efx.c 80.1 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/pci.h>
25
#include <linux/cpu_rmap.h>
26
#include <linux/aer.h>
27 28
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
29
#include "nic.h"
30
#include "selftest.h"
31

32
#include "mcdi.h"
33
#include "workarounds.h"
34

35 36 37 38 39 40 41 42 43
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
44
const char *const efx_loopback_mode_names[] = {
45
	[LOOPBACK_NONE]		= "NONE",
46
	[LOOPBACK_DATA]		= "DATAPATH",
47 48 49
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
50 51 52
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
53 54 55 56 57 58
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
59 60
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
61 62
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
63 64
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
65
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
66 67
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
68
	[LOOPBACK_GMII_WS]	= "GMII_WS",
69 70
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
71
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
72 73 74
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
75
const char *const efx_reset_type_names[] = {
76 77 78 79 80 81 82 83 84 85 86 87 88
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH]      = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH]      = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89 90
};

91 92
#define EFX_MAX_MTU (9 * 1024)

93 94 95 96 97 98
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

99 100 101 102 103 104 105 106 107
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
108 109
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
110
 *
111
 * This is only used in MSI-X interrupt mode
112
 */
113 114
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
115 116
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
117 118 119 120 121 122 123

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
124 125
 * monitor.
 * On Falcon-based NICs, this will:
126 127
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
128 129
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
130
 */
S
stephen hemminger 已提交
131
static unsigned int efx_monitor_interval = 1 * HZ;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164
 * The default (0) means to assign an interrupt to each core.
165 166 167 168 169
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

170 171
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
172 173
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

174
static unsigned irq_adapt_low_thresh = 8000;
175 176 177 178
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

179
static unsigned irq_adapt_high_thresh = 16000;
180 181 182 183
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

184 185 186 187 188 189 190
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

191 192 193 194 195
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
196

197 198 199
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
200
static void efx_remove_channels(struct efx_nic *efx);
201
static const struct efx_channel_type efx_default_channel_type;
202
static void efx_remove_port(struct efx_nic *efx);
203
static void efx_init_napi_channel(struct efx_channel *channel);
204
static void efx_fini_napi(struct efx_nic *efx);
205
static void efx_fini_napi_channel(struct efx_channel *channel);
206 207 208
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
209 210 211

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
212
		if ((efx->state == STATE_READY) ||	\
213
		    (efx->state == STATE_RECOVERY) ||	\
214
		    (efx->state == STATE_DISABLED))	\
215 216 217
			ASSERT_RTNL();			\
	} while (0)

218 219
static int efx_check_disabled(struct efx_nic *efx)
{
220
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
221 222 223 224 225 226 227
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

228 229 230 231 232 233 234 235 236 237 238 239 240
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
241
static int efx_process_channel(struct efx_channel *channel, int budget)
242
{
243
	int spent;
244

245
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
246
		return 0;
247

248
	spent = efx_nic_process_eventq(channel, budget);
249 250 251 252 253 254 255 256 257
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
258
		if (rx_queue->enabled)
259
			efx_fast_push_rx_descriptors(rx_queue);
260 261
	}

262
	return spent;
263 264 265 266 267 268 269 270 271 272
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
273 274 275
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
276
	channel->work_pending = false;
277 278
	smp_wmb();

279
	efx_nic_eventq_read_ack(channel);
280 281 282 283 284 285 286 287 288 289 290
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
291
	struct efx_nic *efx = channel->efx;
292
	int spent;
293

294 295 296
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
297

298
	spent = efx_process_channel(channel, budget);
299

300
	if (spent < budget) {
301
		if (efx_channel_has_rx_queue(channel) &&
302 303 304 305
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
306 307
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
308
					efx->type->push_irq_moderation(channel);
309
				}
310 311
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
312 313 314
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
315
					efx->type->push_irq_moderation(channel);
316
				}
317 318 319 320 321
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

322 323
		efx_filter_rfs_expire(channel);

