efx.c 83.0 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
87 88
};

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

101 102 103 104 105 106 107 108 109
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
110 111
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
112
 *
113
 * This is only used in MSI-X interrupt mode
114
 */
115 116
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
117 118
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
119 120 121 122 123 124 125

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
126 127
 * monitor.
 * On Falcon-based NICs, this will:
128 129
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
130 131
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
132
 */
S
stephen hemminger 已提交
133
static unsigned int efx_monitor_interval = 1 * HZ;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166
 * The default (0) means to assign an interrupt to each core.
167 168 169 170 171
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

172 173
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
174 175
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

176
static unsigned irq_adapt_low_thresh = 8000;
177 178 179 180
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

181
static unsigned irq_adapt_high_thresh = 16000;
182 183 184 185
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

186 187 188 189 190 191 192
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

193 194 195 196 197
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
198

199
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
200
static void efx_soft_disable_interrupts(struct efx_nic *efx);
201
static void efx_remove_channel(struct efx_channel *channel);
202
static void efx_remove_channels(struct efx_nic *efx);
203
static const struct efx_channel_type efx_default_channel_type;
204
static void efx_remove_port(struct efx_nic *efx);
205
static void efx_init_napi_channel(struct efx_channel *channel);
206
static void efx_fini_napi(struct efx_nic *efx);
207
static void efx_fini_napi_channel(struct efx_channel *channel);
208 209 210
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
211 212 213

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
214
		if ((efx->state == STATE_READY) ||	\
215
		    (efx->state == STATE_RECOVERY) ||	\
216
		    (efx->state == STATE_DISABLED))	\
217 218 219
			ASSERT_RTNL();			\
	} while (0)

220 221
static int efx_check_disabled(struct efx_nic *efx)
{
222
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223 224 225 226 227 228 229
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

230 231 232 233 234 235 236 237 238 239 240 241 242
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
243
static int efx_process_channel(struct efx_channel *channel, int budget)
244
{
245
	int spent;
246

247
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
248
		return 0;
249

250
	spent = efx_nic_process_eventq(channel, budget);
251 252 253 254
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

255
		efx_rx_flush_packet(channel);
256
		efx_fast_push_rx_descriptors(rx_queue, true);
257 258
	}

259
	return spent;
260 261 262 263 264 265 266 267 268 269 270
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
271
	struct efx_nic *efx = channel->efx;
272
	int spent;
273

274 275 276
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
277

278
	spent = efx_process_channel(channel, budget);
279

280
	if (spent < budget) {
281
		if (efx_channel_has_rx_queue(channel) &&
282 283 284 285
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
286 287
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
292 293 294
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
295
					efx->type->push_irq_moderation(channel);
296
				}
297 298 299 300 301
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

302 303
		efx_filter_rfs_expire(channel);

304
		/* There is no race here; although napi_disable() will
305
		 * only wait for napi_complete(), this isn't a problem
306
		 * since efx_nic_eventq_read_ack() will have no effect if
307 308
		 * interrupts have already been disabled.
		 */
309
		napi_complete(napi);
310
		efx_nic_eventq_read_ack(channel);
311 312
	}

313
	return spent;
314 315 316 317 318 319 320 321 322
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
323 324 325
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

326
	netif_dbg(efx, probe, efx->net_dev,
327
		  "chan %d create event queue\n", channel->channel);
328

329 330 331 332 333 334
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

335
	return efx_nic_probe_eventq(channel);
336 337 338
}

/* Prepare channel's event queue */
339
static int efx_init_eventq(struct efx_channel *channel)
340
{
341
	struct efx_nic *efx = channel->efx;
342 343 344 345
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

346
	netif_dbg(efx, drv, efx->net_dev,
347
		  "chan %d init event queue\n", channel->channel);
348

349 350
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
351
		efx->type->push_irq_moderation(channel);
352 353 354 355
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
356 357
}

358 359 360 361 362 363
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

364
	/* Make sure the NAPI handler sees the enabled flag set */
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

382 383
static void efx_fini_eventq(struct efx_channel *channel)
{
384 385 386
	if (!channel->eventq_init)
		return;

387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
389

390
	efx_nic_fini_eventq(channel);
391
	channel->eventq_init = false;
392 393 394 395
}

static void efx_remove_eventq(struct efx_channel *channel)
{
396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
398

399
	efx_nic_remove_eventq(channel);
400 401 402 403 404 405 406 407
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

408
/* Allocate and initialise a channel structure. */
409 410 411 412 413 414 415 416
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

417 418 419
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
420

421 422 423
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
424

425 426 427 428 429 430
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
431

432 433 434 435
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
436

437 438 439 440 441 442 443 444 445 446 447 448 449
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
450

451 452 453 454 455 456 457 458
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
459

