 2643 2644 2645 2646
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2647 2648 2649 2650 2651 2652 2653
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2654 2655 2656
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2657
	case RESET_TYPE_RECOVER_OR_ALL:
2658 2659
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2660
	case RESET_TYPE_RECOVER_OR_DISABLE:
2661
	case RESET_TYPE_DATAPATH:
2662
	case RESET_TYPE_MC_BIST:
2663
	case RESET_TYPE_MCDI_TIMEOUT:
2664
		method = type;
2665 2666
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2667 2668
		break;
	default:
2669
		method = efx->type->map_reset_reason(type);
2670 2671 2672
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2673 2674
		break;
	}
2675

2676
	set_bit(method, &efx->reset_pending);
2677 2678 2679 2680 2681 2682 2683
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2684

2685 2686 2687 2688
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2689
	queue_work(reset_workqueue, &efx->reset_work);
2690 2691 2692 2693 2694 2695 2696 2697 2698
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2699
static const struct pci_device_id efx_pci_table[] = {
2700 2701
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2702
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2703 2704
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2705
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2706
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2707
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2708
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2709
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2710 2711
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2712 2713
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2714 2715
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2716 2717 2718 2719 2720
	{0}			/* end of list */
};

/**************************************************************************
 *
2721
 * Dummy PHY/MAC operations
2722
 *
2723
 * Can be used for some unimplemented operations
2724 2725 2726 2727 2728 2729 2730 2731 2732
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2733 2734

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2735 2736 2737
{
	return false;
}
2738

2739
static const struct efx_phy_operations efx_dummy_phy_operations = {
2740
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2741
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2742
	.poll		 = efx_port_dummy_op_poll,
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2755
static int efx_init_struct(struct efx_nic *efx,
2756 2757
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2758
	int i;
2759 2760

	/* Initialise common structures */
2761 2762
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2763
	spin_lock_init(&efx->biu_lock);
2764 2765 2766
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2767 2768
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2769
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2770
	efx->pci_dev = pci_dev;
2771
	efx->msg_enable = debug;
2772
	efx->state = STATE_UNINIT;
2773 2774 2775
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2776
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2777 2778
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2779 2780
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2781 2782
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2783 2784 2785
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2786
	efx->mdio.dev = net_dev;
2787
	INIT_WORK(&efx->mac_work, efx_mac_work);
2788
	init_waitqueue_head(&efx->flush_wq);
2789 2790

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2791 2792 2793
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2794 2795
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2796 2797 2798 2799 2800 2801
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2802 2803 2804 2805
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2806
	if (!efx->workqueue)
2807
		goto fail;
2808

2809
	return 0;
2810 2811 2812 2813

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2814 2815 2816 2817
}

static void efx_fini_struct(struct efx_nic *efx)
{
2818 2819 2820 2821 2822
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2823 2824
	kfree(efx->vpd_sn);

2825 2826 2827 2828 2829 2830
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2853 2854 2855 2856 2857 2858
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2859
	efx_disable_interrupts(efx);
2860
	efx_nic_fini_interrupt(efx);
2861
	efx_fini_port(efx);
2862
	efx->type->fini(efx);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2880
	efx_dissociate(efx);
2881
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2882
	efx_disable_interrupts(efx);
2883 2884
	rtnl_unlock();

2885 2886 2887
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

2888 2889
	efx_unregister_netdev(efx);

2890 2891
	efx_mtd_remove(efx);

2892 2893 2894
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2895
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2896 2897 2898

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2899 2900

	pci_disable_pcie_error_reporting(pci_dev);
2901 2902
};

2903 2904 2905 2906 2907 2908
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2909
static void efx_probe_vpd_strings(struct efx_nic *efx)
2910 2911 2912 2913
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2914
	int ro_start, ro_size, i, j;
2915 2916 2917 2918 2919 2920 2921 2922 2923

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2924 2925
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2926 2927 2928 2929
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2930 2931 2932
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2973 2974 2975
}


2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2988
	efx_init_napi(efx);
2989

2990
	rc = efx->type->init(efx);
2991
	if (rc) {
2992 2993
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2994
		goto fail3;
2995 2996 2997 2998
	}

	rc = efx_init_port(efx);
	if (rc) {
2999 3000
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
3001
		goto fail4;
3002 3003
	}

3004
	rc = efx_nic_init_interrupt(efx);
3005
	if (rc)
3006
		goto fail5;
3007 3008 3009
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
3010 3011 3012

	return 0;