324
		/* There is no race here; although napi_disable() will
325
		 * only wait for napi_complete(), this isn't a problem
326 327 328
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
329
		napi_complete(napi);
330 331 332
		efx_channel_processed(channel);
	}

333
	return spent;
334 335 336 337 338 339 340 341
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
342 343
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
344 345 346 347 348
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

349
	BUG_ON(channel->channel >= efx->n_channels);
350
	BUG_ON(!channel->enabled);
351
	BUG_ON(!efx->loopback_selftest);
352 353

	/* Disable interrupts and wait for ISRs to complete */
354
	efx_nic_disable_interrupts(efx);
355
	if (efx->legacy_irq) {
356
		synchronize_irq(efx->legacy_irq);
357 358
		efx->legacy_irq_enabled = false;
	}
359
	if (channel->irq)
360 361 362 363 364 365
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
366
	efx_process_channel(channel, channel->eventq_mask + 1);
367 368 369 370 371 372

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
373 374
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
375
	efx_nic_enable_interrupts(efx);
376 377 378 379 380 381 382 383 384
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
385 386 387
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

388
	netif_dbg(efx, probe, efx->net_dev,
389
		  "chan %d create event queue\n", channel->channel);
390

391 392 393 394 395 396
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

397
	return efx_nic_probe_eventq(channel);
398 399 400
}

/* Prepare channel's event queue */
401
static void efx_init_eventq(struct efx_channel *channel)
402
{
403 404
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
405 406 407

	channel->eventq_read_ptr = 0;

408
	efx_nic_init_eventq(channel);
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

439 440
static void efx_fini_eventq(struct efx_channel *channel)
{
441 442
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
443

444
	efx_nic_fini_eventq(channel);
445 446 447 448
}

static void efx_remove_eventq(struct efx_channel *channel)
{
449 450
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
451

452
	efx_nic_remove_eventq(channel);
453 454 455 456 457 458 459 460
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

461
/* Allocate and initialise a channel structure. */
462 463 464 465 466 467 468 469
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

470 471 472
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
473

474 475 476
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
477

478 479 480 481 482 483
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
484

485 486 487 488
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
489

490 491 492 493 494 495 496 497 498 499 500 501 502
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
503

504 505 506 507 508 509 510 511
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
512

513 514 515
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
516
			tx_queue->channel = channel;
517 518
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
519 520 521
	}

	rx_queue = &channel->rx_queue;
522 523
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
524 525 526 527 528 529
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

530 531 532 533 534 535
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

536 537
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
538

539 540 541 542
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

543 544
	rc = efx_probe_eventq(channel);
	if (rc)
545
		goto fail;
546 547 548 549

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
550
			goto fail;
551 552 553 554 555
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
556
			goto fail;
557 558 559 560 561 562
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

563 564
fail:
	efx_remove_channel(channel);
565 566 567
	return rc;
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
586

587 588 589 590
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

591 592 593 594
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
595 596
}

597 598 599 600 601 602 603 604
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

605 606 607 608 609 610
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

628 629 630 631
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
632
static void efx_start_datapath(struct efx_nic *efx)
633 634 635 636 637
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

638 639 640 641
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
642 643 644 645 646
	efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
	efx->rx_buffer_order = get_order(sizeof(struct efx_rx_page_state) +
					 EFX_PAGE_IP_ALIGN + efx->rx_dma_len);
647

648 649 650 651 652 653 654 655 656 657
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

658 659
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
660 661
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
662

663
		efx_for_each_channel_rx_queue(rx_queue, channel) {
664
			efx_init_rx_queue(rx_queue);
665 666
			efx_nic_generate_fill_event(rx_queue);
		}
667 668 669 670

		WARN_ON(channel->rx_pkt != NULL);
	}

671 672
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
673 674
}

675
static void efx_stop_datapath(struct efx_nic *efx)
676 677 678 679
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
680
	struct pci_dev *dev = efx->pci_dev;
681
	int rc;
682 683 684 685

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

686
	/* Only perform flush if dma is enabled */
687
	if (dev->is_busmaster && efx->state != STATE_RECOVERY) {
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
704
	}
705