460 461 462
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
463
			tx_queue->channel = channel;
464 465
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466 467 468
	}

	rx_queue = &channel->rx_queue;
469 470
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471 472 473 474 475 476
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

477 478 479 480 481 482
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

483 484
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
485

486 487 488 489
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

490 491
	rc = efx_probe_eventq(channel);
	if (rc)
492
		goto fail;
493 494 495 496

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
497
			goto fail;
498 499 500 501 502
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
503
			goto fail;
504 505 506 507
	}

	return 0;

508 509
fail:
	efx_remove_channel(channel);
510 511 512
	return rc;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
531

532 533 534 535
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

536 537
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
538 539
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
540 541
}

542 543 544 545 546 547 548 549
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

550 551 552 553 554 555
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

573 574 575 576
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
577
static void efx_start_datapath(struct efx_nic *efx)
578
{
579
	bool old_rx_scatter = efx->rx_scatter;
580 581 582
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
583
	size_t rx_buf_len;
584

585 586 587 588
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
589
	efx->rx_dma_len = (efx->rx_prefix_size +
590 591
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
592
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
593
		      efx->rx_ip_align + efx->rx_dma_len);
594
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
595
		efx->rx_scatter = efx->type->always_rx_scatter;
596 597
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
598
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
599
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
600 601 602
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
603 604 605 606 607 608 609 610
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

611 612 613 614 615 616 617 618 619 620 621
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
622

J
Jon Cooper 已提交
623
	/* RX filters may also have scatter-enabled flags */
624
	if (efx->rx_scatter != old_rx_scatter)
625
		efx->type->filter_update_rx_scatter(efx);
626

627 628 629 630 631 632 633 634 635 636
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

637 638
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
639
		efx_for_each_channel_tx_queue(tx_queue, channel) {
640
			efx_init_tx_queue(tx_queue);
641 642
			atomic_inc(&efx->active_queues);
		}
643

644
		efx_for_each_channel_rx_queue(rx_queue, channel) {
645
			efx_init_rx_queue(rx_queue);
646
			atomic_inc(&efx->active_queues);
647 648 649
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
650
		}
651

652
		WARN_ON(channel->rx_pkt_n_frags);
653 654
	}

655 656
	efx_ptp_start_datapath(efx);

657 658
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
659 660
}

661
static void efx_stop_datapath(struct efx_nic *efx)
662 663 664 665
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
666
	int rc;
667 668 669 670

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

671 672
	efx_ptp_stop_datapath(efx);

673 674 675 676 677 678
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

679
	efx_for_each_channel(channel, efx) {
680 681 682 683 684 685 686 687 688 689
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
690
	}
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
710 711
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
712
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
713 714 715 716 717 718 719 720 721
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

722 723
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
724 725 726

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
727
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
728 729
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
730
	channel->type->post_remove(channel);
731 732
}

733 734 735 736 737 738 739 740 741 742 743 744 745
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
746
	unsigned i, next_buffer_table = 0;
747
	int rc, rc2;
748 749 750 751

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
774

775
	efx_device_detach_sync(efx);
776
	efx_stop_all(efx);
B
Ben Hutchings 已提交
777
	efx_soft_disable_interrupts(efx);
778

779
	/* Clone channels (where possible) */
780 781
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
782 783 784
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

803 804
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
805 806

	for (i = 0; i < efx->n_channels; i++) {
807 808 809 810 811 812 813
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
814
	}
815

816
out:
817 818 819 820 821 822 823 824 825
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
826

827 828 829 830 831 832 833 834 835 836
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
837 838 839 840 841 842 843 844 845 846 847 848 849 850
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

851
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
852
{
853
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
854 855
}

856 857
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
858
	.post_remove		= efx_channel_dummy_op_void,
859 860 861 862 863 864 865 866 867 868
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

869 870 871 872
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

873 874 875 876 877 878 879 880 881 882
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
883
void efx_link_status_changed(struct efx_nic *efx)
884
{
885 886
	struct efx_link_state *link_state = &efx->link_state;

887 888 889 890 891 892 893
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

894
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
895 896
		efx->n_link_state_changes++;

897
		if (link_state->up)
898 899 900 901 902 903
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
904
	if (link_state->up)
905
		netif_info(efx, link, efx->net_dev,
906
			   "link up at %uMbps %s-duplex (MTU %d)\n",
907
			   link_state->speed, link_state->fd ? "full" : "half",
908
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
909
	else
910
		netif_info(efx, link, efx->net_dev, "link down\n");
911 912
}

B
Ben Hutchings 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

926
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

941 942
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
943 944 945 946 947 948 949 950
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
951
{
B
Ben Hutchings 已提交
952 953
	enum efx_phy_mode phy_mode;
	int rc;
954

B
Ben Hutchings 已提交
955
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
956

