efx.c 78.3 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82 83 84 85 86
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH]      = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH]      = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
87 88
};

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100 101 102 103
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
104 105
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
106
 *
107
 * This is only used in MSI-X interrupt mode
108
 */
109 110
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
111 112
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
113 114 115 116 117 118 119

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
120 121
 * monitor.
 * On Falcon-based NICs, this will:
122 123
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
124 125
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
126
 */
S
stephen hemminger 已提交
127
static unsigned int efx_monitor_interval = 1 * HZ;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
160
 * The default (0) means to assign an interrupt to each core.
161 162 163 164 165
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

166 167
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
168 169
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

170
static unsigned irq_adapt_low_thresh = 8000;
171 172 173 174
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

175
static unsigned irq_adapt_high_thresh = 16000;
176 177 178 179
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

180 181 182 183 184 185 186
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

187 188 189 190 191
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
192

B
Ben Hutchings 已提交
193 194
static void efx_soft_enable_interrupts(struct efx_nic *efx);
static void efx_soft_disable_interrupts(struct efx_nic *efx);
195
static void efx_remove_channel(struct efx_channel *channel);
196
static void efx_remove_channels(struct efx_nic *efx);
197
static const struct efx_channel_type efx_default_channel_type;
198
static void efx_remove_port(struct efx_nic *efx);
199
static void efx_init_napi_channel(struct efx_channel *channel);
200
static void efx_fini_napi(struct efx_nic *efx);
201
static void efx_fini_napi_channel(struct efx_channel *channel);
202 203 204
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
205 206 207

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
208
		if ((efx->state == STATE_READY) ||	\
209
		    (efx->state == STATE_RECOVERY) ||	\
210
		    (efx->state == STATE_DISABLED))	\
211 212 213
			ASSERT_RTNL();			\
	} while (0)

214 215
static int efx_check_disabled(struct efx_nic *efx)
{
216
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
217 218 219 220 221 222 223
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

224 225 226 227 228 229 230 231 232 233 234 235 236
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
237
static int efx_process_channel(struct efx_channel *channel, int budget)
238
{
239
	int spent;
240

241
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
242
		return 0;
243

244
	spent = efx_nic_process_eventq(channel, budget);
245 246 247 248
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

249
		efx_rx_flush_packet(channel);
250
		efx_fast_push_rx_descriptors(rx_queue);
251 252
	}

253
	return spent;
254 255 256 257 258 259 260 261 262 263 264
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
265
	struct efx_nic *efx = channel->efx;
266
	int spent;
267

268 269 270
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
271

272
	spent = efx_process_channel(channel, budget);
273

274
	if (spent < budget) {
275
		if (efx_channel_has_rx_queue(channel) &&
276 277 278 279
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
280 281
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
282
					efx->type->push_irq_moderation(channel);
283
				}
284 285
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
286 287 288
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
289
					efx->type->push_irq_moderation(channel);
290
				}
291 292 293 294 295
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

296 297
		efx_filter_rfs_expire(channel);

298
		/* There is no race here; although napi_disable() will
299
		 * only wait for napi_complete(), this isn't a problem
300
		 * since efx_nic_eventq_read_ack() will have no effect if
301 302
		 * interrupts have already been disabled.
		 */
303
		napi_complete(napi);
304
		efx_nic_eventq_read_ack(channel);
305 306
	}

307
	return spent;
308 309 310 311 312 313 314 315 316
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
317 318 319
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

320
	netif_dbg(efx, probe, efx->net_dev,
321
		  "chan %d create event queue\n", channel->channel);
322

323 324 325 326 327 328
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

329
	return efx_nic_probe_eventq(channel);
330 331 332
}

/* Prepare channel's event queue */
333
static void efx_init_eventq(struct efx_channel *channel)
334
{
335 336
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
337 338 339

	channel->eventq_read_ptr = 0;

340
	efx_nic_init_eventq(channel);
341
	channel->eventq_init = true;
342 343
}

344 345 346 347 348 349
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

350
	/* Make sure the NAPI handler sees the enabled flag set */
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

368 369
static void efx_fini_eventq(struct efx_channel *channel)
{
370 371 372
	if (!channel->eventq_init)
		return;

373 374
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
375

376
	efx_nic_fini_eventq(channel);
377
	channel->eventq_init = false;
378 379 380 381
}

static void efx_remove_eventq(struct efx_channel *channel)
{
382 383
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
384

385
	efx_nic_remove_eventq(channel);
386 387 388 389 390 391 392 393
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

394
/* Allocate and initialise a channel structure. */
395 396 397 398 399 400 401 402
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