706
	efx_for_each_channel(channel, efx) {
707 708 709 710 711 712 713 714 715 716
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
717 718 719

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
720
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721 722 723 724 725 726 727 728 729
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

730 731
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
732 733 734

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
735
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
736 737
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
738
	channel->type->post_remove(channel);
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752 753
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
754
	unsigned i, next_buffer_table = 0;
755 756 757 758 759
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
782

783
	efx_device_detach_sync(efx);
784
	efx_stop_all(efx);
785
	efx_stop_interrupts(efx, true);
786

787
	/* Clone channels (where possible) */
788 789
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
790 791 792
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

811 812
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
813 814

	for (i = 0; i < efx->n_channels; i++) {
815 816 817 818 819 820 821
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
822
	}
823

824
out:
825 826 827 828 829 830 831 832 833
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
834

835
	efx_start_interrupts(efx, true);
836
	efx_start_all(efx);
837
	netif_device_attach(efx->net_dev);
838 839 840 841 842 843 844 845 846 847 848 849 850 851
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

852
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
853
{
854
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
855 856
}

857 858
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
859
	.post_remove		= efx_channel_dummy_op_void,
860 861 862 863 864 865 866 867 868 869
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

870 871 872 873
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

874 875 876 877 878 879 880 881 882 883
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
884
void efx_link_status_changed(struct efx_nic *efx)
885
{
886 887
	struct efx_link_state *link_state = &efx->link_state;

888 889 890 891 892 893 894
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

895
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
896 897
		efx->n_link_state_changes++;

898
		if (link_state->up)
899 900 901 902 903 904
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
905
	if (link_state->up)
906 907 908 909 910
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
911
	else
912
		netif_info(efx, link, efx->net_dev, "link down\n");
913 914
}

B
Ben Hutchings 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

928
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

943 944
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
945 946 947 948 949 950 951 952
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
953
{
B
Ben Hutchings 已提交
954 955
	enum efx_phy_mode phy_mode;
	int rc;
956

B
Ben Hutchings 已提交
957
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
958

959
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
960 961
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
962

B
Ben Hutchings 已提交
963 964
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
965 966 967 968 969
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
970
	rc = efx->type->reconfigure_port(efx);
971

B
Ben Hutchings 已提交
972 973
	if (rc)
		efx->phy_mode = phy_mode;
974

B
Ben Hutchings 已提交
975
	return rc;
976 977 978 979
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
980
int efx_reconfigure_port(struct efx_nic *efx)
981
{
B
Ben Hutchings 已提交
982 983
	int rc;

984 985 986
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
987
	rc = __efx_reconfigure_port(efx);
988
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
989 990

	return rc;
991 992
}

993 994 995
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
996 997 998 999 1000
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1001
	if (efx->port_enabled)
1002
		efx->type->reconfigure_mac(efx);
1003 1004 1005
	mutex_unlock(&efx->mac_lock);
}

1006 1007 1008 1009
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1010
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1011

1012 1013 1014
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1015 1016
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1017
	if (rc)
1018
		return rc;
1019

1020 1021
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1022 1023 1024 1025 1026 1027 1028 1029

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1030
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1031

1032 1033
	mutex_lock(&efx->mac_lock);

1034
	rc = efx->phy_op->init(efx);
1035
	if (rc)
1036
		goto fail1;
1037

1038
	efx->port_initialized = true;
1039

B
Ben Hutchings 已提交
1040 1041
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1042
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1043 1044 1045 1046 1047 1048

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1049
	mutex_unlock(&efx->mac_lock);
1050
	return 0;
1051

1052
fail2:
1053
	efx->phy_op->fini(efx);
1054 1055
fail1:
	mutex_unlock(&efx->mac_lock);
1056
	return rc;
1057 1058 1059 1060
}

static void efx_start_port(struct efx_nic *efx)
{
1061
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1062 1063 1064
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1065
	efx->port_enabled = true;
1066 1067 1068

