efx.c 75.3 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82 83
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85 86
};

87 88
#define EFX_MAX_MTU (9 * 1024)

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100 101 102 103
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
104 105
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
106
 *
107
 * This is only used in MSI-X interrupt mode
108
 */
109
static unsigned int separate_tx_channels;
110
module_param(separate_tx_channels, uint, 0444);
111 112
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
113 114 115 116 117 118 119

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
120 121 122
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123
 */
S
stephen hemminger 已提交
124
static unsigned int efx_monitor_interval = 1 * HZ;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157
 * The default (0) means to assign an interrupt to each core.
158 159 160 161 162
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

163 164 165 166
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

167
static unsigned irq_adapt_low_thresh = 8000;
168 169 170 171
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

172
static unsigned irq_adapt_high_thresh = 16000;
173 174 175 176
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

177 178 179 180 181 182 183
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

184 185 186 187 188
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
189

190 191 192
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
193
static void efx_remove_channels(struct efx_nic *efx);
194
static const struct efx_channel_type efx_default_channel_type;
195
static void efx_remove_port(struct efx_nic *efx);
196
static void efx_init_napi_channel(struct efx_channel *channel);
197
static void efx_fini_napi(struct efx_nic *efx);
198
static void efx_fini_napi_channel(struct efx_channel *channel);
199 200 201
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
202 203 204

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
205
		if ((efx->state == STATE_READY) ||	\
206
		    (efx->state == STATE_DISABLED))	\
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
223
static int efx_process_channel(struct efx_channel *channel, int budget)
224
{
225
	int spent;
226

227
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
228
		return 0;
229

230
	spent = efx_nic_process_eventq(channel, budget);
231 232 233 234 235 236 237 238 239
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
240 241 242 243
		if (rx_queue->enabled) {
			efx_rx_strategy(channel);
			efx_fast_push_rx_descriptors(rx_queue);
		}
244 245
	}

246
	return spent;
247 248 249 250 251 252 253 254 255 256
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
257 258 259
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
260
	channel->work_pending = false;
261 262
	smp_wmb();

263
	efx_nic_eventq_read_ack(channel);
264 265 266 267 268 269 270 271 272 273 274
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
275
	struct efx_nic *efx = channel->efx;
276
	int spent;
277

278 279 280
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
281

282
	spent = efx_process_channel(channel, budget);
283

284
	if (spent < budget) {
285
		if (efx_channel_has_rx_queue(channel) &&
286 287 288 289
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
290 291
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
292
					efx->type->push_irq_moderation(channel);
293
				}
294 295
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
296 297 298
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
299
					efx->type->push_irq_moderation(channel);
300
				}
301 302 303 304 305
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

306 307
		efx_filter_rfs_expire(channel);

308
		/* There is no race here; although napi_disable() will
309
		 * only wait for napi_complete(), this isn't a problem
310 311 312
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
313
		napi_complete(napi);
314 315 316
		efx_channel_processed(channel);
	}

317
	return spent;
318 319 320 321 322 323 324 325
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
326 327
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
328 329 330 331 332
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

333
	BUG_ON(channel->channel >= efx->n_channels);
334
	BUG_ON(!channel->enabled);
335
	BUG_ON(!efx->loopback_selftest);
336 337

	/* Disable interrupts and wait for ISRs to complete */
338
	efx_nic_disable_interrupts(efx);
339
	if (efx->legacy_irq) {
340
		synchronize_irq(efx->legacy_irq);
341 342
		efx->legacy_irq_enabled = false;
	}
343
	if (channel->irq)
344 345 346 347 348 349
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
350
	efx_process_channel(channel, channel->eventq_mask + 1);
351 352 353 354 355 356

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
357 358
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
359
	efx_nic_enable_interrupts(efx);
360 361 362 363 364 365 366 367 368
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
369 370 371
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

372
	netif_dbg(efx, probe, efx->net_dev,
373
		  "chan %d create event queue\n", channel->channel);
374

375 376 377 378 379 380
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

381
	return efx_nic_probe_eventq(channel);
382 383 384
}

/* Prepare channel's event queue */
385
static void efx_init_eventq(struct efx_channel *channel)
386
{
387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
389 390 391

	channel->eventq_read_ptr = 0;

392
	efx_nic_init_eventq(channel);
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

423 424
static void efx_fini_eventq(struct efx_channel *channel)
{
425 426
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
427

