efx.c 79.2 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/aer.h>
25
#include <linux/interrupt.h>
26 27
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
28
#include "nic.h"
29
#include "selftest.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79 80 81 82 83 84 85 86 87
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH]      = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH]      = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88 89
};

90 91 92 93 94 95
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

96 97 98 99 100 101 102 103 104
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
105 106
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
107
 *
108
 * This is only used in MSI-X interrupt mode
109
 */
110 111
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
112 113
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
114 115 116 117 118 119 120

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
121 122
 * monitor.
 * On Falcon-based NICs, this will:
123 124
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
125 126
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
127
 */
S
stephen hemminger 已提交
128
static unsigned int efx_monitor_interval = 1 * HZ;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161
 * The default (0) means to assign an interrupt to each core.
162 163 164 165 166
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

167 168
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
169 170
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

171
static unsigned irq_adapt_low_thresh = 8000;
172 173 174 175
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

176
static unsigned irq_adapt_high_thresh = 16000;
177 178 179 180
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

181 182 183 184 185 186 187
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

188 189 190 191 192
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
193

B
Ben Hutchings 已提交
194 195
static void efx_soft_enable_interrupts(struct efx_nic *efx);
static void efx_soft_disable_interrupts(struct efx_nic *efx);
196
static void efx_remove_channel(struct efx_channel *channel);
197
static void efx_remove_channels(struct efx_nic *efx);
198
static const struct efx_channel_type efx_default_channel_type;
199
static void efx_remove_port(struct efx_nic *efx);
200
static void efx_init_napi_channel(struct efx_channel *channel);
201
static void efx_fini_napi(struct efx_nic *efx);
202
static void efx_fini_napi_channel(struct efx_channel *channel);
203 204 205
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
206 207 208

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
209
		if ((efx->state == STATE_READY) ||	\
210
		    (efx->state == STATE_RECOVERY) ||	\
211
		    (efx->state == STATE_DISABLED))	\
212 213 214
			ASSERT_RTNL();			\
	} while (0)

215 216
static int efx_check_disabled(struct efx_nic *efx)
{
217
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 219 220 221 222 223 224
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

225 226 227 228 229 230 231 232 233 234 235 236 237
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
238
static int efx_process_channel(struct efx_channel *channel, int budget)
239
{
240
	int spent;
241

242
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
243
		return 0;
244

245
	spent = efx_nic_process_eventq(channel, budget);
246 247 248 249
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

250
		efx_rx_flush_packet(channel);
251
		efx_fast_push_rx_descriptors(rx_queue);
252 253
	}

254
	return spent;
255 256 257 258 259 260 261 262 263 264 265
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
266
	struct efx_nic *efx = channel->efx;
267
	int spent;
268

269 270 271
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
272

273
	spent = efx_process_channel(channel, budget);
274

275
	if (spent < budget) {
276
		if (efx_channel_has_rx_queue(channel) &&
277 278 279 280
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
281 282
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
283
					efx->type->push_irq_moderation(channel);
284
				}
285 286
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
287 288 289
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
290
					efx->type->push_irq_moderation(channel);
291
				}
292 293 294 295 296
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

297 298
		efx_filter_rfs_expire(channel);

299
		/* There is no race here; although napi_disable() will
300
		 * only wait for napi_complete(), this isn't a problem
301
		 * since efx_nic_eventq_read_ack() will have no effect if
302 303
		 * interrupts have already been disabled.
		 */
304
		napi_complete(napi);
305
		efx_nic_eventq_read_ack(channel);
306 307
	}

308
	return spent;
309 310 311 312 313 314 315 316 317
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
318 319 320
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

321
	netif_dbg(efx, probe, efx->net_dev,
322
		  "chan %d create event queue\n", channel->channel);
323

324 325 326 327 328 329
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

330
	return efx_nic_probe_eventq(channel);
331 332 333
}

/* Prepare channel's event queue */
334
static void efx_init_eventq(struct efx_channel *channel)
335
{
336 337
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
338 339 340

	channel->eventq_read_ptr = 0;

341
	efx_nic_init_eventq(channel);
342
	channel->eventq_init = true;
343 344
}

345 346 347 348 349 350
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

351
	/* Make sure the NAPI handler sees the enabled flag set */
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

369 370
static void efx_fini_eventq(struct efx_channel *channel)
{
371 372 373
	if (!channel->eventq_init)
		return;

374 375
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
376

377
	efx_nic_fini_eventq(channel);
378
	channel->eventq_init = false;
379 380 381 382
}

static void efx_remove_eventq(struct efx_channel *channel)
{
383 384
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
385