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1069
	efx->type->reconfigure_mac(efx);
1070

1071 1072 1073
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1074
/* Prevent efx_mac_work() and efx_monitor() from working */
1075 1076
static void efx_stop_port(struct efx_nic *efx)
{
1077
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1078 1079

	mutex_lock(&efx->mac_lock);
1080
	efx->port_enabled = false;
1081 1082 1083
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1084 1085
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1086 1087 1088 1089
}

static void efx_fini_port(struct efx_nic *efx)
{
1090
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1091 1092 1093 1094

	if (!efx->port_initialized)
		return;

1095
	efx->phy_op->fini(efx);
1096
	efx->port_initialized = false;
1097

1098
	efx->link_state.up = false;
1099 1100 1101 1102 1103
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1104
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1105

1106
	efx->type->remove_port(efx);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1122
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1123 1124 1125

	rc = pci_enable_device(pci_dev);
	if (rc) {
1126 1127
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1139 1140
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1141 1142 1143
			if (rc == 0)
				break;
		}
1144 1145 1146
		dma_mask >>= 1;
	}
	if (rc) {
1147 1148
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1149 1150
		goto fail2;
	}
1151 1152
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1153
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1154
	if (rc) {
1155 1156
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1157 1158
		 * but just in case...
		 */
1159 1160
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1161 1162 1163
		goto fail2;
	}

1164 1165
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1166
	if (rc) {
1167 1168
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1169 1170 1171
		rc = -EIO;
		goto fail3;
	}
1172 1173
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1174
	if (!efx->membase) {
1175 1176 1177 1178
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1179 1180 1181
		rc = -ENOMEM;
		goto fail4;
	}
1182 1183 1184 1185
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1186 1187 1188 1189

	return 0;

 fail4:
1190
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1191
 fail3:
1192
	efx->membase_phys = 0;
1193 1194 1195 1196 1197 1198 1199 1200
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1201
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1202 1203 1204 1205 1206 1207 1208

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1209
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1210
		efx->membase_phys = 0;
1211 1212 1213 1214 1215
	}

	pci_disable_device(efx->pci_dev);
}

1216
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1217
{
1218
	cpumask_var_t thread_mask;
1219
	unsigned int count;
1220
	int cpu;
1221

1222 1223 1224 1225 1226 1227 1228 1229
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1241 1242
	}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1254 1255 1256 1257 1258
	}

	return count;
}

1259 1260 1261 1262
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1263 1264
	unsigned int i;
	int rc;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1282 1283 1284
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1285
static int efx_probe_interrupts(struct efx_nic *efx)
1286
{
1287 1288
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1289 1290
	unsigned int extra_channels = 0;
	unsigned int i, j;
1291
	int rc;
1292

1293 1294 1295 1296
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1297
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1298
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1299
		unsigned int n_channels;
1300

1301
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1302 1303
		if (separate_tx_channels)
			n_channels *= 2;
1304
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1305
		n_channels = min(n_channels, max_channels);
1306

B
Ben Hutchings 已提交
1307
		for (i = 0; i < n_channels; i++)
1308
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1309
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1310
		if (rc > 0) {
1311 1312
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1313
				  " available (%d < %u).\n", rc, n_channels);
1314 1315
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1316 1317
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1318
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1319
					     n_channels);
1320 1321 1322
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1323
			efx->n_channels = n_channels;
1324 1325
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1326
			if (separate_tx_channels) {
1327 1328 1329 1330
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1331
			} else {
1332 1333
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1334
			}
1335 1336 1337 1338 1339
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1340
			for (i = 0; i < efx->n_channels; i++)
1341 1342
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1343 1344 1345
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1346 1347
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1348 1349 1350 1351 1352
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1353
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1354 1355
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1356 1357
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1358
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1359
		} else {
1360 1361
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1362 1363 1364 1365 1366 1367
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1368
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1369 1370
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1371 1372
		efx->legacy_irq = efx->pci_dev->irq;
	}
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1389
	/* RSS might be usable on VFs even if it is disabled on the PF */
1390
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1391 1392
			   efx->n_rx_channels : efx_vf_size(efx));