403 404 405
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
406

407 408 409
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
410

411 412 413 414 415 416
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
417

418 419 420 421
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
422

423 424 425 426 427 428 429 430 431 432 433 434 435
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
436

437 438 439 440 441 442 443 444
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
445

446 447 448
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
449
			tx_queue->channel = channel;
450 451
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
452 453 454
	}

	rx_queue = &channel->rx_queue;
455 456
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
457 458 459 460 461 462
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

463 464 465 466 467 468
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

469 470
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
471

472 473 474 475
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

476 477
	rc = efx_probe_eventq(channel);
	if (rc)
478
		goto fail;
479 480 481 482

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
483
			goto fail;
484 485 486 487 488
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
489
			goto fail;
490 491 492 493 494 495
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

496 497
fail:
	efx_remove_channel(channel);
498 499 500
	return rc;
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
519

520 521 522 523
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

524 525
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
526 527
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
528 529
}

530 531 532 533 534 535 536 537
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

538 539 540 541 542 543
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

561 562 563 564
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
565
static void efx_start_datapath(struct efx_nic *efx)
566
{
567
	bool old_rx_scatter = efx->rx_scatter;
568 569 570
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
571
	size_t rx_buf_len;
572

573 574 575 576
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
577 578 579
	efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
580
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
581
		      NET_IP_ALIGN + efx->rx_dma_len);
582 583 584 585
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
586
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
587
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
588 589 590
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
591 592 593 594 595 596 597 598
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

599 600 601 602 603 604 605 606 607 608 609
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
610

611 612
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
613
		efx->type->filter_update_rx_scatter(efx);
614

615 616 617 618 619 620 621 622 623 624
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

625 626
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
627 628
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
629

630
		efx_for_each_channel_rx_queue(rx_queue, channel) {
631
			efx_init_rx_queue(rx_queue);
632 633
			efx_nic_generate_fill_event(rx_queue);
		}
634

635
		WARN_ON(channel->rx_pkt_n_frags);
636 637
	}

638 639
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
640 641
}

642
static void efx_stop_datapath(struct efx_nic *efx)
643 644 645 646
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
647
	int rc;
648 649 650 651

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

652 653 654 655 656 657
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

658
	efx_for_each_channel(channel, efx) {
659 660 661 662 663 664 665 666 667 668
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
669
	}
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
689 690
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
691
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
692 693 694 695 696 697 698 699 700
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

701 702
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
703 704 705

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
706
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
707 708
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
709
	channel->type->post_remove(channel);
710 711
}

712 713 714 715 716 717 718 719 720 721 722 723 724
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
725
	unsigned i, next_buffer_table = 0;
726 727 728 729 730
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
753

754
	efx_device_detach_sync(efx);
755
	efx_stop_all(efx);
B
Ben Hutchings 已提交
756
	efx_soft_disable_interrupts(efx);
757

758
	/* Clone channels (where possible) */
759 760
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
761 762 763
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

782 783
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
784 785

	for (i = 0; i < efx->n_channels; i++) {
786 787 788 789 790 791 792
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
793
	}
794

795
out:
796 797 798 799 800 801 802 803 804
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
805

B
Ben Hutchings 已提交
806
	efx_soft_enable_interrupts(efx);
807
	efx_start_all(efx);
808
	netif_device_attach(efx->net_dev);
809 810 811 812 813 814 815 816 817 818 819 820 821 822
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

823
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
824
{
825
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
826 827
}

828 829
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
830
	.post_remove		= efx_channel_dummy_op_void,
831 832 833 834 835 836 837 838 839 840
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

841 842 843 844
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

845 846 847 848 849 850 851 852 853 854
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
855
void efx_link_status_changed(struct efx_nic *efx)
856
{
857 858
	struct efx_link_state *link_state = &efx->link_state;

859 860 861 862 863 864 865
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

866
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
867 868
		efx->n_link_state_changes++;

869
		if (link_state->up)
870 871 872 873 874 875
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
876
	if (link_state->up)
877
		netif_info(efx, link, efx->net_dev,
878
			   "link up at %uMbps %s-duplex (MTU %d)\n",
879
			   link_state->speed, link_state->fd ? "full" : "half",
880
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
881
	else
882
		netif_info(efx, link, efx->net_dev, "link down\n");
883 884
}

B
Ben Hutchings 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

898
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

913 914
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
915 916 917 918 919 920 921 922
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
923
{
B
Ben Hutchings 已提交
924 925
	enum efx_phy_mode phy_mode;
	int rc;
926