386
	efx_nic_remove_eventq(channel);
387 388 389 390 391 392 393 394
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

395
/* Allocate and initialise a channel structure. */
396 397 398 399 400 401 402 403
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

404 405 406
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
407

408 409 410
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
411

412 413 414 415 416 417
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
418

419 420 421 422
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
423

424 425 426 427 428 429 430 431 432 433 434 435 436
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
437

438 439 440 441 442 443 444 445
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
446

447 448 449
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
450
			tx_queue->channel = channel;
451 452
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
453 454 455
	}

	rx_queue = &channel->rx_queue;
456 457
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
458 459 460 461 462 463
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

464 465 466 467 468 469
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

470 471
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
472

473 474 475 476
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

477 478
	rc = efx_probe_eventq(channel);
	if (rc)
479
		goto fail;
480 481 482 483

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
484
			goto fail;
485 486 487 488 489
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
490
			goto fail;
491 492 493 494 495 496
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

497 498
fail:
	efx_remove_channel(channel);
499 500 501
	return rc;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
520

521 522 523 524
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

525 526
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
527 528
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
529 530
}

531 532 533 534 535 536 537 538
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

539 540 541 542 543 544
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

562 563 564 565
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
566
static void efx_start_datapath(struct efx_nic *efx)
567
{
568
	bool old_rx_scatter = efx->rx_scatter;
569 570 571
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
572
	size_t rx_buf_len;
573

574 575 576 577
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
578 579 580
	efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
581
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
582
		      NET_IP_ALIGN + efx->rx_dma_len);
583 584 585 586
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
587
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
588
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
589 590 591
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
592 593 594 595 596 597 598 599
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

600 601 602 603 604 605 606 607 608 609 610
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
611

612 613
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
614
		efx->type->filter_update_rx_scatter(efx);
615

616 617 618 619 620 621 622 623 624 625
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

626 627
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
628 629
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
630

631
		efx_for_each_channel_rx_queue(rx_queue, channel) {
632
			efx_init_rx_queue(rx_queue);
633 634
			efx_nic_generate_fill_event(rx_queue);
		}
635

636
		WARN_ON(channel->rx_pkt_n_frags);
637 638
	}

639 640
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
641 642
}

643
static void efx_stop_datapath(struct efx_nic *efx)
644 645 646 647
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
648
	int rc;
649 650 651 652

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

653 654 655 656 657 658
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

659
	efx_for_each_channel(channel, efx) {
660 661 662 663 664 665 666 667 668 669
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
670
	}
671

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
690 691
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
692
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
693 694 695 696 697 698 699 700 701
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

702 703
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
704 705 706

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
707
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
708 709
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
710
	channel->type->post_remove(channel);
711 712
}

713 714 715 716 717 718 719 720 721 722 723 724 725
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
726
	unsigned i, next_buffer_table = 0;
727 728 729 730 731
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
754

755
	efx_device_detach_sync(efx);
756
	efx_stop_all(efx);
B
Ben Hutchings 已提交
757
	efx_soft_disable_interrupts(efx);
758

759
	/* Clone channels (where possible) */
760 761
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
762 763 764
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

783 784
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
785 786

	for (i = 0; i < efx->n_channels; i++) {
787 788 789 790 791 792 793
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
794
	}
795

796
out:
797 798 799 800 801 802 803 804 805
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
806

B
Ben Hutchings 已提交
807
	efx_soft_enable_interrupts(efx);
808
	efx_start_all(efx);
809
	netif_device_attach(efx->net_dev);
810 811 812 813 814 815 816 817 818 819 820 821 822 823
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

824
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
825
{
826
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
827 828
}

829 830
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
831
	.post_remove		= efx_channel_dummy_op_void,
832 833 834 835 836 837 838 839 840 841
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

842 843 844 845
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

846 847 848 849 850 851 852 853 854 855
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
856
void efx_link_status_changed(struct efx_nic *efx)
857
{
858 859
	struct efx_link_state *link_state = &efx->link_state;

860 861 862 863 864 865 866
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

867
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
868 869
		efx->n_link_state_changes++;

870
		if (link_state->up)
871 872 873 874 875 876
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
877
	if (link_state->up)
878 879 880 881 882
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
883
	else
884
		netif_info(efx, link, efx->net_dev, "link down\n");
885 886
}

B
Ben Hutchings 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

900
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

915 916
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
917 918 919 920 921 922 923 924
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
925
{
B
Ben Hutchings 已提交
926 927
	enum efx_phy_mode phy_mode;
	int rc;
928

B
Ben Hutchings 已提交
929
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
930

931
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
932 933
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
934