B
Ben Hutchings 已提交
957 958
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
959 960 961 962 963
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
964
	rc = efx->type->reconfigure_port(efx);
965

B
Ben Hutchings 已提交
966 967
	if (rc)
		efx->phy_mode = phy_mode;
968

B
Ben Hutchings 已提交
969
	return rc;
970 971 972 973
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
974
int efx_reconfigure_port(struct efx_nic *efx)
975
{
B
Ben Hutchings 已提交
976 977
	int rc;

978 979 980
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
981
	rc = __efx_reconfigure_port(efx);
982
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
983 984

	return rc;
985 986
}

987 988 989
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
990 991 992 993 994
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
995
	if (efx->port_enabled)
996
		efx->type->reconfigure_mac(efx);
997 998 999
	mutex_unlock(&efx->mac_lock);
}

1000 1001 1002 1003
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1004
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1005

1006 1007 1008
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1009 1010
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1011
	if (rc)
1012
		return rc;
1013

1014
	/* Initialise MAC address to permanent address */
1015
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1016 1017 1018 1019 1020 1021 1022 1023

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1024
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1025

1026 1027
	mutex_lock(&efx->mac_lock);

1028
	rc = efx->phy_op->init(efx);
1029
	if (rc)
1030
		goto fail1;
1031

1032
	efx->port_initialized = true;
1033

B
Ben Hutchings 已提交
1034 1035
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1036
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1037 1038 1039 1040 1041 1042

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1043
	mutex_unlock(&efx->mac_lock);
1044
	return 0;
1045

1046
fail2:
1047
	efx->phy_op->fini(efx);
1048 1049
fail1:
	mutex_unlock(&efx->mac_lock);
1050
	return rc;
1051 1052 1053 1054
}

static void efx_start_port(struct efx_nic *efx)
{
1055
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1056 1057 1058
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1059
	efx->port_enabled = true;
1060

1061
	/* Ensure MAC ingress/egress is enabled */
1062
	efx->type->reconfigure_mac(efx);
1063

1064 1065 1066
	mutex_unlock(&efx->mac_lock);
}

1067 1068 1069 1070 1071
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1072 1073
static void efx_stop_port(struct efx_nic *efx)
{
1074
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1075

1076 1077
	EFX_ASSERT_RESET_SERIALISED(efx);

1078
	mutex_lock(&efx->mac_lock);
1079
	efx->port_enabled = false;
1080 1081 1082
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1083 1084
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1085 1086 1087 1088

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1089 1090 1091 1092
}

static void efx_fini_port(struct efx_nic *efx)
{
1093
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1094 1095 1096 1097

	if (!efx->port_initialized)
		return;

1098
	efx->phy_op->fini(efx);
1099
	efx->port_initialized = false;
1100

1101
	efx->link_state.up = false;
1102 1103 1104 1105 1106
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1107
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1108

1109
	efx->type->remove_port(efx);
1110 1111 1112 1113 1114 1115 1116 1117
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1189 1190 1191 1192 1193
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1194
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1195 1196
	int rc;

1197
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1198 1199 1200

	rc = pci_enable_device(pci_dev);
	if (rc) {
1201 1202
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1214
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1215
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1216 1217 1218
			if (rc == 0)
				break;
		}
1219 1220 1221
		dma_mask >>= 1;
	}
	if (rc) {
1222 1223
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1224 1225
		goto fail2;
	}
1226 1227
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1228

1229 1230
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1231
	if (rc) {
1232 1233
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1234 1235 1236
		rc = -EIO;
		goto fail3;
	}
1237
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1238
	if (!efx->membase) {
1239 1240
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1241
			  (unsigned long long)efx->membase_phys, mem_map_size);
1242 1243 1244
		rc = -ENOMEM;
		goto fail4;
	}
1245 1246
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1247 1248
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1249 1250 1251 1252

	return 0;

 fail4:
1253
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1254
 fail3:
1255
	efx->membase_phys = 0;
1256 1257 1258 1259 1260 1261 1262 1263
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1264
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1265 1266 1267 1268 1269 1270 1271

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1272
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1273
		efx->membase_phys = 0;
1274 1275 1276 1277 1278
	}

	pci_disable_device(efx->pci_dev);
}

1279
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1280
{
1281
	cpumask_var_t thread_mask;
1282
	unsigned int count;
1283
	int cpu;
1284

1285 1286 1287 1288 1289 1290 1291 1292
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1304 1305
	}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1317 1318 1319 1320 1321 1322 1323 1324
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1325
static int efx_probe_interrupts(struct efx_nic *efx)
1326
{
1327 1328
	unsigned int extra_channels = 0;
	unsigned int i, j;
1329
	int rc;
1330

1331 1332 1333 1334
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1335
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1336
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1337
		unsigned int n_channels;
1338