428
	efx_nic_fini_eventq(channel);
429 430 431 432
}

static void efx_remove_eventq(struct efx_channel *channel)
{
433 434
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
435

436
	efx_nic_remove_eventq(channel);
437 438 439 440 441 442 443 444
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

445
/* Allocate and initialise a channel structure. */
446 447 448 449 450 451 452 453
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

454 455 456
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
457

458 459 460
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
461

462 463 464 465 466 467
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
468

469 470 471 472
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
473

474 475 476 477 478 479 480 481 482 483 484 485 486
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
487

488 489 490 491 492 493 494 495
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
496

497 498 499
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
500
			tx_queue->channel = channel;
501 502
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
503 504 505
	}

	rx_queue = &channel->rx_queue;
506 507
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
508 509 510 511 512 513
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

514 515 516 517 518 519
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

520 521
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
522

523 524 525 526
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

527 528
	rc = efx_probe_eventq(channel);
	if (rc)
529
		goto fail;
530 531 532 533

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
534
			goto fail;
535 536 537 538 539
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
540
			goto fail;
541 542 543 544 545 546
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

547 548
fail:
	efx_remove_channel(channel);
549 550 551
	return rc;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
570

571 572 573 574
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

575 576 577 578
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
579 580
}

581 582 583 584 585 586 587 588
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

589 590 591 592 593 594
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

612 613 614 615
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
616
static void efx_start_datapath(struct efx_nic *efx)
617 618 619 620 621
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

622 623 624 625 626 627
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
628
			      efx->type->rx_buffer_hash_size +
629
			      efx->type->rx_buffer_padding);
630 631
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
632

633 634 635 636 637 638 639 640 641 642
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

643 644
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
645 646
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
647 648 649 650

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

651
		efx_for_each_channel_rx_queue(rx_queue, channel) {
652
			efx_init_rx_queue(rx_queue);
653 654
			efx_nic_generate_fill_event(rx_queue);
		}
655 656 657 658 659

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}

660 661
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
662 663
}

664
static void efx_stop_datapath(struct efx_nic *efx)
665 666 667 668
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
669
	struct pci_dev *dev = efx->pci_dev;
670
	int rc;
671 672 673 674

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	/* Only perform flush if dma is enabled */
	if (dev->is_busmaster) {
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
693
	}
694

695
	efx_for_each_channel(channel, efx) {
696 697 698 699 700 701 702 703 704 705
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
706 707 708

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
709
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
710 711 712 713 714 715 716 717 718
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

719 720
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
721 722 723

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
724
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
725 726 727 728
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

729 730 731 732 733 734 735 736 737 738 739 740 741
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	unsigned i, next_buffer_table = 0;
	int rc = 0;

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
766 767

	efx_stop_all(efx);
768
	efx_stop_interrupts(efx, true);
769

770
	/* Clone channels (where possible) */
771 772
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
773 774 775
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

794 795
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
796 797

	for (i = 0; i < efx->n_channels; i++) {
798 799 800 801 802 803 804
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
805
	}
806

807
out:
808 809 810 811 812 813 814 815 816
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
817

818
	efx_start_interrupts(efx, true);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

834
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
835
{
836
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
837 838
}

839 840 841 842 843 844 845 846 847 848 849 850
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

851 852 853 854 855 856 857 858 859 860
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
861
void efx_link_status_changed(struct efx_nic *efx)
862
{
863 864
	struct efx_link_state *link_state = &efx->link_state;

865 866 867 868 869 870 871
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

872
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
873 874
		efx->n_link_state_changes++;

875
		if (link_state->up)
876 877 878 879 880 881
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
882
	if (link_state->up)
883 884 885 886 887
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
888
	else
889
		netif_info(efx, link, efx->net_dev, "link down\n");
890 891
}

B
Ben Hutchings 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

905
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

920 921
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
922 923 924 925 926 927 928 929
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
930
{
B
Ben Hutchings 已提交
931 932
	enum efx_phy_mode phy_mode;
	int rc;
933

B
Ben Hutchings 已提交
934
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
935

936
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
937 938
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
939

B
Ben Hutchings 已提交
940 941
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
942 943 944 945 946
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
947
	rc = efx->type->reconfigure_port(efx);
948

B
Ben Hutchings 已提交
949 950
	if (rc)
		efx->phy_mode = phy_mode;
951

B
Ben Hutchings 已提交
952
	return rc;
953 954 955 956
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
957
int efx_reconfigure_port(struct efx_nic *efx)
958
{
B
Ben Hutchings 已提交
959 960
	int rc;