B
Ben Hutchings 已提交
935 936
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
937 938 939 940 941
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
942
	rc = efx->type->reconfigure_port(efx);
943

B
Ben Hutchings 已提交
944 945
	if (rc)
		efx->phy_mode = phy_mode;
946

B
Ben Hutchings 已提交
947
	return rc;
948 949 950 951
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
952
int efx_reconfigure_port(struct efx_nic *efx)
953
{
B
Ben Hutchings 已提交
954 955
	int rc;

956 957 958
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
959
	rc = __efx_reconfigure_port(efx);
960
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
961 962

	return rc;
963 964
}

965 966 967
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
968 969 970 971 972
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
973
	if (efx->port_enabled)
974
		efx->type->reconfigure_mac(efx);
975 976 977
	mutex_unlock(&efx->mac_lock);
}

978 979 980 981
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

982
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
983

984 985 986
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

987 988
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
989
	if (rc)
990
		return rc;
991

992 993
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
994 995 996 997 998 999 1000 1001

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1002
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1003

1004 1005
	mutex_lock(&efx->mac_lock);

1006
	rc = efx->phy_op->init(efx);
1007
	if (rc)
1008
		goto fail1;
1009

1010
	efx->port_initialized = true;
1011

B
Ben Hutchings 已提交
1012 1013
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1014
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1015 1016 1017 1018 1019 1020

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1021
	mutex_unlock(&efx->mac_lock);
1022
	return 0;
1023

1024
fail2:
1025
	efx->phy_op->fini(efx);
1026 1027
fail1:
	mutex_unlock(&efx->mac_lock);
1028
	return rc;
1029 1030 1031 1032
}

static void efx_start_port(struct efx_nic *efx)
{
1033
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1034 1035 1036
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1037
	efx->port_enabled = true;
1038 1039 1040

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1041
	efx->type->reconfigure_mac(efx);
1042

1043 1044 1045
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1046
/* Prevent efx_mac_work() and efx_monitor() from working */
1047 1048
static void efx_stop_port(struct efx_nic *efx)
{
1049
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1050 1051

	mutex_lock(&efx->mac_lock);
1052
	efx->port_enabled = false;
1053 1054 1055
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1056 1057
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1058 1059 1060 1061
}

static void efx_fini_port(struct efx_nic *efx)
{
1062
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1063 1064 1065 1066

	if (!efx->port_initialized)
		return;

1067
	efx->phy_op->fini(efx);
1068
	efx->port_initialized = false;
1069

1070
	efx->link_state.up = false;
1071 1072 1073 1074 1075
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1076
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1077

1078
	efx->type->remove_port(efx);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1092
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1093 1094
	int rc;

1095
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1096 1097 1098

	rc = pci_enable_device(pci_dev);
	if (rc) {
1099 1100
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1112 1113
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1114 1115 1116
			if (rc == 0)
				break;
		}
1117 1118 1119
		dma_mask >>= 1;
	}
	if (rc) {
1120 1121
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1122 1123
		goto fail2;
	}
1124 1125
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1126
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1127
	if (rc) {
1128 1129
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1130 1131
		 * but just in case...
		 */
1132 1133
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1134 1135 1136
		goto fail2;
	}

1137 1138
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1139
	if (rc) {
1140 1141
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1142 1143 1144
		rc = -EIO;
		goto fail3;
	}
1145
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1146
	if (!efx->membase) {
1147 1148
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1149
			  (unsigned long long)efx->membase_phys, mem_map_size);
1150 1151 1152
		rc = -ENOMEM;
		goto fail4;
	}
1153 1154
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1155 1156
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1157 1158 1159 1160

	return 0;

 fail4:
1161
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1162
 fail3:
1163
	efx->membase_phys = 0;
1164 1165 1166 1167 1168 1169 1170 1171
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1172
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1173 1174 1175 1176 1177 1178 1179

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1180
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1181
		efx->membase_phys = 0;
1182 1183 1184 1185 1186
	}

	pci_disable_device(efx->pci_dev);
}

1187
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1188
{
1189
	cpumask_var_t thread_mask;
1190
	unsigned int count;
1191
	int cpu;
1192

1193 1194 1195 1196 1197 1198 1199 1200
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1212 1213
	}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1225 1226 1227 1228 1229 1230 1231 1232
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1233
static int efx_probe_interrupts(struct efx_nic *efx)
1234
{
1235 1236
	unsigned int extra_channels = 0;
	unsigned int i, j;
1237
	int rc;
1238

1239 1240 1241 1242
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1243
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1244
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1245
		unsigned int n_channels;
1246