1339
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1340 1341
		if (separate_tx_channels)
			n_channels *= 2;
1342
		n_channels += extra_channels;
1343
		n_channels = min(n_channels, efx->max_channels);
1344

B
Ben Hutchings 已提交
1345
		for (i = 0; i < n_channels; i++)
1346
			xentries[i].entry = i;
1347 1348 1349 1350 1351 1352 1353 1354
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1355 1356
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1357
				  " available (%d < %u).\n", rc, n_channels);
1358 1359
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1360
			n_channels = rc;
1361 1362
		}

1363
		if (rc > 0) {
B
Ben Hutchings 已提交
1364
			efx->n_channels = n_channels;
1365 1366
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1367
			if (separate_tx_channels) {
1368 1369 1370 1371
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1372
			} else {
1373 1374
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1375
			}
1376
			for (i = 0; i < efx->n_channels; i++)
1377 1378
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1379 1380 1381 1382 1383
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1384
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1385 1386
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1387 1388
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1389
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1390
		} else {
1391 1392
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1393 1394 1395 1396 1397 1398
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1399
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1400 1401
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1402 1403
		efx->legacy_irq = efx->pci_dev->irq;
	}
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1420
	/* RSS might be usable on VFs even if it is disabled on the PF */
1421
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1422 1423
			   efx->n_rx_channels : efx_vf_size(efx));

1424
	return 0;
1425 1426
}

1427
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1428
{
1429 1430
	struct efx_channel *channel, *end_channel;
	int rc;
1431

1432 1433
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1434 1435
	efx->irq_soft_enabled = true;
	smp_wmb();
1436 1437

	efx_for_each_channel(channel, efx) {
1438 1439 1440 1441 1442
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1443 1444 1445 1446
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1460 1461
}

B
Ben Hutchings 已提交
1462
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1463 1464 1465
{
	struct efx_channel *channel;

1466 1467 1468
	if (efx->state == STATE_DISABLED)
		return;

1469 1470
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1471 1472 1473 1474
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1475 1476 1477 1478 1479 1480 1481
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1482
		if (!channel->type->keep_eventq)
1483
			efx_fini_eventq(channel);
1484
	}
1485 1486 1487

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1488 1489
}

1490
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1491
{
1492 1493
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1494 1495 1496 1497 1498 1499 1500 1501

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1502
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1503 1504

	efx_for_each_channel(channel, efx) {
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1523
		if (channel->type->keep_eventq)
1524
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1525 1526
	}

1527 1528 1529
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1543
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1544 1545
}

1546 1547 1548 1549 1550
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1551
	efx_for_each_channel(channel, efx)
1552 1553 1554 1555 1556 1557 1558 1559
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1560
static void efx_set_channels(struct efx_nic *efx)
1561
{
1562 1563 1564
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1565
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1566
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1567

1568 1569
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1570 1571 1572
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1573 1574 1575 1576 1577
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1578 1579 1580 1581
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1582 1583 1584 1585
}

static int efx_probe_nic(struct efx_nic *efx)
{
1586
	size_t i;
1587 1588
	int rc;

1589
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1590 1591

	/* Carry out hardware-type specific initialisation */
1592
	rc = efx->type->probe(efx);
1593 1594 1595
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1596
	/* Determine the number of channels and queues by trying to hook
1597
	 * in MSI-X interrupts. */
1598 1599
	rc = efx_probe_interrupts(efx);
	if (rc)
1600
		goto fail1;
1601

1602 1603
	efx_set_channels(efx);

1604 1605 1606
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1607

1608 1609
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1610
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1611
		efx->rx_indir_table[i] =
1612
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1613

1614 1615
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1616 1617

	/* Initialise the interrupt moderation settings */
1618 1619
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1620 1621

	return 0;
1622

1623 1624 1625
fail2:
	efx_remove_interrupts(efx);
fail1:
1626 1627
	efx->type->remove(efx);
	return rc;
1628 1629 1630 1631
}

static void efx_remove_nic(struct efx_nic *efx)
{
1632
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1633 1634

	efx_remove_interrupts(efx);
1635
	efx->type->remove(efx);
1636 1637
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1688
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1689 1690 1691 1692 1693
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1694
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1695 1696 1697
		goto fail2;
	}

1698 1699 1700 1701 1702
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1703
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1704

B
Ben Hutchings 已提交
1705 1706 1707 1708
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1709
		goto fail3;
B
Ben Hutchings 已提交
1710 1711
	}

1712 1713 1714 1715
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1716 1717
	return 0;

B
Ben Hutchings 已提交
1718
 fail4:
1719
	efx_remove_filters(efx);
1720 1721 1722 1723 1724 1725 1726 1727
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1728 1729 1730 1731 1732 1733
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1734
 */
1735 1736 1737
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1738
	BUG_ON(efx->state == STATE_DISABLED);
1739 1740 1741