B
Ben Hutchings 已提交
927
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
928

B
Ben Hutchings 已提交
929 930
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
931 932 933 934 935
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
936
	rc = efx->type->reconfigure_port(efx);
937

B
Ben Hutchings 已提交
938 939
	if (rc)
		efx->phy_mode = phy_mode;
940

B
Ben Hutchings 已提交
941
	return rc;
942 943 944 945
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
946
int efx_reconfigure_port(struct efx_nic *efx)
947
{
B
Ben Hutchings 已提交
948 949
	int rc;

950 951 952
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
953
	rc = __efx_reconfigure_port(efx);
954
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
955 956

	return rc;
957 958
}

959 960 961
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
962 963 964 965 966
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
967
	if (efx->port_enabled)
968
		efx->type->reconfigure_mac(efx);
969 970 971
	mutex_unlock(&efx->mac_lock);
}

972 973 974 975
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

976
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
977

978 979 980
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

981 982
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
983
	if (rc)
984
		return rc;
985

986 987
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
988 989 990 991 992 993 994 995

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

996
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
997

998 999
	mutex_lock(&efx->mac_lock);

1000
	rc = efx->phy_op->init(efx);
1001
	if (rc)
1002
		goto fail1;
1003

1004
	efx->port_initialized = true;
1005

B
Ben Hutchings 已提交
1006 1007
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1008
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1009 1010 1011 1012 1013 1014

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1015
	mutex_unlock(&efx->mac_lock);
1016
	return 0;
1017

1018
fail2:
1019
	efx->phy_op->fini(efx);
1020 1021
fail1:
	mutex_unlock(&efx->mac_lock);
1022
	return rc;
1023 1024 1025 1026
}

static void efx_start_port(struct efx_nic *efx)
{
1027
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1028 1029 1030
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1031
	efx->port_enabled = true;
1032 1033 1034

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1035
	efx->type->reconfigure_mac(efx);
1036

1037 1038 1039
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1040
/* Prevent efx_mac_work() and efx_monitor() from working */
1041 1042
static void efx_stop_port(struct efx_nic *efx)
{
1043
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1044 1045

	mutex_lock(&efx->mac_lock);
1046
	efx->port_enabled = false;
1047 1048 1049
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1050 1051
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1052 1053 1054 1055
}

static void efx_fini_port(struct efx_nic *efx)
{
1056
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1057 1058 1059 1060

	if (!efx->port_initialized)
		return;

1061
	efx->phy_op->fini(efx);
1062
	efx->port_initialized = false;
1063

1064
	efx->link_state.up = false;
1065 1066 1067 1068 1069
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1070
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1071

1072
	efx->type->remove_port(efx);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1086
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1087 1088
	int rc;

1089
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1090 1091 1092

	rc = pci_enable_device(pci_dev);
	if (rc) {
1093 1094
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1106 1107
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1108 1109 1110
			if (rc == 0)
				break;
		}
1111 1112 1113
		dma_mask >>= 1;
	}
	if (rc) {
1114 1115
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1116 1117
		goto fail2;
	}
1118 1119
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1120
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1121
	if (rc) {
1122 1123
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1124 1125
		 * but just in case...
		 */
1126 1127
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1128 1129 1130
		goto fail2;
	}

1131 1132
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1133
	if (rc) {
1134 1135
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1136 1137 1138
		rc = -EIO;
		goto fail3;
	}
1139
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1140
	if (!efx->membase) {
1141 1142
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1143
			  (unsigned long long)efx->membase_phys, mem_map_size);
1144 1145 1146
		rc = -ENOMEM;
		goto fail4;
	}
1147 1148
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1149 1150
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1151 1152 1153 1154

	return 0;

 fail4:
1155
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1156
 fail3:
1157
	efx->membase_phys = 0;
1158 1159 1160 1161 1162 1163 1164 1165
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1166
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1167 1168 1169 1170 1171 1172 1173

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1174
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1175
		efx->membase_phys = 0;
1176 1177 1178 1179 1180
	}

	pci_disable_device(efx->pci_dev);
}

1181
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1182
{
1183
	cpumask_var_t thread_mask;
1184
	unsigned int count;
1185
	int cpu;
1186

1187 1188 1189 1190 1191 1192 1193 1194
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1206 1207
	}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1219 1220 1221 1222 1223 1224 1225 1226
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1227
static int efx_probe_interrupts(struct efx_nic *efx)
1228
{
1229 1230
	unsigned int extra_channels = 0;
	unsigned int i, j;
1231
	int rc;
1232