1247
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1248 1249
		if (separate_tx_channels)
			n_channels *= 2;
1250
		n_channels += extra_channels;
1251
		n_channels = min(n_channels, efx->max_channels);
1252

B
Ben Hutchings 已提交
1253
		for (i = 0; i < n_channels; i++)
1254
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1255
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1256
		if (rc > 0) {
1257 1258
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1259
				  " available (%d < %u).\n", rc, n_channels);
1260 1261
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1262 1263
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1264
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1265
					     n_channels);
1266 1267 1268
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1269
			efx->n_channels = n_channels;
1270 1271
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1272
			if (separate_tx_channels) {
1273 1274 1275 1276
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1277
			} else {
1278 1279
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1280
			}
1281
			for (i = 0; i < efx->n_channels; i++)
1282 1283
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1284 1285 1286
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1287 1288
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1289 1290 1291 1292 1293
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1294
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1295 1296
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1297 1298
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1299
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1300
		} else {
1301 1302
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1303 1304 1305 1306 1307 1308
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1309
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1310 1311
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1312 1313
		efx->legacy_irq = efx->pci_dev->irq;
	}
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1330
	/* RSS might be usable on VFs even if it is disabled on the PF */
1331
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1332 1333
			   efx->n_rx_channels : efx_vf_size(efx));

1334
	return 0;
1335 1336
}

B
Ben Hutchings 已提交
1337
static void efx_soft_enable_interrupts(struct efx_nic *efx)
1338 1339 1340
{
	struct efx_channel *channel;

1341 1342
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1343 1344
	efx->irq_soft_enabled = true;
	smp_wmb();
1345 1346

	efx_for_each_channel(channel, efx) {
B
Ben Hutchings 已提交
1347
		if (!channel->type->keep_eventq)
1348
			efx_init_eventq(channel);
1349 1350 1351 1352 1353 1354
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

B
Ben Hutchings 已提交
1355
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1356 1357 1358
{
	struct efx_channel *channel;

1359 1360 1361
	if (efx->state == STATE_DISABLED)
		return;

1362 1363
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1364 1365 1366 1367
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1368 1369 1370 1371 1372 1373 1374
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1375
		if (!channel->type->keep_eventq)
1376
			efx_fini_eventq(channel);
1377 1378 1379
	}
}

B
Ben Hutchings 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static void efx_enable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1391
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_init_eventq(channel);
	}

	efx_soft_enable_interrupts(efx);
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1412
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1413 1414
}

1415 1416 1417 1418 1419
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1420
	efx_for_each_channel(channel, efx)
1421 1422 1423 1424 1425 1426 1427 1428
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1429
static void efx_set_channels(struct efx_nic *efx)
1430
{
1431 1432 1433
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1434
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1435
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1436

1437 1438
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1439 1440 1441
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1442 1443 1444 1445 1446
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1447 1448 1449 1450
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1451 1452 1453 1454
}

static int efx_probe_nic(struct efx_nic *efx)
{
1455
	size_t i;
1456 1457
	int rc;

1458
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1459 1460

	/* Carry out hardware-type specific initialisation */
1461
	rc = efx->type->probe(efx);
1462 1463 1464
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1465
	/* Determine the number of channels and queues by trying to hook
1466
	 * in MSI-X interrupts. */
1467 1468 1469
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1470

1471 1472
	efx->type->dimension_resources(efx);

1473 1474
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1475
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1476
		efx->rx_indir_table[i] =
1477
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1478

1479
	efx_set_channels(efx);
1480 1481
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1482 1483

	/* Initialise the interrupt moderation settings */
1484 1485
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1486 1487

	return 0;
1488 1489 1490 1491

fail:
	efx->type->remove(efx);
	return rc;
1492 1493 1494 1495
}

static void efx_remove_nic(struct efx_nic *efx)
{
1496
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1497 1498

	efx_remove_interrupts(efx);
1499
	efx->type->remove(efx);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1552
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1553 1554 1555 1556 1557
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1558
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1559 1560 1561
		goto fail2;
	}

1562 1563 1564 1565 1566
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1567
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1568

B
Ben Hutchings 已提交
1569 1570 1571 1572
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1573
		goto fail3;
B
Ben Hutchings 已提交
1574 1575
	}

1576 1577 1578 1579
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1580 1581
	return 0;

B
Ben Hutchings 已提交
1582
 fail4:
1583
	efx_remove_filters(efx);
1584 1585 1586 1587 1588 1589 1590 1591
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1592 1593 1594 1595 1596 1597
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1598
 */
1599 1600 1601
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1602
	BUG_ON(efx->state == STATE_DISABLED);
1603 1604 1605