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1742
	if (efx->port_enabled || !netif_running(efx->net_dev))
1743 1744 1745
		return;

	efx_start_port(efx);
1746
	efx_start_datapath(efx);
1747

1748 1749
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1750 1751
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1752 1753 1754 1755 1756

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1757 1758 1759 1760 1761
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1762

1763
	efx->type->start_stats(efx);
1764 1765 1766 1767
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1768 1769
}

1770 1771 1772 1773 1774
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1775 1776 1777 1778 1779 1780 1781 1782
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1783 1784 1785 1786 1787 1788 1789
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1790
	efx->type->stop_stats(efx);
1791 1792
	efx_stop_port(efx);

1793 1794 1795 1796 1797 1798
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1799 1800 1801
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1802 1803 1804 1805
}

static void efx_remove_all(struct efx_nic *efx)
{
1806
	efx_remove_channels(efx);
1807
	efx_remove_filters(efx);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1818
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1819
{
1820 1821
	if (usecs == 0)
		return 0;
1822
	if (usecs * 1000 < quantum_ns)
1823
		return 1; /* never round down to 0 */
1824
	return usecs * 1000 / quantum_ns;
1825 1826
}

1827
/* Set interrupt moderation parameters */
1828 1829 1830
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1831
{
1832
	struct efx_channel *channel;
1833 1834 1835 1836 1837
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1838 1839 1840

	EFX_ASSERT_RESET_SERIALISED(efx);

1841
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1842 1843
		return -EINVAL;

1844 1845 1846
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1847 1848 1849 1850 1851 1852 1853
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1854
	efx->irq_rx_adaptive = rx_adaptive;
1855
	efx->irq_rx_moderation = rx_ticks;
1856
	efx_for_each_channel(channel, efx) {
1857
		if (efx_channel_has_rx_queue(channel))
1858
			channel->irq_moderation = rx_ticks;
1859
		else if (efx_channel_has_tx_queues(channel))
1860 1861
			channel->irq_moderation = tx_ticks;
	}
1862 1863

	return 0;
1864 1865
}

1866 1867 1868
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1869 1870 1871 1872
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1873
	*rx_adaptive = efx->irq_rx_adaptive;
1874 1875 1876
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1877 1878 1879 1880 1881 1882 1883 1884

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1885
		*tx_usecs = DIV_ROUND_UP(
1886
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1887 1888
			efx->timer_quantum_ns,
			1000);
1889 1890
}

1891 1892 1893 1894 1895 1896
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1897
/* Run periodically off the general workqueue */
1898 1899 1900 1901 1902
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1903 1904 1905
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1906
	BUG_ON(efx->type->monitor == NULL);
1907 1908 1909

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1910 1911 1912 1913 1914 1915
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1932
	struct efx_nic *efx = netdev_priv(net_dev);
1933
	struct mii_ioctl_data *data = if_mii(ifr);
1934

1935
	if (cmd == SIOCSHWTSTAMP)
1936 1937 1938
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1939

1940 1941 1942 1943 1944 1945
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1946 1947 1948 1949 1950 1951 1952 1953
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1954 1955 1956 1957 1958 1959 1960 1961 1962
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1963
static void efx_init_napi(struct efx_nic *efx)
1964 1965 1966
{
	struct efx_channel *channel;

1967 1968
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1969 1970 1971 1972 1973 1974 1975
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1976 1977 1978 1979 1980 1981
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1982 1983
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2000
	struct efx_nic *efx = netdev_priv(net_dev);
2001 2002
	struct efx_channel *channel;

2003
	efx_for_each_channel(channel, efx)
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2018
	struct efx_nic *efx = netdev_priv(net_dev);
2019 2020
	int rc;

2021 2022
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2023

2024 2025 2026
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2027 2028
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2029 2030
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2031

2032 2033 2034 2035
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2036
	efx_start_all(efx);
2037
	efx_selftest_async_start(efx);
2038 2039 2040 2041 2042 2043 2044 2045 2046
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2047
	struct efx_nic *efx = netdev_priv(net_dev);
2048

2049 2050
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2051

2052 2053
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2054 2055 2056 2057

	return 0;
}

2058
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2059 2060
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2061
{
2062
	struct efx_nic *efx = netdev_priv(net_dev);
2063

2064
	spin_lock_bh(&efx->stats_lock);
2065
	efx->type->update_stats(efx, NULL, stats);
2066 2067
	spin_unlock_bh(&efx->stats_lock);

2068 2069 2070 2071 2072 2073
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2074
	struct efx_nic *efx = netdev_priv(net_dev);
2075

2076 2077 2078
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2079

2080
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2081 2082 2083 2084 2085 2086
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2087
	struct efx_nic *efx = netdev_priv(net_dev);
2088
	int rc;
2089