1233 1234 1235 1236
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1237
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1238
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1239
		unsigned int n_channels;
1240

1241
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1242 1243
		if (separate_tx_channels)
			n_channels *= 2;
1244
		n_channels += extra_channels;
1245
		n_channels = min(n_channels, efx->max_channels);
1246

B
Ben Hutchings 已提交
1247
		for (i = 0; i < n_channels; i++)
1248
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1249
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1250
		if (rc > 0) {
1251 1252
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1253
				  " available (%d < %u).\n", rc, n_channels);
1254 1255
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1256 1257
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1258
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1259
					     n_channels);
1260 1261 1262
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1263
			efx->n_channels = n_channels;
1264 1265
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1266
			if (separate_tx_channels) {
1267 1268 1269 1270
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1271
			} else {
1272 1273
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1274
			}
1275
			for (i = 0; i < efx->n_channels; i++)
1276 1277
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1278 1279 1280
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1281 1282
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1283 1284 1285 1286 1287
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1288
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1289 1290
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1291 1292
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1293
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1294
		} else {
1295 1296
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1297 1298 1299 1300 1301 1302
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1303
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1304 1305
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1306 1307
		efx->legacy_irq = efx->pci_dev->irq;
	}
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1324
	/* RSS might be usable on VFs even if it is disabled on the PF */
1325
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1326 1327
			   efx->n_rx_channels : efx_vf_size(efx));

1328
	return 0;
1329 1330
}

B
Ben Hutchings 已提交
1331
static void efx_soft_enable_interrupts(struct efx_nic *efx)
1332 1333 1334
{
	struct efx_channel *channel;

1335 1336
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1337 1338
	efx->irq_soft_enabled = true;
	smp_wmb();
1339 1340

	efx_for_each_channel(channel, efx) {
B
Ben Hutchings 已提交
1341
		if (!channel->type->keep_eventq)
1342
			efx_init_eventq(channel);
1343 1344 1345 1346 1347 1348
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

B
Ben Hutchings 已提交
1349
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1350 1351 1352
{
	struct efx_channel *channel;

1353 1354 1355
	if (efx->state == STATE_DISABLED)
		return;

1356 1357
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1358 1359 1360 1361
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1362 1363 1364 1365 1366 1367 1368
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1369
		if (!channel->type->keep_eventq)
1370
			efx_fini_eventq(channel);
1371 1372 1373
	}
}

B
Ben Hutchings 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static void efx_enable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1385
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_init_eventq(channel);
	}

	efx_soft_enable_interrupts(efx);
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1406
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1407 1408
}

1409 1410 1411 1412 1413
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1414
	efx_for_each_channel(channel, efx)
1415 1416 1417 1418 1419 1420 1421 1422
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1423
static void efx_set_channels(struct efx_nic *efx)
1424
{
1425 1426 1427
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1428
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1429
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1430

1431 1432
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1433 1434 1435
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1436 1437 1438 1439 1440
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1441 1442 1443 1444
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1445 1446 1447 1448
}

static int efx_probe_nic(struct efx_nic *efx)
{
1449
	size_t i;
1450 1451
	int rc;

1452
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1453 1454

	/* Carry out hardware-type specific initialisation */
1455
	rc = efx->type->probe(efx);
1456 1457 1458
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1459
	/* Determine the number of channels and queues by trying to hook
1460
	 * in MSI-X interrupts. */
1461 1462 1463
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1464

1465 1466
	efx->type->dimension_resources(efx);

1467 1468
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1469
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1470
		efx->rx_indir_table[i] =
1471
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1472

1473
	efx_set_channels(efx);
1474 1475
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1476 1477

	/* Initialise the interrupt moderation settings */
1478 1479
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1480 1481

	return 0;
1482 1483 1484 1485

fail:
	efx->type->remove(efx);
	return rc;
1486 1487 1488 1489
}

static void efx_remove_nic(struct efx_nic *efx)
{
1490
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1491 1492

	efx_remove_interrupts(efx);
1493
	efx->type->remove(efx);
1494 1495
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1546
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1547 1548 1549 1550 1551
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1552
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1553 1554 1555
		goto fail2;
	}

1556 1557 1558 1559 1560
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1561
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1562

B
Ben Hutchings 已提交
1563 1564 1565 1566
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1567
		goto fail3;
B
Ben Hutchings 已提交
1568 1569
	}

1570 1571 1572 1573
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1574 1575
	return 0;