961 962 963
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
964
	rc = __efx_reconfigure_port(efx);
965
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
966 967

	return rc;
968 969
}

970 971 972
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
973 974 975 976 977
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
978
	if (efx->port_enabled)
979
		efx->type->reconfigure_mac(efx);
980 981 982
	mutex_unlock(&efx->mac_lock);
}

983 984 985 986
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

987
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
988

989 990 991
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

992 993
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
994
	if (rc)
995
		return rc;
996

997 998
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
999 1000 1001 1002 1003 1004 1005 1006

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1007
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1008

1009 1010
	mutex_lock(&efx->mac_lock);

1011
	rc = efx->phy_op->init(efx);
1012
	if (rc)
1013
		goto fail1;
1014

1015
	efx->port_initialized = true;
1016

B
Ben Hutchings 已提交
1017 1018
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1019
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1020 1021 1022 1023 1024 1025

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1026
	mutex_unlock(&efx->mac_lock);
1027
	return 0;
1028

1029
fail2:
1030
	efx->phy_op->fini(efx);
1031 1032
fail1:
	mutex_unlock(&efx->mac_lock);
1033
	return rc;
1034 1035 1036 1037
}

static void efx_start_port(struct efx_nic *efx)
{
1038
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1039 1040 1041
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1042
	efx->port_enabled = true;
1043 1044 1045

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1046
	efx->type->reconfigure_mac(efx);
1047

1048 1049 1050
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1051
/* Prevent efx_mac_work() and efx_monitor() from working */
1052 1053
static void efx_stop_port(struct efx_nic *efx)
{
1054
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1055 1056

	mutex_lock(&efx->mac_lock);
1057
	efx->port_enabled = false;
1058 1059 1060
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1061 1062
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1063 1064 1065 1066
}

static void efx_fini_port(struct efx_nic *efx)
{
1067
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1068 1069 1070 1071

	if (!efx->port_initialized)
		return;

1072
	efx->phy_op->fini(efx);
1073
	efx->port_initialized = false;
1074

1075
	efx->link_state.up = false;
1076 1077 1078 1079 1080
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1081
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1082

1083
	efx->type->remove_port(efx);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1099
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1100 1101 1102

	rc = pci_enable_device(pci_dev);
	if (rc) {
1103 1104
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1116 1117
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1118 1119 1120
			if (rc == 0)
				break;
		}
1121 1122 1123
		dma_mask >>= 1;
	}
	if (rc) {
1124 1125
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1126 1127
		goto fail2;
	}
1128 1129
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1130
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1131
	if (rc) {
1132 1133
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1134 1135
		 * but just in case...
		 */
1136 1137
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1138 1139 1140
		goto fail2;
	}

1141 1142
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1143
	if (rc) {
1144 1145
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1146 1147 1148
		rc = -EIO;
		goto fail3;
	}
1149 1150
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1151
	if (!efx->membase) {
1152 1153 1154 1155
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1156 1157 1158
		rc = -ENOMEM;
		goto fail4;
	}
1159 1160 1161 1162
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1163 1164 1165 1166

	return 0;

 fail4:
1167
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1168
 fail3:
1169
	efx->membase_phys = 0;
1170 1171 1172 1173 1174 1175 1176 1177
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1178
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1179 1180 1181 1182 1183 1184 1185

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1186
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1187
		efx->membase_phys = 0;
1188 1189 1190 1191 1192
	}

	pci_disable_device(efx->pci_dev);
}

1193
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1194
{
1195
	cpumask_var_t thread_mask;
1196
	unsigned int count;
1197
	int cpu;
1198

1199 1200 1201 1202 1203 1204 1205 1206
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1218 1219
	}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1231 1232 1233 1234 1235
	}

	return count;
}

1236 1237 1238 1239
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1240 1241
	unsigned int i;
	int rc;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1259 1260 1261
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1262
static int efx_probe_interrupts(struct efx_nic *efx)
1263
{
1264 1265
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1266 1267
	unsigned int extra_channels = 0;
	unsigned int i, j;
1268
	int rc;
1269

1270 1271 1272 1273
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1274
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1275
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1276
		unsigned int n_channels;
1277

1278
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1279 1280
		if (separate_tx_channels)
			n_channels *= 2;
1281
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1282
		n_channels = min(n_channels, max_channels);
1283