2090 2091 2092
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2093 2094 2095
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2096
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2097

2098 2099 2100
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2101
	mutex_lock(&efx->mac_lock);
2102
	net_dev->mtu = new_mtu;
2103
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2104 2105
	mutex_unlock(&efx->mac_lock);

2106
	efx_start_all(efx);
2107
	netif_device_attach(efx->net_dev);
2108
	return 0;
2109 2110 2111 2112
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2113
	struct efx_nic *efx = netdev_priv(net_dev);
2114
	struct sockaddr *addr = data;
2115
	u8 *new_addr = addr->sa_data;
2116 2117

	if (!is_valid_ether_addr(new_addr)) {
2118 2119 2120
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2121
		return -EADDRNOTAVAIL;
2122 2123
	}

2124
	ether_addr_copy(net_dev->dev_addr, new_addr);
2125
	efx_sriov_mac_address_changed(efx);
2126 2127

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2128
	mutex_lock(&efx->mac_lock);
2129
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2130
	mutex_unlock(&efx->mac_lock);
2131 2132 2133 2134

	return 0;
}

2135
/* Context: netif_addr_lock held, BHs disabled. */
2136
static void efx_set_rx_mode(struct net_device *net_dev)
2137
{
2138
	struct efx_nic *efx = netdev_priv(net_dev);
2139

2140 2141 2142
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2143 2144
}

2145
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2146 2147 2148 2149 2150
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2151
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2152 2153 2154 2155

	return 0;
}

2156
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2157 2158
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2159
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2160 2161 2162 2163 2164 2165
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2166
	.ndo_set_rx_mode	= efx_set_rx_mode,
2167
	.ndo_set_features	= efx_set_features,
2168 2169 2170 2171 2172 2173
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2174 2175 2176
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2177
	.ndo_setup_tc		= efx_setup_tc,
2178 2179 2180
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2181 2182
};

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2203 2204 2205 2206 2207 2208 2209
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2210 2211 2212
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2213
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2214

2215 2216
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2217 2218
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2219 2220 2221 2222 2223 2224 2225 2226

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2227 2228 2229 2230 2231 2232
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2233
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2234

2235 2236 2237
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2238
	struct efx_channel *channel;
2239 2240 2241 2242
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2243 2244 2245 2246 2247 2248
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2249
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2250
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2251

2252
	rtnl_lock();
2253

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2267 2268 2269
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2270
	efx_update_name(efx);
2271

2272 2273 2274
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2275 2276 2277 2278
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2279 2280
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2281 2282
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2283 2284
	}

2285 2286
	efx_associate(efx);

2287
	rtnl_unlock();
2288

B
Ben Hutchings 已提交
2289 2290
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2291 2292
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2293 2294 2295
		goto fail_registered;
	}

2296
	return 0;
B
Ben Hutchings 已提交
2297

2298 2299
fail_registered:
	rtnl_lock();
2300
	efx_dissociate(efx);
2301
	unregister_netdevice(net_dev);
2302
fail_locked:
2303
	efx->state = STATE_UNINIT;
2304
	rtnl_unlock();
2305
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2306
	return rc;
2307 2308 2309 2310 2311 2312 2313
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2314
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2315

2316 2317
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2318 2319 2320 2321 2322

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2323 2324 2325 2326 2327 2328 2329 2330
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2331 2332
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2333
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2334 2335 2336
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2337
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2338
	efx_disable_interrupts(efx);
2339 2340

	mutex_lock(&efx->mac_lock);
2341 2342
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2343
	efx->type->fini(efx);
2344 2345
}

B
Ben Hutchings 已提交
2346 2347 2348 2349 2350
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2351
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2352 2353 2354
{
	int rc;

B
Ben Hutchings 已提交
2355
	EFX_ASSERT_RESET_SERIALISED(efx);
2356

2357
	rc = efx->type->init(efx);
2358
	if (rc) {
2359
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2360
		goto fail;
2361 2362
	}

2363 2364 2365
	if (!ok)
		goto fail;

2366
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2367 2368 2369 2370
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2371 2372
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2373 2374
	}

2375 2376 2377
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2378
	efx_restore_filters(efx);
2379
	efx_sriov_reset(efx);
2380 2381 2382 2383 2384 2385 2386 2387 2388

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2389 2390 2391

	mutex_unlock(&efx->mac_lock);

2392 2393 2394
	return rc;
}

2395 2396
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2397
 *
2398
 * Caller must hold the rtnl_lock.
2399
 */
2400
int efx_reset(struct efx_nic *efx, enum reset_type method)
2401
{
2402 2403
	int rc, rc2;
	bool disabled;
2404

2405 2406
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2407

2408
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2409
	efx_reset_down(efx, method);
2410