B
Ben Hutchings 已提交
1576
 fail4:
1577
	efx_remove_filters(efx);
1578 1579 1580 1581 1582 1583 1584 1585
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1586 1587 1588 1589 1590 1591
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1592
 */
1593 1594 1595
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1596
	BUG_ON(efx->state == STATE_DISABLED);
1597 1598 1599

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1600
	if (efx->port_enabled || !netif_running(efx->net_dev))
1601 1602 1603
		return;

	efx_start_port(efx);
1604
	efx_start_datapath(efx);
1605

1606 1607
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1608 1609
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1610 1611 1612 1613 1614

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1615 1616 1617 1618 1619
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1620

1621
	efx->type->start_stats(efx);
1622 1623 1624 1625 1626 1627 1628
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1629
	/* Make sure the hardware monitor and event self-test are stopped */
1630
	cancel_delayed_work_sync(&efx->monitor_work);
1631
	efx_selftest_async_cancel(efx);
1632
	/* Stop scheduled port reconfigurations */
1633
	cancel_work_sync(&efx->mac_work);
1634 1635
}

1636 1637 1638 1639 1640
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1641 1642 1643 1644 1645 1646 1647 1648
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1649
	efx->type->stop_stats(efx);
1650 1651
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1652
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1653 1654
	efx_flush_all(efx);

1655 1656 1657 1658 1659 1660
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1661 1662 1663
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1664 1665 1666 1667
}

static void efx_remove_all(struct efx_nic *efx)
{
1668
	efx_remove_channels(efx);
1669
	efx_remove_filters(efx);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1680
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1681
{
1682 1683
	if (usecs == 0)
		return 0;
1684
	if (usecs * 1000 < quantum_ns)
1685
		return 1; /* never round down to 0 */
1686
	return usecs * 1000 / quantum_ns;
1687 1688
}

1689
/* Set interrupt moderation parameters */
1690 1691 1692
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1693
{
1694
	struct efx_channel *channel;
1695 1696 1697 1698 1699
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1700 1701 1702

	EFX_ASSERT_RESET_SERIALISED(efx);

1703
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1704 1705
		return -EINVAL;

1706 1707 1708
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1709 1710 1711 1712 1713 1714 1715
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1716
	efx->irq_rx_adaptive = rx_adaptive;
1717
	efx->irq_rx_moderation = rx_ticks;
1718
	efx_for_each_channel(channel, efx) {
1719
		if (efx_channel_has_rx_queue(channel))
1720
			channel->irq_moderation = rx_ticks;
1721
		else if (efx_channel_has_tx_queues(channel))
1722 1723
			channel->irq_moderation = tx_ticks;
	}
1724 1725

	return 0;
1726 1727
}

1728 1729 1730
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1731 1732 1733 1734
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1735
	*rx_adaptive = efx->irq_rx_adaptive;
1736 1737 1738
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1739 1740 1741 1742 1743 1744 1745 1746

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1747
		*tx_usecs = DIV_ROUND_UP(
1748
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1749 1750
			efx->timer_quantum_ns,
			1000);
1751 1752
}

1753 1754 1755 1756 1757 1758
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1759
/* Run periodically off the general workqueue */
1760 1761 1762 1763 1764
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1765 1766 1767
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1768
	BUG_ON(efx->type->monitor == NULL);
1769 1770 1771

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1772 1773 1774 1775 1776 1777
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1794
	struct efx_nic *efx = netdev_priv(net_dev);
1795
	struct mii_ioctl_data *data = if_mii(ifr);
1796

1797 1798 1799
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1800 1801 1802 1803 1804 1805
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1806 1807 1808 1809 1810 1811 1812 1813
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1814 1815 1816 1817 1818 1819 1820 1821 1822
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1823
static void efx_init_napi(struct efx_nic *efx)
1824 1825 1826
{
	struct efx_channel *channel;

1827 1828
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1829 1830 1831 1832 1833 1834 1835
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1836 1837 1838 1839 1840 1841
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1842 1843
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1860
	struct efx_nic *efx = netdev_priv(net_dev);
1861 1862
	struct efx_channel *channel;

1863
	efx_for_each_channel(channel, efx)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1878
	struct efx_nic *efx = netdev_priv(net_dev);
1879 1880
	int rc;

1881 1882
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1883

1884 1885 1886
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1887 1888
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1889 1890
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1891

1892 1893 1894 1895
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1896
	efx_start_all(efx);
1897
	efx_selftest_async_start(efx);
1898 1899 1900 1901 1902 1903 1904 1905 1906
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1907
	struct efx_nic *efx = netdev_priv(net_dev);
1908