B
Ben Hutchings 已提交
1284
		for (i = 0; i < n_channels; i++)
1285
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1286
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1287
		if (rc > 0) {
1288 1289
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1290
				  " available (%d < %u).\n", rc, n_channels);
1291 1292
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1293 1294
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1295
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1296
					     n_channels);
1297 1298 1299
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1300
			efx->n_channels = n_channels;
1301 1302
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1303
			if (separate_tx_channels) {
1304 1305 1306 1307
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1308
			} else {
1309 1310
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1311
			}
1312 1313 1314 1315 1316
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1317
			for (i = 0; i < efx->n_channels; i++)
1318 1319
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1320 1321 1322
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1323 1324
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1325 1326 1327 1328 1329
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1330
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1331 1332
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1333 1334
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1335
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1336
		} else {
1337 1338
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1339 1340 1341 1342 1343 1344
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1345
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1346 1347
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1348 1349
		efx->legacy_irq = efx->pci_dev->irq;
	}
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1366
	/* RSS might be usable on VFs even if it is disabled on the PF */
1367
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1368 1369
			   efx->n_rx_channels : efx_vf_size(efx));

1370
	return 0;
1371 1372
}

1373
/* Enable interrupts, then probe and start the event queues */
1374
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1375 1376 1377 1378 1379 1380 1381 1382
{
	struct efx_channel *channel;

	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1383 1384
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1385 1386 1387 1388 1389 1390
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1391
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	struct efx_channel *channel;

	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1408 1409
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1410 1411 1412
	}
}

1413 1414 1415 1416 1417
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1418
	efx_for_each_channel(channel, efx)
1419 1420 1421 1422 1423 1424 1425 1426
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1427
static void efx_set_channels(struct efx_nic *efx)
1428
{
1429 1430 1431
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1432
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1433
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1434 1435 1436 1437 1438 1439 1440 1441 1442

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1443 1444 1445 1446
}

static int efx_probe_nic(struct efx_nic *efx)
{
1447
	size_t i;
1448 1449
	int rc;

1450
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1451 1452

	/* Carry out hardware-type specific initialisation */
1453
	rc = efx->type->probe(efx);
1454 1455 1456
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1457
	/* Determine the number of channels and queues by trying to hook
1458
	 * in MSI-X interrupts. */
1459 1460 1461
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1462

1463 1464
	efx->type->dimension_resources(efx);

1465 1466
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1467
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1468
		efx->rx_indir_table[i] =
1469
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1470

1471
	efx_set_channels(efx);
1472 1473
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1474 1475

	/* Initialise the interrupt moderation settings */
1476 1477
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1478 1479

	return 0;
1480 1481 1482 1483

fail:
	efx->type->remove(efx);
	return rc;
1484 1485 1486 1487
}

static void efx_remove_nic(struct efx_nic *efx)
{
1488
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1489 1490

	efx_remove_interrupts(efx);
1491
	efx->type->remove(efx);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1506
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1507 1508 1509 1510 1511
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1512
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1513 1514 1515
		goto fail2;
	}

1516 1517 1518 1519 1520
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1521
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1522

B
Ben Hutchings 已提交
1523 1524 1525 1526
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1527
		goto fail3;
B
Ben Hutchings 已提交
1528 1529
	}

1530 1531 1532 1533
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1534 1535
	return 0;

B
Ben Hutchings 已提交
1536
 fail4:
1537
	efx_remove_filters(efx);
1538 1539 1540 1541 1542 1543 1544 1545
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1546 1547 1548 1549 1550
/* Called after previous invocation(s) of efx_stop_all, restarts the port,
 * kernel transmit queues and NAPI processing, and ensures that the port is
 * scheduled to be reconfigured. This function is safe to call multiple
 * times when the NIC is in any state.
 */
1551 1552 1553 1554 1555 1556 1557 1558
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
1559
	if ((efx->state != STATE_READY) && (efx->state != STATE_UNINIT))
1560
		return;
1561
	if (!netif_running(efx->net_dev))
1562 1563 1564
		return;

	efx_start_port(efx);
1565
	efx_start_datapath(efx);
1566

1567 1568 1569 1570
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1571 1572
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1573 1574 1575 1576 1577 1578
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1579