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1606
	if (efx->port_enabled || !netif_running(efx->net_dev))
1607 1608 1609
		return;

	efx_start_port(efx);
1610
	efx_start_datapath(efx);
1611

1612 1613
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1614 1615
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1616 1617 1618 1619 1620

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1621 1622 1623 1624 1625
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1626

1627
	efx->type->start_stats(efx);
1628 1629 1630 1631 1632 1633 1634
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1635
	/* Make sure the hardware monitor and event self-test are stopped */
1636
	cancel_delayed_work_sync(&efx->monitor_work);
1637
	efx_selftest_async_cancel(efx);
1638
	/* Stop scheduled port reconfigurations */
1639
	cancel_work_sync(&efx->mac_work);
1640 1641
}

1642 1643 1644 1645 1646
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1647 1648 1649 1650 1651 1652 1653 1654
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1655
	efx->type->stop_stats(efx);
1656 1657
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1658
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1659 1660
	efx_flush_all(efx);

1661 1662 1663 1664 1665 1666
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1667 1668 1669
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1670 1671 1672 1673
}

static void efx_remove_all(struct efx_nic *efx)
{
1674
	efx_remove_channels(efx);
1675
	efx_remove_filters(efx);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1686
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1687
{
1688 1689
	if (usecs == 0)
		return 0;
1690
	if (usecs * 1000 < quantum_ns)
1691
		return 1; /* never round down to 0 */
1692
	return usecs * 1000 / quantum_ns;
1693 1694
}

1695
/* Set interrupt moderation parameters */
1696 1697 1698
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1699
{
1700
	struct efx_channel *channel;
1701 1702 1703 1704 1705
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1706 1707 1708

	EFX_ASSERT_RESET_SERIALISED(efx);

1709
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1710 1711
		return -EINVAL;

1712 1713 1714
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1715 1716 1717 1718 1719 1720 1721
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1722
	efx->irq_rx_adaptive = rx_adaptive;
1723
	efx->irq_rx_moderation = rx_ticks;
1724
	efx_for_each_channel(channel, efx) {
1725
		if (efx_channel_has_rx_queue(channel))
1726
			channel->irq_moderation = rx_ticks;
1727
		else if (efx_channel_has_tx_queues(channel))
1728 1729
			channel->irq_moderation = tx_ticks;
	}
1730 1731

	return 0;
1732 1733
}

1734 1735 1736
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1737 1738 1739 1740
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1741
	*rx_adaptive = efx->irq_rx_adaptive;
1742 1743 1744
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1745 1746 1747 1748 1749 1750 1751 1752

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1753
		*tx_usecs = DIV_ROUND_UP(
1754
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1755 1756
			efx->timer_quantum_ns,
			1000);
1757 1758
}

1759 1760 1761 1762 1763 1764
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1765
/* Run periodically off the general workqueue */
1766 1767 1768 1769 1770
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1771 1772 1773
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1774
	BUG_ON(efx->type->monitor == NULL);
1775 1776 1777

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1778 1779 1780 1781 1782 1783
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1800
	struct efx_nic *efx = netdev_priv(net_dev);
1801
	struct mii_ioctl_data *data = if_mii(ifr);
1802

1803 1804 1805
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1806 1807 1808 1809 1810 1811
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1812 1813 1814 1815 1816 1817 1818 1819
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1820 1821 1822 1823 1824 1825 1826 1827 1828
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1829
static void efx_init_napi(struct efx_nic *efx)
1830 1831 1832
{
	struct efx_channel *channel;

1833 1834
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1835 1836 1837 1838 1839 1840 1841
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1842 1843 1844 1845 1846 1847
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1848 1849
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1866
	struct efx_nic *efx = netdev_priv(net_dev);
1867 1868
	struct efx_channel *channel;

1869
	efx_for_each_channel(channel, efx)
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1884
	struct efx_nic *efx = netdev_priv(net_dev);
1885 1886
	int rc;

1887 1888
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1889

1890 1891 1892
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1893 1894
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1895 1896
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1897

1898 1899 1900 1901
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1902
	efx_start_all(efx);
1903
	efx_selftest_async_start(efx);
1904 1905 1906 1907 1908 1909 1910 1911 1912
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1913
	struct efx_nic *efx = netdev_priv(net_dev);
1914

1915 1916
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1917

1918 1919
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1920 1921 1922 1923

	return 0;
}

1924
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1925 1926
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1927
{
1928
	struct efx_nic *efx = netdev_priv(net_dev);
1929 1930
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1931
	spin_lock_bh(&efx->stats_lock);
1932