2411
	rc = efx->type->reset(efx, method);
2412
	if (rc) {
2413
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2414
		goto out;
2415 2416
	}

2417 2418 2419 2420
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2421 2422 2423 2424 2425 2426 2427

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2428
out:
2429
	/* Leave device stopped if necessary */
2430 2431 2432
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2433 2434 2435 2436 2437
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2438 2439
	}

2440
	if (disabled) {
2441
		dev_close(efx->net_dev);
2442
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2443 2444
		efx->state = STATE_DISABLED;
	} else {
2445
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2446
		netif_device_attach(efx->net_dev);
2447
	}
2448 2449 2450
	return rc;
}

2451 2452 2453 2454 2455
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2456
int efx_try_recovery(struct efx_nic *efx)
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2495 2496 2497 2498 2499
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2500
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2501 2502 2503 2504 2505 2506
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2507 2508 2509
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2510 2511 2512 2513
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2514

2515
	if (!pending)
2516 2517
		return;

2518
	rtnl_lock();
2519 2520 2521 2522 2523 2524

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2525
		(void)efx_reset(efx, method);
2526

2527
	rtnl_unlock();
2528 2529 2530 2531 2532 2533
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2534 2535 2536 2537 2538 2539 2540
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2541 2542 2543
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2544
	case RESET_TYPE_RECOVER_OR_ALL:
2545 2546
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2547
	case RESET_TYPE_RECOVER_OR_DISABLE:
2548
	case RESET_TYPE_MC_BIST:
2549
		method = type;
2550 2551
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2552 2553
		break;
	default:
2554
		method = efx->type->map_reset_reason(type);
2555 2556 2557
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2558 2559
		break;
	}
2560

2561
	set_bit(method, &efx->reset_pending);
2562 2563 2564 2565 2566 2567 2568
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2569

2570 2571 2572 2573
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2574
	queue_work(reset_workqueue, &efx->reset_work);
2575 2576 2577 2578 2579 2580 2581 2582 2583
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2584
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2585 2586
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2587
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2588 2589
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2590
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2591
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2592
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2593
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2594
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2595 2596
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2597 2598 2599 2600 2601
	{0}			/* end of list */
};

/**************************************************************************
 *
2602
 * Dummy PHY/MAC operations
2603
 *
2604
 * Can be used for some unimplemented operations
2605 2606 2607 2608 2609 2610 2611 2612 2613
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2614 2615

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2616 2617 2618
{
	return false;
}
2619

2620
static const struct efx_phy_operations efx_dummy_phy_operations = {
2621
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2622
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2623
	.poll		 = efx_port_dummy_op_poll,
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2636
static int efx_init_struct(struct efx_nic *efx,
2637 2638
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2639
	int i;
2640 2641

	/* Initialise common structures */
2642 2643
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2644
	spin_lock_init(&efx->biu_lock);
2645 2646 2647
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2648 2649
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2650
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2651
	efx->pci_dev = pci_dev;
2652
	efx->msg_enable = debug;
2653
	efx->state = STATE_UNINIT;
2654 2655 2656
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2657
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2658 2659
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2660 2661
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2662 2663
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2664 2665 2666
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2667
	efx->mdio.dev = net_dev;
2668
	INIT_WORK(&efx->mac_work, efx_mac_work);
2669
	init_waitqueue_head(&efx->flush_wq);
2670 2671

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2672 2673 2674
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2675 2676
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2677 2678 2679 2680 2681 2682
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2683 2684 2685 2686
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2687
	if (!efx->workqueue)
2688
		goto fail;
2689

2690
	return 0;
2691 2692 2693 2694

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2695 2696 2697 2698
}

static void efx_fini_struct(struct efx_nic *efx)
{
2699 2700 2701 2702 2703
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2704 2705
	kfree(efx->vpd_sn);

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2723 2724 2725 2726 2727 2728
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2729
	efx_disable_interrupts(efx);
2730
	efx_nic_fini_interrupt(efx);
2731
	efx_fini_port(efx);
2732
	efx->type->fini(efx);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2750
	efx_dissociate(efx);
2751
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2752
	efx_disable_interrupts(efx);
2753 2754
	rtnl_unlock();

2755
	efx_sriov_fini(efx);
2756 2757
	efx_unregister_netdev(efx);

2758 2759
	efx_mtd_remove(efx);

2760 2761 2762
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2763
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2764 2765 2766

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2767 2768

	pci_disable_pcie_error_reporting(pci_dev);
2769 2770
};

2771 2772 2773 2774 2775 2776
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2777
static void efx_probe_vpd_strings(struct efx_nic *efx)
2778 2779 2780 2781
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2782
	int ro_start, ro_size, i, j;
2783 2784 2785 2786 2787 2788 2789 2790 2791