1580
	efx->type->start_stats(efx);
1581 1582 1583 1584 1585 1586 1587
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1588
	/* Make sure the hardware monitor and event self-test are stopped */
1589
	cancel_delayed_work_sync(&efx->monitor_work);
1590
	efx_selftest_async_cancel(efx);
1591
	/* Stop scheduled port reconfigurations */
1592
	cancel_work_sync(&efx->mac_work);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1608
	efx->type->stop_stats(efx);
1609 1610
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1611
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1612 1613 1614 1615
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1616 1617 1618
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1619 1620 1621 1622
}

static void efx_remove_all(struct efx_nic *efx)
{
1623
	efx_remove_channels(efx);
1624
	efx_remove_filters(efx);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1635
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1636
{
1637 1638
	if (usecs == 0)
		return 0;
1639
	if (usecs * 1000 < quantum_ns)
1640
		return 1; /* never round down to 0 */
1641
	return usecs * 1000 / quantum_ns;
1642 1643
}

1644
/* Set interrupt moderation parameters */
1645 1646 1647
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1648
{
1649
	struct efx_channel *channel;
1650 1651 1652 1653 1654
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1655 1656 1657

	EFX_ASSERT_RESET_SERIALISED(efx);

1658
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1659 1660
		return -EINVAL;

1661 1662 1663
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1664 1665 1666 1667 1668 1669 1670
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1671
	efx->irq_rx_adaptive = rx_adaptive;
1672
	efx->irq_rx_moderation = rx_ticks;
1673
	efx_for_each_channel(channel, efx) {
1674
		if (efx_channel_has_rx_queue(channel))
1675
			channel->irq_moderation = rx_ticks;
1676
		else if (efx_channel_has_tx_queues(channel))
1677 1678
			channel->irq_moderation = tx_ticks;
	}
1679 1680

	return 0;
1681 1682
}

1683 1684 1685
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1686 1687 1688 1689
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1690
	*rx_adaptive = efx->irq_rx_adaptive;
1691 1692 1693
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1694 1695 1696 1697 1698 1699 1700 1701

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1702
		*tx_usecs = DIV_ROUND_UP(
1703
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1704 1705
			efx->timer_quantum_ns,
			1000);
1706 1707
}

1708 1709 1710 1711 1712 1713
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1714
/* Run periodically off the general workqueue */
1715 1716 1717 1718 1719
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1720 1721 1722
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1723
	BUG_ON(efx->type->monitor == NULL);
1724 1725 1726

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1727 1728 1729 1730 1731 1732
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1749
	struct efx_nic *efx = netdev_priv(net_dev);
1750
	struct mii_ioctl_data *data = if_mii(ifr);
1751 1752 1753

	EFX_ASSERT_RESET_SERIALISED(efx);

1754 1755 1756 1757 1758 1759
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1760 1761 1762 1763 1764 1765 1766 1767
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1768 1769 1770 1771 1772 1773 1774 1775 1776
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1777
static void efx_init_napi(struct efx_nic *efx)
1778 1779 1780
{
	struct efx_channel *channel;

1781 1782
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1783 1784 1785 1786 1787 1788 1789
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1790 1791 1792 1793 1794 1795
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1796 1797
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1814
	struct efx_nic *efx = netdev_priv(net_dev);
1815 1816
	struct efx_channel *channel;

1817
	efx_for_each_channel(channel, efx)
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1832
	struct efx_nic *efx = netdev_priv(net_dev);
1833 1834
	EFX_ASSERT_RESET_SERIALISED(efx);

1835 1836
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1837

1838 1839
	if (efx->state == STATE_DISABLED)
		return -EIO;
1840 1841
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1842 1843
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1844

1845 1846 1847 1848
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1849
	efx_start_all(efx);
1850
	efx_selftest_async_start(efx);
1851 1852 1853 1854 1855 1856 1857 1858 1859
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1860
	struct efx_nic *efx = netdev_priv(net_dev);
1861

1862 1863
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1864

1865 1866 1867 1868
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
	}
1869 1870 1871 1872

	return 0;
}

1873
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1874 1875
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1876
{
1877
	struct efx_nic *efx = netdev_priv(net_dev);
1878 1879
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1880
	spin_lock_bh(&efx->stats_lock);
1881

1882
	efx->type->update_stats(efx);
1883 1884 1885 1886 1887

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1888
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1906 1907
	spin_unlock_bh(&efx->stats_lock);

1908 1909 1910 1911 1912 1913
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1914
	struct efx_nic *efx = netdev_priv(net_dev);
1915

1916 1917 1918
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1919

1920
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1921 1922 1923 1924 1925 1926
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1927
	struct efx_nic *efx = netdev_priv(net_dev);
1928 1929 1930 1931 1932 1933 1934 1935