1909 1910
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1911

1912 1913
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1914 1915 1916 1917

	return 0;
}

1918
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1919 1920
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1921
{
1922
	struct efx_nic *efx = netdev_priv(net_dev);
1923 1924
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1925
	spin_lock_bh(&efx->stats_lock);
1926

1927
	efx->type->update_stats(efx);
1928 1929 1930 1931 1932

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1933
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1951 1952
	spin_unlock_bh(&efx->stats_lock);

1953 1954 1955 1956 1957 1958
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1959
	struct efx_nic *efx = netdev_priv(net_dev);
1960

1961 1962 1963
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1964

1965
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1966 1967 1968 1969 1970 1971
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1972
	struct efx_nic *efx = netdev_priv(net_dev);
1973
	int rc;
1974

1975 1976 1977
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1978 1979 1980
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

1981
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1982

1983 1984 1985
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
1986
	mutex_lock(&efx->mac_lock);
1987
	net_dev->mtu = new_mtu;
1988
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1989 1990
	mutex_unlock(&efx->mac_lock);

1991
	efx_start_all(efx);
1992
	netif_device_attach(efx->net_dev);
1993
	return 0;
1994 1995 1996 1997
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1998
	struct efx_nic *efx = netdev_priv(net_dev);
1999 2000 2001 2002
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2003 2004 2005
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2006
		return -EADDRNOTAVAIL;
2007 2008 2009
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2010
	efx_sriov_mac_address_changed(efx);
2011 2012

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2013
	mutex_lock(&efx->mac_lock);
2014
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2015
	mutex_unlock(&efx->mac_lock);
2016 2017 2018 2019

	return 0;
}

2020
/* Context: netif_addr_lock held, BHs disabled. */
2021
static void efx_set_rx_mode(struct net_device *net_dev)
2022
{
2023
	struct efx_nic *efx = netdev_priv(net_dev);
2024

2025 2026 2027
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2028 2029
}

2030
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2041 2042 2043
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2044
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2045 2046 2047 2048 2049 2050
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2051
	.ndo_set_rx_mode	= efx_set_rx_mode,
2052
	.ndo_set_features	= efx_set_features,
2053 2054 2055 2056 2057 2058
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2059 2060 2061
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2062
	.ndo_setup_tc		= efx_setup_tc,
2063 2064 2065
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2066 2067
};

2068 2069 2070 2071 2072 2073 2074
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2075 2076 2077
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2078
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2079

2080 2081 2082
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2083 2084 2085 2086 2087 2088 2089 2090

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2091 2092 2093 2094 2095 2096
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2097
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2098

2099 2100 2101
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2102
	struct efx_channel *channel;
2103 2104 2105 2106
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2107
	net_dev->netdev_ops = &efx_netdev_ops;
2108
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2109
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2110

2111
	rtnl_lock();
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2126 2127 2128
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2129
	efx_update_name(efx);
2130

2131 2132 2133
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2134 2135 2136 2137
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2138 2139
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2140 2141
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2142 2143
	}

2144
	rtnl_unlock();
2145

B
Ben Hutchings 已提交
2146 2147
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2148 2149
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2150 2151 2152
		goto fail_registered;
	}

2153
	return 0;
B
Ben Hutchings 已提交
2154

2155 2156 2157
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2158
fail_locked:
2159
	efx->state = STATE_UNINIT;
2160
	rtnl_unlock();
2161
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2162
	return rc;
2163 2164 2165 2166 2167 2168 2169
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2170
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2171

2172 2173
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2174 2175 2176 2177 2178

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2179 2180 2181 2182 2183 2184 2185 2186
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2187 2188
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2189
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2190 2191 2192
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2193
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2194
	efx_disable_interrupts(efx);
2195 2196

	mutex_lock(&efx->mac_lock);
2197 2198
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2199
	efx->type->fini(efx);
2200 2201
}

B
Ben Hutchings 已提交
2202 2203 2204 2205 2206
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2207
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2208 2209 2210
{
	int rc;

B
Ben Hutchings 已提交
2211
	EFX_ASSERT_RESET_SERIALISED(efx);
2212

2213
	rc = efx->type->init(efx);
2214
	if (rc) {
2215
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2216
		goto fail;
2217 2218
	}

2219 2220 2221
	if (!ok)
		goto fail;

2222
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2223 2224 2225 2226
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2227 2228
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2229 2230
	}

2231
	efx->type->reconfigure_mac(efx);
2232

B
Ben Hutchings 已提交
2233
	efx_enable_interrupts(efx);
B
Ben Hutchings 已提交
2234
	efx_restore_filters(efx);
2235
	efx_sriov_reset(efx);
2236 2237 2238 2239 2240 2241 2242 2243 2244