1933
	efx->type->update_stats(efx);
1934 1935 1936 1937 1938

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1939
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1957 1958
	spin_unlock_bh(&efx->stats_lock);

1959 1960 1961 1962 1963 1964
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1965
	struct efx_nic *efx = netdev_priv(net_dev);
1966

1967 1968 1969
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1970

1971
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1972 1973 1974 1975 1976 1977
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1978
	struct efx_nic *efx = netdev_priv(net_dev);
1979
	int rc;
1980

1981 1982 1983
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1984 1985 1986
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

1987
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1988

1989 1990 1991
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
1992
	mutex_lock(&efx->mac_lock);
1993
	net_dev->mtu = new_mtu;
1994
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1995 1996
	mutex_unlock(&efx->mac_lock);

1997
	efx_start_all(efx);
1998
	netif_device_attach(efx->net_dev);
1999
	return 0;
2000 2001 2002 2003
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2004
	struct efx_nic *efx = netdev_priv(net_dev);
2005 2006 2007 2008
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2009 2010 2011
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2012
		return -EADDRNOTAVAIL;
2013 2014 2015
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2016
	efx_sriov_mac_address_changed(efx);
2017 2018

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2019
	mutex_lock(&efx->mac_lock);
2020
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2021
	mutex_unlock(&efx->mac_lock);
2022 2023 2024 2025

	return 0;
}

2026
/* Context: netif_addr_lock held, BHs disabled. */
2027
static void efx_set_rx_mode(struct net_device *net_dev)
2028
{
2029
	struct efx_nic *efx = netdev_priv(net_dev);
2030
	struct netdev_hw_addr *ha;
2031 2032 2033 2034
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2035
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2036 2037

	/* Build multicast hash table */
2038
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2039 2040 2041
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2042 2043
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2044
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2045
			__set_bit_le(bit, mc_hash);
2046 2047
		}

2048 2049 2050 2051
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2052
		__set_bit_le(0xff, mc_hash);
2053
	}
2054

2055 2056 2057
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2058 2059
}

2060
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2071 2072 2073
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2074
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2075 2076 2077 2078 2079 2080
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2081
	.ndo_set_rx_mode	= efx_set_rx_mode,
2082
	.ndo_set_features	= efx_set_features,
2083 2084 2085 2086 2087 2088
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2089 2090 2091
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2092
	.ndo_setup_tc		= efx_setup_tc,
2093 2094 2095
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2096 2097
};

2098 2099 2100 2101 2102 2103 2104
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2105 2106 2107
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2108
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2109

2110 2111 2112
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2113 2114 2115 2116 2117 2118 2119 2120

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2121 2122 2123 2124 2125 2126
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2127
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2128

2129 2130 2131
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2132
	struct efx_channel *channel;
2133 2134 2135 2136
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2137
	net_dev->netdev_ops = &efx_netdev_ops;
2138
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2139
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2140

2141
	rtnl_lock();
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2156 2157 2158
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2159
	efx_update_name(efx);
2160

2161 2162 2163
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2164 2165 2166 2167
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2168 2169
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2170 2171
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2172 2173
	}

2174
	rtnl_unlock();
2175

B
Ben Hutchings 已提交
2176 2177
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2178 2179
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2180 2181 2182
		goto fail_registered;
	}

2183
	return 0;
B
Ben Hutchings 已提交
2184

2185 2186 2187
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2188
fail_locked:
2189
	efx->state = STATE_UNINIT;
2190
	rtnl_unlock();
2191
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2192
	return rc;
2193 2194 2195 2196 2197 2198 2199
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2200
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2201

2202 2203
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2204 2205 2206 2207 2208

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2209 2210 2211 2212 2213 2214 2215 2216
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2217 2218
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2219
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2220 2221 2222
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2223
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2224
	efx_disable_interrupts(efx);
2225 2226

	mutex_lock(&efx->mac_lock);
2227 2228
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2229
	efx->type->fini(efx);
2230 2231
}

B
Ben Hutchings 已提交
2232 2233 2234 2235 2236
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2237
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2238 2239 2240
{
	int rc;

B
Ben Hutchings 已提交
2241
	EFX_ASSERT_RESET_SERIALISED(efx);
2242

2243
	rc = efx->type->init(efx);
2244
	if (rc) {
2245
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2246
		goto fail;
2247 2248
	}

2249 2250 2251
	if (!ok)
		goto fail;

2252
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2253 2254 2255 2256
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2257 2258
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2259 2260
	}