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1936
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1937

B
Ben Hutchings 已提交
1938 1939 1940
	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1941
	net_dev->mtu = new_mtu;
1942
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1943 1944
	mutex_unlock(&efx->mac_lock);

1945
	efx_start_all(efx);
1946
	return 0;
1947 1948 1949 1950
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1951
	struct efx_nic *efx = netdev_priv(net_dev);
1952 1953 1954 1955 1956 1957
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1958 1959 1960
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1961
		return -EADDRNOTAVAIL;
1962 1963 1964
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1965
	efx_sriov_mac_address_changed(efx);
1966 1967

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1968
	mutex_lock(&efx->mac_lock);
1969
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1970
	mutex_unlock(&efx->mac_lock);
1971 1972 1973 1974

	return 0;
}

1975
/* Context: netif_addr_lock held, BHs disabled. */
1976
static void efx_set_rx_mode(struct net_device *net_dev)
1977
{
1978
	struct efx_nic *efx = netdev_priv(net_dev);
1979
	struct netdev_hw_addr *ha;
1980 1981 1982 1983
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1984
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1985 1986

	/* Build multicast hash table */
1987
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1988 1989 1990
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1991 1992
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1993 1994 1995 1996
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1997 1998 1999 2000 2001 2002
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
2003

2004 2005 2006
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2007 2008
}

2009
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2020 2021 2022
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2023
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2024 2025 2026 2027 2028 2029
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2030
	.ndo_set_rx_mode	= efx_set_rx_mode,
2031
	.ndo_set_features	= efx_set_features,
2032 2033 2034 2035 2036 2037
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2038 2039 2040
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2041
	.ndo_setup_tc		= efx_setup_tc,
2042 2043 2044
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2045 2046
};

2047 2048 2049 2050 2051 2052 2053
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2054 2055 2056
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2057
	struct net_device *net_dev = ptr;
2058

2059 2060 2061
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2062 2063 2064 2065 2066 2067 2068 2069

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2070 2071 2072 2073 2074 2075 2076 2077
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2078 2079 2080
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2081
	struct efx_channel *channel;
2082 2083 2084 2085
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2086
	net_dev->netdev_ops = &efx_netdev_ops;
2087
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2088
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2089

2090
	rtnl_lock();
2091 2092 2093 2094

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2095
	efx_update_name(efx);
2096 2097 2098 2099 2100

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2101 2102
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2103 2104
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2105 2106
	}

2107
	/* Always start with carrier off; PHY events will detect the link */
2108
	netif_carrier_off(net_dev);
2109

2110
	rtnl_unlock();
2111

B
Ben Hutchings 已提交
2112 2113
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2114 2115
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2116 2117 2118
		goto fail_registered;
	}

2119
	return 0;
B
Ben Hutchings 已提交
2120

2121 2122
fail_locked:
	rtnl_unlock();
2123
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2124 2125
	return rc;

B
Ben Hutchings 已提交
2126 2127 2128
fail_registered:
	unregister_netdev(net_dev);
	return rc;
2129 2130 2131 2132
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2133
	struct efx_channel *channel;
2134 2135 2136 2137 2138
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2139
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2140 2141 2142 2143

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2144 2145 2146 2147
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2148

2149 2150 2151
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	unregister_netdev(efx->net_dev);
2152 2153 2154 2155 2156 2157 2158 2159
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2160 2161
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2162
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2163 2164 2165
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2166 2167 2168
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2169
	efx_stop_interrupts(efx, false);
2170 2171
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2172
	efx->type->fini(efx);
2173 2174
}

B
Ben Hutchings 已提交
2175 2176 2177 2178 2179
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2180
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2181 2182 2183
{
	int rc;

B
Ben Hutchings 已提交
2184
	EFX_ASSERT_RESET_SERIALISED(efx);
2185

2186
	rc = efx->type->init(efx);
2187
	if (rc) {
2188
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2189
		goto fail;
2190 2191
	}

2192 2193 2194
	if (!ok)
		goto fail;

2195
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2196 2197 2198 2199
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2200 2201
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2202 2203
	}

2204
	efx->type->reconfigure_mac(efx);
2205

2206
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2207
	efx_restore_filters(efx);
2208
	efx_sriov_reset(efx);
2209 2210 2211 2212 2213 2214 2215 2216 2217

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2218 2219 2220

	mutex_unlock(&efx->mac_lock);