3013 3014
 fail6:
	efx_nic_fini_interrupt(efx);
3015
 fail5:
3016 3017
	efx_fini_port(efx);
 fail4:
3018
	efx->type->fini(efx);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
3029
 * theoretically).  It sets up PCI mappings, resets the NIC,
3030 3031 3032 3033 3034
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3035
static int efx_pci_probe(struct pci_dev *pci_dev,
3036
			 const struct pci_device_id *entry)
3037 3038 3039
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3040
	int rc;
3041 3042

	/* Allocate and initialise a struct net_device and struct efx_nic */
3043 3044
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3045 3046
	if (!net_dev)
		return -ENOMEM;
3047 3048 3049
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
3050
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3051
			      NETIF_F_RXCSUM);
3052
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
3053
		net_dev->features |= NETIF_F_TSO6;
3054 3055
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3056 3057 3058 3059
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3060
	pci_set_drvdata(pci_dev, efx);
3061
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3062
	rc = efx_init_struct(efx, pci_dev, net_dev);
3063 3064 3065
	if (rc)
		goto fail1;

3066
	netif_info(efx, probe, efx->net_dev,
3067
		   "Solarflare NIC detected\n");
3068

3069 3070
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3071

3072 3073 3074 3075 3076
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3077 3078 3079
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3080 3081 3082

	rc = efx_register_netdev(efx);
	if (rc)
3083
		goto fail4;
3084

3085 3086 3087 3088 3089 3090
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3091

3092
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3093

3094
	/* Try to create MTDs, but allow this to fail */
3095
	rtnl_lock();
3096
	rc = efx_mtd_probe(efx);
3097
	rtnl_unlock();
3098 3099 3100 3101
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3102 3103 3104 3105 3106
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

3107 3108 3109
	return 0;

 fail4:
3110
	efx_pci_remove_main(efx);
3111 3112 3113 3114 3115
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3116
	WARN_ON(rc > 0);
3117
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3118 3119 3120 3121
	free_netdev(net_dev);
	return rc;
}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3142 3143 3144 3145
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3146 3147
	rtnl_lock();

3148 3149
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3150

3151
		efx_device_detach_sync(efx);
3152

3153
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3154
		efx_disable_interrupts(efx);
3155
	}
3156

3157 3158
	rtnl_unlock();

3159 3160 3161 3162 3163
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3164
	int rc;
3165 3166
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3167 3168
	rtnl_lock();

3169
	if (efx->state != STATE_DISABLED) {
3170 3171 3172
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3173

3174 3175 3176
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3177

3178
		efx_start_all(efx);
3179

3180
		netif_device_attach(efx->net_dev);
3181

3182
		efx->state = STATE_READY;
3183

3184 3185
		efx->type->resume_wol(efx);
	}
3186

3187 3188
	rtnl_unlock();

3189 3190 3191
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3192
	return 0;
3193 3194 3195 3196 3197

fail:
	rtnl_unlock();

	return rc;
3198 3199 3200 3201 3202 3203 3204 3205 3206
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3207
	efx->reset_pending = 0;
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3234 3235
	rc = efx_pm_thaw(dev);
	return rc;
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3249
static const struct dev_pm_ops efx_pm_ops = {
3250 3251 3252 3253 3254 3255 3256 3257
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3258 3259 3260 3261
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3262 3263
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3280
		efx_disable_interrupts(efx);
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3297
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3298
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3357
static struct pci_driver efx_pci_driver = {
3358
	.name		= KBUILD_MODNAME,
3359 3360 3361
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3362
	.driver.pm	= &efx_pm_ops,
3363
	.err_handler	= &efx_err_handlers,
3364 3365 3366
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3389
#ifdef CONFIG_SFC_SRIOV
3390 3391 3392
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3393
#endif
3394

3395 3396 3397 3398 3399
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3400 3401 3402 3403 3404 3405 3406 3407

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3408 3409
	destroy_workqueue(reset_workqueue);
 err_reset:
3410
#ifdef CONFIG_SFC_SRIOV
3411 3412
	efx_fini_sriov();
 err_sriov:
3413
#endif
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3424
	destroy_workqueue(reset_workqueue);
3425
#ifdef CONFIG_SFC_SRIOV
3426
	efx_fini_sriov();
3427
#endif
3428 3429 3430 3431 3432 3433 3434
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3435 3436
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3437
MODULE_DESCRIPTION("Solarflare network driver");
3438 3439
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);