1393
	return 0;
1394 1395
}

1396
/* Enable interrupts, then probe and start the event queues */
1397
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1398 1399 1400
{
	struct efx_channel *channel;

1401 1402
	BUG_ON(efx->state == STATE_DISABLED);

1403 1404 1405 1406 1407
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1408 1409
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1410 1411 1412 1413 1414 1415
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1416
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1417 1418 1419
{
	struct efx_channel *channel;

1420 1421 1422
	if (efx->state == STATE_DISABLED)
		return;

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1436 1437
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1438 1439 1440
	}
}

1441 1442 1443 1444 1445
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1446
	efx_for_each_channel(channel, efx)
1447 1448 1449 1450 1451 1452 1453 1454
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1455
static void efx_set_channels(struct efx_nic *efx)
1456
{
1457 1458 1459
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1460
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1461
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1462

1463 1464
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1465 1466 1467
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1468 1469 1470 1471 1472
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1473 1474 1475 1476
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1477 1478 1479 1480
}

static int efx_probe_nic(struct efx_nic *efx)
{
1481
	size_t i;
1482 1483
	int rc;

1484
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1485 1486

	/* Carry out hardware-type specific initialisation */
1487
	rc = efx->type->probe(efx);
1488 1489 1490
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1491
	/* Determine the number of channels and queues by trying to hook
1492
	 * in MSI-X interrupts. */
1493 1494 1495
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1496

1497 1498
	efx->type->dimension_resources(efx);

1499 1500
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1501
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1502
		efx->rx_indir_table[i] =
1503
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1504

1505
	efx_set_channels(efx);
1506 1507
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1508 1509

	/* Initialise the interrupt moderation settings */
1510 1511
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1512 1513

	return 0;
1514 1515 1516 1517

fail:
	efx->type->remove(efx);
	return rc;
1518 1519 1520 1521
}

static void efx_remove_nic(struct efx_nic *efx)
{
1522
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1523 1524

	efx_remove_interrupts(efx);
1525
	efx->type->remove(efx);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1540
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1541 1542 1543 1544 1545
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1546
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1547 1548 1549
		goto fail2;
	}

1550 1551 1552 1553 1554
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1555
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1556

B
Ben Hutchings 已提交
1557 1558 1559 1560
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1561
		goto fail3;
B
Ben Hutchings 已提交
1562 1563
	}

1564 1565 1566 1567
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1568 1569
	return 0;

B
Ben Hutchings 已提交
1570
 fail4:
1571
	efx_remove_filters(efx);
1572 1573 1574 1575 1576 1577 1578 1579
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1580 1581 1582 1583 1584 1585
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1586
 */
1587 1588 1589
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1590
	BUG_ON(efx->state == STATE_DISABLED);
1591 1592 1593

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1594
	if (efx->port_enabled || !netif_running(efx->net_dev))
1595 1596 1597
		return;

	efx_start_port(efx);
1598
	efx_start_datapath(efx);
1599

1600 1601
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1602 1603
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1604 1605 1606 1607 1608

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1609 1610 1611 1612 1613
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1614

1615
	efx->type->start_stats(efx);
1616 1617 1618 1619 1620 1621 1622
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1623
	/* Make sure the hardware monitor and event self-test are stopped */
1624
	cancel_delayed_work_sync(&efx->monitor_work);
1625
	efx_selftest_async_cancel(efx);
1626
	/* Stop scheduled port reconfigurations */
1627
	cancel_work_sync(&efx->mac_work);
1628 1629
}

1630 1631 1632 1633 1634
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1635 1636 1637 1638 1639 1640 1641 1642
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1643
	efx->type->stop_stats(efx);
1644 1645
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1646
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1647 1648
	efx_flush_all(efx);