2221 2222 2223
	return rc;
}

2224 2225
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2226
 *
2227
 * Caller must hold the rtnl_lock.
2228
 */
2229
int efx_reset(struct efx_nic *efx, enum reset_type method)
2230
{
2231 2232
	int rc, rc2;
	bool disabled;
2233

2234 2235
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2236

2237
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2238
	efx_reset_down(efx, method);
2239

2240
	rc = efx->type->reset(efx, method);
2241
	if (rc) {
2242
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2243
		goto out;
2244 2245
	}

2246 2247 2248 2249
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2250 2251 2252 2253 2254 2255 2256

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2257
out:
2258
	/* Leave device stopped if necessary */
2259 2260 2261 2262 2263 2264
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2265 2266
	}

2267
	if (disabled) {
2268
		dev_close(efx->net_dev);
2269
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2270 2271
		efx->state = STATE_DISABLED;
	} else {
2272
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2273
		netif_device_attach(efx->net_dev);
2274
	}
2275 2276 2277 2278 2279 2280 2281 2282
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2283
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2284
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2285

2286
	if (!pending)
2287 2288
		return;

2289
	/* If we're not READY then don't reset. Leave the reset_pending
2290
	 * flags set so that efx_pci_probe_main will be retried */
2291
	if (efx->state != STATE_READY) {
2292
		netif_info(efx, drv, efx->net_dev,
2293
			   "scheduled reset quenched; NIC not ready\n");
2294 2295 2296 2297
		return;
	}

	rtnl_lock();
2298
	(void)efx_reset(efx, fls(pending) - 1);
2299
	rtnl_unlock();
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2312 2313
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2314 2315
		break;
	default:
2316
		method = efx->type->map_reset_reason(type);
2317 2318 2319
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2320 2321
		break;
	}
2322

2323
	set_bit(method, &efx->reset_pending);
2324

2325 2326 2327 2328
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2329
	queue_work(reset_workqueue, &efx->reset_work);
2330 2331 2332 2333 2334 2335 2336 2337 2338
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2339
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2340 2341
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2342
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2343 2344
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2345
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2346
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2347
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2348
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2349
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2350 2351 2352 2353 2354
	{0}			/* end of list */
};

/**************************************************************************
 *
2355
 * Dummy PHY/MAC operations
2356
 *
2357
 * Can be used for some unimplemented operations
2358 2359 2360 2361 2362 2363 2364 2365 2366
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2367 2368

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2369 2370 2371
{
	return false;
}
2372

2373
static const struct efx_phy_operations efx_dummy_phy_operations = {
2374
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2375
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2376
	.poll		 = efx_port_dummy_op_poll,
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2389
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2390 2391
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2392
	int i;
2393 2394 2395 2396

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2397 2398 2399
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2400 2401
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2402
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2403
	efx->pci_dev = pci_dev;
2404
	efx->msg_enable = debug;
2405
	efx->state = STATE_UNINIT;
2406 2407 2408 2409 2410 2411
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2412
	efx->mdio.dev = net_dev;
2413
	INIT_WORK(&efx->mac_work, efx_mac_work);
2414
	init_waitqueue_head(&efx->flush_wq);
2415 2416

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2417 2418 2419
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2430 2431 2432 2433
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2434
	if (!efx->workqueue)
2435
		goto fail;
2436

2437
	return 0;
2438 2439 2440 2441

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2442 2443 2444 2445
}

static void efx_fini_struct(struct efx_nic *efx)
{
2446 2447 2448 2449 2450
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2468 2469 2470 2471
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2472
	efx_stop_interrupts(efx, false);
2473
	efx_nic_fini_interrupt(efx);
2474
	efx_fini_port(efx);
2475
	efx->type->fini(efx);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2493
	efx->state = STATE_UNINIT;
2494 2495 2496 2497 2498
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

2499
	efx_stop_interrupts(efx, false);
2500
	efx_sriov_fini(efx);
2501 2502
	efx_unregister_netdev(efx);

2503 2504
	efx_mtd_remove(efx);

2505 2506 2507 2508
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2509
	cancel_work_sync(&efx->reset_work);
2510 2511 2512 2513

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2514
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2515 2516

	efx_fini_struct(efx);
2517
	pci_set_drvdata(pci_dev, NULL);
2518 2519 2520
	free_netdev(efx->net_dev);
};

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2584
	efx_init_napi(efx);
2585