2261
	efx->type->reconfigure_mac(efx);
2262

B
Ben Hutchings 已提交
2263
	efx_enable_interrupts(efx);
B
Ben Hutchings 已提交
2264
	efx_restore_filters(efx);
2265
	efx_sriov_reset(efx);
2266 2267 2268 2269 2270 2271 2272 2273 2274

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2275 2276 2277

	mutex_unlock(&efx->mac_lock);

2278 2279 2280
	return rc;
}

2281 2282
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2283
 *
2284
 * Caller must hold the rtnl_lock.
2285
 */
2286
int efx_reset(struct efx_nic *efx, enum reset_type method)
2287
{
2288 2289
	int rc, rc2;
	bool disabled;
2290

2291 2292
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2293

2294
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2295
	efx_reset_down(efx, method);
2296

2297
	rc = efx->type->reset(efx, method);
2298
	if (rc) {
2299
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2300
		goto out;
2301 2302
	}

2303 2304 2305 2306
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2307 2308 2309 2310 2311 2312 2313

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2314
out:
2315
	/* Leave device stopped if necessary */
2316 2317 2318
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2319 2320 2321 2322 2323
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2324 2325
	}

2326
	if (disabled) {
2327
		dev_close(efx->net_dev);
2328
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2329 2330
		efx->state = STATE_DISABLED;
	} else {
2331
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2332
		netif_device_attach(efx->net_dev);
2333
	}
2334 2335 2336
	return rc;
}

2337 2338 2339 2340 2341
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2342
int efx_try_recovery(struct efx_nic *efx)
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2363 2364 2365 2366 2367
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2368
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2379

2380
	if (!pending)
2381 2382
		return;

2383
	rtnl_lock();
2384 2385 2386 2387 2388 2389

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2390
		(void)efx_reset(efx, method);
2391

2392
	rtnl_unlock();
2393 2394 2395 2396 2397 2398
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2399 2400 2401 2402 2403 2404 2405
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2406 2407 2408
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2409
	case RESET_TYPE_RECOVER_OR_ALL:
2410 2411
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2412
	case RESET_TYPE_RECOVER_OR_DISABLE:
2413
		method = type;
2414 2415
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2416 2417
		break;
	default:
2418
		method = efx->type->map_reset_reason(type);
2419 2420 2421
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2422 2423
		break;
	}
2424

2425
	set_bit(method, &efx->reset_pending);
2426 2427 2428 2429 2430 2431 2432
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2433

2434 2435 2436 2437
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2438
	queue_work(reset_workqueue, &efx->reset_work);
2439 2440 2441 2442 2443 2444 2445 2446 2447
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2448
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2449 2450
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2451
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2452 2453
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2454
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2455
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2456
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2457
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2458
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2459 2460 2461 2462 2463
	{0}			/* end of list */
};

/**************************************************************************
 *
2464
 * Dummy PHY/MAC operations
2465
 *
2466
 * Can be used for some unimplemented operations
2467 2468 2469 2470 2471 2472 2473 2474 2475
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2476 2477

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2478 2479 2480
{
	return false;
}
2481

2482
static const struct efx_phy_operations efx_dummy_phy_operations = {
2483
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2484
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2485
	.poll		 = efx_port_dummy_op_poll,
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2498
static int efx_init_struct(struct efx_nic *efx,
2499 2500
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2501
	int i;
2502 2503 2504

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2505 2506 2507
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2508 2509
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2510
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2511
	efx->pci_dev = pci_dev;
2512
	efx->msg_enable = debug;
2513
	efx->state = STATE_UNINIT;
2514 2515 2516 2517 2518 2519
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2520
	efx->mdio.dev = net_dev;
2521
	INIT_WORK(&efx->mac_work, efx_mac_work);
2522
	init_waitqueue_head(&efx->flush_wq);
2523 2524

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2525 2526 2527
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2528 2529
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2530 2531 2532 2533 2534 2535
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2536 2537 2538 2539
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2540
	if (!efx->workqueue)
2541
		goto fail;
2542

2543
	return 0;
2544 2545 2546 2547

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2548 2549 2550 2551
}

static void efx_fini_struct(struct efx_nic *efx)
{
2552 2553 2554 2555 2556
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2574 2575 2576 2577 2578 2579
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2580
	efx_disable_interrupts(efx);
2581
	efx_nic_fini_interrupt(efx);
2582
	efx_fini_port(efx);
2583
	efx->type->fini(efx);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2602
	efx_disable_interrupts(efx);
2603 2604
	rtnl_unlock();

2605
	efx_sriov_fini(efx);
2606 2607
	efx_unregister_netdev(efx);

2608 2609
	efx_mtd_remove(efx);