1649 1650 1651 1652 1653 1654
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1655 1656 1657
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1658 1659 1660 1661
}

static void efx_remove_all(struct efx_nic *efx)
{
1662
	efx_remove_channels(efx);
1663
	efx_remove_filters(efx);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1674
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1675
{
1676 1677
	if (usecs == 0)
		return 0;
1678
	if (usecs * 1000 < quantum_ns)
1679
		return 1; /* never round down to 0 */
1680
	return usecs * 1000 / quantum_ns;
1681 1682
}

1683
/* Set interrupt moderation parameters */
1684 1685 1686
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1687
{
1688
	struct efx_channel *channel;
1689 1690 1691 1692 1693
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1694 1695 1696

	EFX_ASSERT_RESET_SERIALISED(efx);

1697
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1698 1699
		return -EINVAL;

1700 1701 1702
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1703 1704 1705 1706 1707 1708 1709
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1710
	efx->irq_rx_adaptive = rx_adaptive;
1711
	efx->irq_rx_moderation = rx_ticks;
1712
	efx_for_each_channel(channel, efx) {
1713
		if (efx_channel_has_rx_queue(channel))
1714
			channel->irq_moderation = rx_ticks;
1715
		else if (efx_channel_has_tx_queues(channel))
1716 1717
			channel->irq_moderation = tx_ticks;
	}
1718 1719

	return 0;
1720 1721
}

1722 1723 1724
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1725 1726 1727 1728
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1729
	*rx_adaptive = efx->irq_rx_adaptive;
1730 1731 1732
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1733 1734 1735 1736 1737 1738 1739 1740

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1741
		*tx_usecs = DIV_ROUND_UP(
1742
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1743 1744
			efx->timer_quantum_ns,
			1000);
1745 1746
}

1747 1748 1749 1750 1751 1752
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1753
/* Run periodically off the general workqueue */
1754 1755 1756 1757 1758
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1759 1760 1761
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1762
	BUG_ON(efx->type->monitor == NULL);
1763 1764 1765

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1766 1767 1768 1769 1770 1771
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1788
	struct efx_nic *efx = netdev_priv(net_dev);
1789
	struct mii_ioctl_data *data = if_mii(ifr);
1790

1791 1792 1793
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1794 1795 1796 1797 1798 1799
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1800 1801 1802 1803 1804 1805 1806 1807
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1808 1809 1810 1811 1812 1813 1814 1815 1816
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1817
static void efx_init_napi(struct efx_nic *efx)
1818 1819 1820
{
	struct efx_channel *channel;

1821 1822
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1823 1824 1825 1826 1827 1828 1829
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1830 1831 1832 1833 1834 1835
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1836 1837
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1854
	struct efx_nic *efx = netdev_priv(net_dev);
1855 1856
	struct efx_channel *channel;

1857
	efx_for_each_channel(channel, efx)
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1872
	struct efx_nic *efx = netdev_priv(net_dev);
1873 1874
	int rc;

1875 1876
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1877

1878 1879 1880
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1881 1882
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1883 1884
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1885

1886 1887 1888 1889
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1890
	efx_start_all(efx);
1891
	efx_selftest_async_start(efx);
1892 1893 1894 1895 1896 1897 1898 1899 1900
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1901
	struct efx_nic *efx = netdev_priv(net_dev);
1902

1903 1904
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1905

1906 1907
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1908 1909 1910 1911

	return 0;
}

1912
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1913 1914
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1915
{
1916
	struct efx_nic *efx = netdev_priv(net_dev);
1917 1918
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1919
	spin_lock_bh(&efx->stats_lock);
1920

1921
	efx->type->update_stats(efx);
1922 1923 1924 1925 1926

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1927
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1945 1946
	spin_unlock_bh(&efx->stats_lock);

1947 1948 1949 1950 1951 1952
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1953
	struct efx_nic *efx = netdev_priv(net_dev);
1954

1955 1956 1957
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1958

1959
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1960 1961 1962 1963 1964 1965
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1966
	struct efx_nic *efx = netdev_priv(net_dev);
1967
	int rc;
1968

1969 1970 1971
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1972 1973 1974
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