2586
	rc = efx->type->init(efx);
2587
	if (rc) {
2588 2589
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2590
		goto fail3;
2591 2592 2593 2594
	}

	rc = efx_init_port(efx);
	if (rc) {
2595 2596
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2597
		goto fail4;
2598 2599
	}

2600
	rc = efx_nic_init_interrupt(efx);
2601
	if (rc)
2602
		goto fail5;
2603
	efx_start_interrupts(efx, false);
2604 2605 2606

	return 0;

2607
 fail5:
2608 2609
	efx_fini_port(efx);
 fail4:
2610
	efx->type->fini(efx);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2621
 * theoretically).  It sets up PCI mappings, resets the NIC,
2622 2623 2624 2625 2626 2627 2628 2629
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2630
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2631 2632
	struct net_device *net_dev;
	struct efx_nic *efx;
2633
	int rc;
2634 2635

	/* Allocate and initialise a struct net_device and struct efx_nic */
2636 2637
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2638 2639
	if (!net_dev)
		return -ENOMEM;
2640
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2641
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2642
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2643 2644
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2645 2646
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2647 2648 2649 2650
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2651
	efx = netdev_priv(net_dev);
2652
	pci_set_drvdata(pci_dev, efx);
2653
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2654 2655 2656 2657
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2658
	netif_info(efx, probe, efx->net_dev,
2659
		   "Solarflare NIC detected\n");
2660

2661 2662
	efx_print_product_vpd(efx);

2663 2664 2665 2666 2667
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2668
	rc = efx_pci_probe_main(efx);
2669

2670 2671 2672 2673 2674
	/* Serialise against efx_reset(). No more resets will be
	 * scheduled since efx_stop_all() has been called, and we have
	 * not and never have been registered.
	 */
	cancel_work_sync(&efx->reset_work);
2675

2676 2677
	if (rc)
		goto fail3;
2678

2679 2680 2681 2682 2683
	/* If there was a scheduled reset during probe, the NIC is
	 * probably hosed anyway.
	 */
	if (efx->reset_pending) {
		rc = -EIO;
2684 2685 2686
		goto fail4;
	}

2687
	/* Switch to the READY state before we expose the device to the OS,
2688
	 * so that dev_open()|efx_start_all() will actually start the device */
2689
	efx->state = STATE_READY;
2690

2691 2692
	rc = efx_register_netdev(efx);
	if (rc)
2693
		goto fail4;
2694

2695 2696 2697 2698 2699
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2700
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2701

2702
	/* Try to create MTDs, but allow this to fail */
2703
	rtnl_lock();
2704
	rc = efx_mtd_probe(efx);
2705
	rtnl_unlock();
2706 2707 2708 2709
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2710 2711 2712
	return 0;

 fail4:
2713
	efx_pci_remove_main(efx);
2714 2715 2716 2717 2718
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2719
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2720
	WARN_ON(rc > 0);
2721
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2722 2723 2724 2725
	free_netdev(net_dev);
	return rc;
}

2726 2727 2728 2729
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2730 2731
	rtnl_lock();

2732
	efx->state = STATE_UNINIT;
2733 2734 2735 2736

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
2737
	efx_stop_interrupts(efx, false);
2738

2739 2740
	rtnl_unlock();

2741 2742 2743 2744 2745 2746 2747
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2748 2749
	rtnl_lock();

2750
	efx_start_interrupts(efx, false);
2751 2752 2753 2754 2755 2756 2757 2758 2759

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

2760
	efx->state = STATE_READY;
2761 2762 2763

	efx->type->resume_wol(efx);

2764 2765
	rtnl_unlock();

2766 2767 2768
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2779
	efx->reset_pending = 0;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2821
static const struct dev_pm_ops efx_pm_ops = {
2822 2823 2824 2825 2826 2827 2828 2829
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2830
static struct pci_driver efx_pci_driver = {
2831
	.name		= KBUILD_MODNAME,
2832 2833 2834
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2835
	.driver.pm	= &efx_pm_ops,
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2858 2859 2860 2861
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

2862 2863 2864 2865 2866
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2867 2868 2869 2870 2871 2872 2873 2874

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2875 2876
	destroy_workqueue(reset_workqueue);
 err_reset:
2877 2878
	efx_fini_sriov();
 err_sriov:
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2889
	destroy_workqueue(reset_workqueue);
2890
	efx_fini_sriov();
2891 2892 2893 2894 2895 2896 2897
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2898 2899
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2900 2901 2902
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);