2610 2611 2612
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2613
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2614 2615

	efx_fini_struct(efx);
2616
	pci_set_drvdata(pci_dev, NULL);
2617
	free_netdev(efx->net_dev);
2618 2619

	pci_disable_pcie_error_reporting(pci_dev);
2620 2621
};

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2685
	efx_init_napi(efx);
2686

2687
	rc = efx->type->init(efx);
2688
	if (rc) {
2689 2690
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2691
		goto fail3;
2692 2693 2694 2695
	}

	rc = efx_init_port(efx);
	if (rc) {
2696 2697
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2698
		goto fail4;
2699 2700
	}

2701
	rc = efx_nic_init_interrupt(efx);
2702
	if (rc)
2703
		goto fail5;
B
Ben Hutchings 已提交
2704
	efx_enable_interrupts(efx);
2705 2706 2707

	return 0;

2708
 fail5:
2709 2710
	efx_fini_port(efx);
 fail4:
2711
	efx->type->fini(efx);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2722
 * theoretically).  It sets up PCI mappings, resets the NIC,
2723 2724 2725 2726 2727
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2728
static int efx_pci_probe(struct pci_dev *pci_dev,
2729
			 const struct pci_device_id *entry)
2730 2731 2732
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2733
	int rc;
2734 2735

	/* Allocate and initialise a struct net_device and struct efx_nic */
2736 2737
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2738 2739
	if (!net_dev)
		return -ENOMEM;
2740 2741 2742
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2743
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2744
			      NETIF_F_RXCSUM);
2745
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2746
		net_dev->features |= NETIF_F_TSO6;
2747 2748
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2749 2750 2751 2752
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2753
	pci_set_drvdata(pci_dev, efx);
2754
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2755
	rc = efx_init_struct(efx, pci_dev, net_dev);
2756 2757 2758
	if (rc)
		goto fail1;

2759
	netif_info(efx, probe, efx->net_dev,
2760
		   "Solarflare NIC detected\n");
2761

2762 2763
	efx_print_product_vpd(efx);

2764 2765 2766 2767 2768
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2769 2770 2771
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2772 2773 2774

	rc = efx_register_netdev(efx);
	if (rc)
2775
		goto fail4;
2776

2777 2778 2779 2780 2781
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2782
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2783

2784
	/* Try to create MTDs, but allow this to fail */
2785
	rtnl_lock();
2786
	rc = efx_mtd_probe(efx);
2787
	rtnl_unlock();
2788 2789 2790 2791
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2792 2793 2794 2795 2796
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2797 2798 2799
	return 0;

 fail4:
2800
	efx_pci_remove_main(efx);
2801 2802 2803 2804 2805
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2806
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2807
	WARN_ON(rc > 0);
2808
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2809 2810 2811 2812
	free_netdev(net_dev);
	return rc;
}

2813 2814 2815 2816
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2817 2818
	rtnl_lock();

2819 2820
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2821

2822
		efx_device_detach_sync(efx);
2823

2824
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2825
		efx_disable_interrupts(efx);
2826
	}
2827

2828 2829
	rtnl_unlock();

2830 2831 2832 2833 2834 2835 2836
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2837 2838
	rtnl_lock();

2839
	if (efx->state != STATE_DISABLED) {
B
Ben Hutchings 已提交
2840
		efx_enable_interrupts(efx);
2841

2842 2843 2844
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2845

2846
		efx_start_all(efx);
2847

2848
		netif_device_attach(efx->net_dev);
2849

2850
		efx->state = STATE_READY;
2851

2852 2853
		efx->type->resume_wol(efx);
	}
2854

2855 2856
	rtnl_unlock();

2857 2858 2859
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2870
	efx->reset_pending = 0;
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2912
static const struct dev_pm_ops efx_pm_ops = {
2913 2914 2915 2916 2917 2918 2919 2920
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2921 2922 2923 2924
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2925 2926
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2943
		efx_disable_interrupts(efx);
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2961
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3020
static struct pci_driver efx_pci_driver = {
3021
	.name		= KBUILD_MODNAME,
3022 3023 3024
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3025
	.driver.pm	= &efx_pm_ops,
3026
	.err_handler	= &efx_err_handlers,
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3049 3050 3051 3052
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3053 3054 3055 3056 3057
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3058 3059 3060 3061 3062 3063 3064 3065

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3066 3067
	destroy_workqueue(reset_workqueue);
 err_reset:
3068 3069
	efx_fini_sriov();
 err_sriov:
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3080
	destroy_workqueue(reset_workqueue);
3081
	efx_fini_sriov();
3082 3083 3084 3085 3086 3087 3088
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3089 3090
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3091 3092 3093
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);