1975
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1976

1977 1978 1979
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
1980
	mutex_lock(&efx->mac_lock);
1981
	net_dev->mtu = new_mtu;
1982
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1983 1984
	mutex_unlock(&efx->mac_lock);

1985
	efx_start_all(efx);
1986
	netif_device_attach(efx->net_dev);
1987
	return 0;
1988 1989 1990 1991
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1992
	struct efx_nic *efx = netdev_priv(net_dev);
1993 1994 1995 1996
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
1997 1998 1999
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2000
		return -EADDRNOTAVAIL;
2001 2002 2003
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2004
	efx_sriov_mac_address_changed(efx);
2005 2006

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2007
	mutex_lock(&efx->mac_lock);
2008
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2009
	mutex_unlock(&efx->mac_lock);
2010 2011 2012 2013

	return 0;
}

2014
/* Context: netif_addr_lock held, BHs disabled. */
2015
static void efx_set_rx_mode(struct net_device *net_dev)
2016
{
2017
	struct efx_nic *efx = netdev_priv(net_dev);
2018
	struct netdev_hw_addr *ha;
2019 2020 2021 2022
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2023
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2024 2025

	/* Build multicast hash table */
2026
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2027 2028 2029
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2030 2031
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2032
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2033
			__set_bit_le(bit, mc_hash);
2034 2035
		}

2036 2037 2038 2039
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2040
		__set_bit_le(0xff, mc_hash);
2041
	}
2042

2043 2044 2045
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2046 2047
}

2048
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2059 2060 2061
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2062
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2063 2064 2065 2066 2067 2068
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2069
	.ndo_set_rx_mode	= efx_set_rx_mode,
2070
	.ndo_set_features	= efx_set_features,
2071 2072 2073 2074 2075 2076
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2077 2078 2079
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2080
	.ndo_setup_tc		= efx_setup_tc,
2081 2082 2083
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2084 2085
};

2086 2087 2088 2089 2090 2091 2092
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2093 2094 2095
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2096
	struct net_device *net_dev = ptr;
2097

2098 2099 2100
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2101 2102 2103 2104 2105 2106 2107 2108

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2109 2110 2111 2112 2113 2114 2115 2116
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2117 2118 2119
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2120
	struct efx_channel *channel;
2121 2122 2123 2124
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2125
	net_dev->netdev_ops = &efx_netdev_ops;
2126
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2127
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2128

2129
	rtnl_lock();
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2144 2145 2146
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2147
	efx_update_name(efx);
2148

2149 2150 2151
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2152 2153 2154 2155
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2156 2157
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2158 2159
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2160 2161
	}

2162
	rtnl_unlock();
2163

B
Ben Hutchings 已提交
2164 2165
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2166 2167
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2168 2169 2170
		goto fail_registered;
	}

2171
	return 0;
B
Ben Hutchings 已提交
2172

2173 2174 2175
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2176
fail_locked:
2177
	efx->state = STATE_UNINIT;
2178
	rtnl_unlock();
2179
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2180
	return rc;
2181 2182 2183 2184
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2185
	struct efx_channel *channel;
2186 2187 2188 2189 2190
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2191
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2192 2193 2194 2195

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2196 2197 2198 2199
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2200

2201 2202
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2203 2204 2205 2206 2207

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2208 2209 2210 2211 2212 2213 2214 2215
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2216 2217
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2218
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2219 2220 2221
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2222
	efx_stop_all(efx);
2223
	efx_stop_interrupts(efx, false);
2224 2225

	mutex_lock(&efx->mac_lock);
2226 2227
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2228
	efx->type->fini(efx);
2229 2230
}

B
Ben Hutchings 已提交
2231 2232 2233 2234 2235
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2236
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2237 2238 2239
{
	int rc;

B
Ben Hutchings 已提交
2240
	EFX_ASSERT_RESET_SERIALISED(efx);
2241

2242
	rc = efx->type->init(efx);
2243
	if (rc) {
2244
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2245
		goto fail;
2246 2247
	}

2248 2249 2250
	if (!ok)
		goto fail;