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2245 2246 2247

	mutex_unlock(&efx->mac_lock);

2248 2249 2250
	return rc;
}

2251 2252
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2253
 *
2254
 * Caller must hold the rtnl_lock.
2255
 */
2256
int efx_reset(struct efx_nic *efx, enum reset_type method)
2257
{
2258 2259
	int rc, rc2;
	bool disabled;
2260

2261 2262
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2263

2264
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2265
	efx_reset_down(efx, method);
2266

2267
	rc = efx->type->reset(efx, method);
2268
	if (rc) {
2269
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2270
		goto out;
2271 2272
	}

2273 2274 2275 2276
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2277 2278 2279 2280 2281 2282 2283

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2284
out:
2285
	/* Leave device stopped if necessary */
2286 2287 2288
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2289 2290 2291 2292 2293
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2294 2295
	}

2296
	if (disabled) {
2297
		dev_close(efx->net_dev);
2298
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2299 2300
		efx->state = STATE_DISABLED;
	} else {
2301
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2302
		netif_device_attach(efx->net_dev);
2303
	}
2304 2305 2306
	return rc;
}

2307 2308 2309 2310 2311
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2312
int efx_try_recovery(struct efx_nic *efx)
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2333 2334 2335 2336 2337
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2338
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2349

2350
	if (!pending)
2351 2352
		return;

2353
	rtnl_lock();
2354 2355 2356 2357 2358 2359

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2360
		(void)efx_reset(efx, method);
2361

2362
	rtnl_unlock();
2363 2364 2365 2366 2367 2368
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2369 2370 2371 2372 2373 2374 2375
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2376 2377 2378
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2379
	case RESET_TYPE_RECOVER_OR_ALL:
2380 2381
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2382
	case RESET_TYPE_RECOVER_OR_DISABLE:
2383
		method = type;
2384 2385
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2386 2387
		break;
	default:
2388
		method = efx->type->map_reset_reason(type);
2389 2390 2391
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2392 2393
		break;
	}
2394

2395
	set_bit(method, &efx->reset_pending);
2396 2397 2398 2399 2400 2401 2402
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2403

2404 2405 2406 2407
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2408
	queue_work(reset_workqueue, &efx->reset_work);
2409 2410 2411 2412 2413 2414 2415 2416 2417
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2418
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2419 2420
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2421
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2422 2423
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2424
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2425
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2426
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2427
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2428
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2429 2430 2431 2432 2433
	{0}			/* end of list */
};

/**************************************************************************
 *
2434
 * Dummy PHY/MAC operations
2435
 *
2436
 * Can be used for some unimplemented operations
2437 2438 2439 2440 2441 2442 2443 2444 2445
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2446 2447

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2448 2449 2450
{
	return false;
}
2451

2452
static const struct efx_phy_operations efx_dummy_phy_operations = {
2453
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2454
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2455
	.poll		 = efx_port_dummy_op_poll,
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2468
static int efx_init_struct(struct efx_nic *efx,
2469 2470
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2471
	int i;
2472 2473 2474

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2475 2476 2477
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2478 2479
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2480
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2481
	efx->pci_dev = pci_dev;
2482
	efx->msg_enable = debug;
2483
	efx->state = STATE_UNINIT;
2484 2485 2486 2487 2488 2489
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2490
	efx->mdio.dev = net_dev;
2491
	INIT_WORK(&efx->mac_work, efx_mac_work);
2492
	init_waitqueue_head(&efx->flush_wq);
2493 2494

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2495 2496 2497
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2498 2499
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2500 2501 2502 2503 2504 2505
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2506 2507 2508 2509
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2510
	if (!efx->workqueue)
2511
		goto fail;
2512

2513
	return 0;
2514 2515 2516 2517

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2518 2519 2520 2521
}

static void efx_fini_struct(struct efx_nic *efx)
{
2522 2523 2524 2525 2526
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2544 2545 2546 2547 2548 2549
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2550
	efx_disable_interrupts(efx);
2551
	efx_nic_fini_interrupt(efx);
2552
	efx_fini_port(efx);
2553
	efx->type->fini(efx);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2572
	efx_disable_interrupts(efx);
2573 2574
	rtnl_unlock();

2575
	efx_sriov_fini(efx);
2576 2577
	efx_unregister_netdev(efx);

2578 2579
	efx_mtd_remove(efx);