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2792 2793
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2794 2795 2796 2797
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2798 2799 2800
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2841 2842 2843
}


2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2856
	efx_init_napi(efx);
2857

2858
	rc = efx->type->init(efx);
2859
	if (rc) {
2860 2861
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2862
		goto fail3;
2863 2864 2865 2866
	}

	rc = efx_init_port(efx);
	if (rc) {
2867 2868
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2869
		goto fail4;
2870 2871
	}

2872
	rc = efx_nic_init_interrupt(efx);
2873
	if (rc)
2874
		goto fail5;
2875 2876 2877
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2878 2879 2880

	return 0;

2881 2882
 fail6:
	efx_nic_fini_interrupt(efx);
2883
 fail5:
2884 2885
	efx_fini_port(efx);
 fail4:
2886
	efx->type->fini(efx);
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2897
 * theoretically).  It sets up PCI mappings, resets the NIC,
2898 2899 2900 2901 2902
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2903
static int efx_pci_probe(struct pci_dev *pci_dev,
2904
			 const struct pci_device_id *entry)
2905 2906 2907
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2908
	int rc;
2909 2910

	/* Allocate and initialise a struct net_device and struct efx_nic */
2911 2912
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2913 2914
	if (!net_dev)
		return -ENOMEM;
2915 2916 2917
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2918
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2919
			      NETIF_F_RXCSUM);
2920
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2921
		net_dev->features |= NETIF_F_TSO6;
2922 2923
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2924 2925 2926 2927
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2928
	pci_set_drvdata(pci_dev, efx);
2929
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2930
	rc = efx_init_struct(efx, pci_dev, net_dev);
2931 2932 2933
	if (rc)
		goto fail1;

2934
	netif_info(efx, probe, efx->net_dev,
2935
		   "Solarflare NIC detected\n");
2936

2937
	efx_probe_vpd_strings(efx);
2938

2939 2940 2941 2942 2943
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2944 2945 2946
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2947 2948 2949

	rc = efx_register_netdev(efx);
	if (rc)
2950
		goto fail4;
2951

2952 2953 2954 2955 2956
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2957
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2958

2959
	/* Try to create MTDs, but allow this to fail */
2960
	rtnl_lock();
2961
	rc = efx_mtd_probe(efx);
2962
	rtnl_unlock();
2963 2964 2965 2966
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2967 2968 2969 2970 2971
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2972 2973 2974
	return 0;

 fail4:
2975
	efx_pci_remove_main(efx);
2976 2977 2978 2979 2980
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2981
	WARN_ON(rc > 0);
2982
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2983 2984 2985 2986
	free_netdev(net_dev);
	return rc;
}

2987 2988 2989 2990
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2991 2992
	rtnl_lock();

2993 2994
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2995

2996
		efx_device_detach_sync(efx);
2997

2998
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2999
		efx_disable_interrupts(efx);
3000
	}
3001

3002 3003
	rtnl_unlock();

3004 3005 3006 3007 3008
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3009
	int rc;
3010 3011
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3012 3013
	rtnl_lock();

3014
	if (efx->state != STATE_DISABLED) {
3015 3016 3017
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3018

3019 3020 3021
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3022

3023
		efx_start_all(efx);
3024

3025
		netif_device_attach(efx->net_dev);
3026

3027
		efx->state = STATE_READY;
3028

3029 3030
		efx->type->resume_wol(efx);
	}
3031

3032 3033
	rtnl_unlock();

3034 3035 3036
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3037
	return 0;
3038 3039 3040 3041 3042

fail:
	rtnl_unlock();

	return rc;
3043 3044 3045 3046 3047 3048 3049 3050 3051
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3052
	efx->reset_pending = 0;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3079 3080
	rc = efx_pm_thaw(dev);
	return rc;
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3094
static const struct dev_pm_ops efx_pm_ops = {
3095 3096 3097 3098 3099 3100 3101 3102
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3103 3104 3105 3106
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3107 3108
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3125
		efx_disable_interrupts(efx);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3143
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3202
static struct pci_driver efx_pci_driver = {
3203
	.name		= KBUILD_MODNAME,
3204 3205 3206
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3207
	.driver.pm	= &efx_pm_ops,
3208
	.err_handler	= &efx_err_handlers,
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3231 3232 3233 3234
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3235 3236 3237 3238 3239
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3240 3241 3242 3243 3244 3245 3246 3247

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3248 3249
	destroy_workqueue(reset_workqueue);
 err_reset:
3250 3251
	efx_fini_sriov();
 err_sriov:
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3262
	destroy_workqueue(reset_workqueue);
3263
	efx_fini_sriov();
3264 3265 3266 3267 3268 3269 3270
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3271 3272
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3273
MODULE_DESCRIPTION("Solarflare network driver");
3274 3275
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);