2580 2581 2582
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2583
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2584 2585

	efx_fini_struct(efx);
2586
	pci_set_drvdata(pci_dev, NULL);
2587
	free_netdev(efx->net_dev);
2588 2589

	pci_disable_pcie_error_reporting(pci_dev);
2590 2591
};

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2655
	efx_init_napi(efx);
2656

2657
	rc = efx->type->init(efx);
2658
	if (rc) {
2659 2660
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2661
		goto fail3;
2662 2663 2664 2665
	}

	rc = efx_init_port(efx);
	if (rc) {
2666 2667
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2668
		goto fail4;
2669 2670
	}

2671
	rc = efx_nic_init_interrupt(efx);
2672
	if (rc)
2673
		goto fail5;
B
Ben Hutchings 已提交
2674
	efx_enable_interrupts(efx);
2675 2676 2677

	return 0;

2678
 fail5:
2679 2680
	efx_fini_port(efx);
 fail4:
2681
	efx->type->fini(efx);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2692
 * theoretically).  It sets up PCI mappings, resets the NIC,
2693 2694 2695 2696 2697
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2698
static int efx_pci_probe(struct pci_dev *pci_dev,
2699
			 const struct pci_device_id *entry)
2700 2701 2702
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2703
	int rc;
2704 2705

	/* Allocate and initialise a struct net_device and struct efx_nic */
2706 2707
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2708 2709
	if (!net_dev)
		return -ENOMEM;
2710 2711 2712
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2713
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2714
			      NETIF_F_RXCSUM);
2715
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2716
		net_dev->features |= NETIF_F_TSO6;
2717 2718
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2719 2720 2721 2722
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2723
	pci_set_drvdata(pci_dev, efx);
2724
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2725
	rc = efx_init_struct(efx, pci_dev, net_dev);
2726 2727 2728
	if (rc)
		goto fail1;

2729
	netif_info(efx, probe, efx->net_dev,
2730
		   "Solarflare NIC detected\n");
2731

2732 2733
	efx_print_product_vpd(efx);

2734 2735 2736 2737 2738
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2739 2740 2741
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2742 2743 2744

	rc = efx_register_netdev(efx);
	if (rc)
2745
		goto fail4;
2746

2747 2748 2749 2750 2751
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2752
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2753

2754
	/* Try to create MTDs, but allow this to fail */
2755
	rtnl_lock();
2756
	rc = efx_mtd_probe(efx);
2757
	rtnl_unlock();
2758 2759 2760 2761
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2762 2763 2764 2765 2766
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2767 2768 2769
	return 0;

 fail4:
2770
	efx_pci_remove_main(efx);
2771 2772 2773 2774 2775
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2776
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2777
	WARN_ON(rc > 0);
2778
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2779 2780 2781 2782
	free_netdev(net_dev);
	return rc;
}

2783 2784 2785 2786
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2787 2788
	rtnl_lock();

2789 2790
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2791

2792
		efx_device_detach_sync(efx);
2793

2794
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2795
		efx_disable_interrupts(efx);
2796
	}
2797

2798 2799
	rtnl_unlock();

2800 2801 2802 2803 2804 2805 2806
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2807 2808
	rtnl_lock();

2809
	if (efx->state != STATE_DISABLED) {
B
Ben Hutchings 已提交
2810
		efx_enable_interrupts(efx);
2811

2812 2813 2814
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2815

2816
		efx_start_all(efx);
2817

2818
		netif_device_attach(efx->net_dev);
2819

2820
		efx->state = STATE_READY;
2821

2822 2823
		efx->type->resume_wol(efx);
	}
2824

2825 2826
	rtnl_unlock();

2827 2828 2829
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2840
	efx->reset_pending = 0;
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2882
static const struct dev_pm_ops efx_pm_ops = {
2883 2884 2885 2886 2887 2888 2889 2890
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2891 2892 2893 2894
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2895 2896
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2913
		efx_disable_interrupts(efx);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2931
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

2990
static struct pci_driver efx_pci_driver = {
2991
	.name		= KBUILD_MODNAME,
2992 2993 2994
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2995
	.driver.pm	= &efx_pm_ops,
2996
	.err_handler	= &efx_err_handlers,
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3019 3020 3021 3022
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3023 3024 3025 3026 3027
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3028 3029 3030 3031 3032 3033 3034 3035

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3036 3037
	destroy_workqueue(reset_workqueue);
 err_reset:
3038 3039
	efx_fini_sriov();
 err_sriov:
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3050
	destroy_workqueue(reset_workqueue);
3051
	efx_fini_sriov();
3052 3053 3054 3055 3056 3057 3058
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3059 3060
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3061 3062 3063
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);