2251
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2252 2253 2254 2255
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2256 2257
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2258 2259
	}

2260
	efx->type->reconfigure_mac(efx);
2261

2262
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2263
	efx_restore_filters(efx);
2264
	efx_sriov_reset(efx);
2265 2266 2267 2268 2269 2270 2271 2272 2273

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2274 2275 2276

	mutex_unlock(&efx->mac_lock);

2277 2278 2279
	return rc;
}

2280 2281
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2282
 *
2283
 * Caller must hold the rtnl_lock.
2284
 */
2285
int efx_reset(struct efx_nic *efx, enum reset_type method)
2286
{
2287 2288
	int rc, rc2;
	bool disabled;
2289

2290 2291
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2292

2293
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2294
	efx_reset_down(efx, method);
2295

2296
	rc = efx->type->reset(efx, method);
2297
	if (rc) {
2298
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2299
		goto out;
2300 2301
	}

2302 2303 2304 2305
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2306 2307 2308 2309 2310 2311 2312

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2313
out:
2314
	/* Leave device stopped if necessary */
2315 2316 2317
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2318 2319 2320 2321 2322
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2323 2324
	}

2325
	if (disabled) {
2326
		dev_close(efx->net_dev);
2327
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2328 2329
		efx->state = STATE_DISABLED;
	} else {
2330
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2331
		netif_device_attach(efx->net_dev);
2332
	}
2333 2334 2335
	return rc;
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
static int efx_try_recovery(struct efx_nic *efx)
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2362 2363 2364 2365 2366
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2367
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2378

2379
	if (!pending)
2380 2381
		return;

2382
	rtnl_lock();
2383 2384 2385 2386 2387 2388

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2389
		(void)efx_reset(efx, method);
2390

2391
	rtnl_unlock();
2392 2393 2394 2395 2396 2397
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2398 2399 2400 2401 2402 2403 2404
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2405 2406 2407
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2408
	case RESET_TYPE_RECOVER_OR_ALL:
2409 2410
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2411
	case RESET_TYPE_RECOVER_OR_DISABLE:
2412
		method = type;
2413 2414
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2415 2416
		break;
	default:
2417
		method = efx->type->map_reset_reason(type);
2418 2419 2420
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2421 2422
		break;
	}
2423

2424
	set_bit(method, &efx->reset_pending);
2425 2426 2427 2428 2429 2430 2431
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2432

2433 2434 2435 2436
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2437
	queue_work(reset_workqueue, &efx->reset_work);
2438 2439 2440 2441 2442 2443 2444 2445 2446
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2447
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2448 2449
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2450
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2451 2452
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2453
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2454
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2455
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2456
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2457
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2458 2459 2460 2461 2462
	{0}			/* end of list */
};

/**************************************************************************
 *
2463
 * Dummy PHY/MAC operations
2464
 *
2465
 * Can be used for some unimplemented operations
2466 2467 2468 2469 2470 2471 2472 2473 2474
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2475 2476

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2477 2478 2479
{
	return false;
}
2480

2481
static const struct efx_phy_operations efx_dummy_phy_operations = {
2482
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2483
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2484
	.poll		 = efx_port_dummy_op_poll,
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2497
static int efx_init_struct(struct efx_nic *efx,
2498 2499
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2500
	int i;
2501 2502 2503

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2504 2505 2506
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2507 2508
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2509
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2510
	efx->pci_dev = pci_dev;
2511
	efx->msg_enable = debug;
2512
	efx->state = STATE_UNINIT;
2513 2514 2515 2516 2517 2518
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2519
	efx->mdio.dev = net_dev;
2520
	INIT_WORK(&efx->mac_work, efx_mac_work);
2521
	init_waitqueue_head(&efx->flush_wq);
2522 2523

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2524 2525 2526
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2527 2528 2529 2530 2531 2532 2533 2534
	}

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2535 2536 2537 2538
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2539
	if (!efx->workqueue)
2540
		goto fail;
2541

2542
	return 0;
2543 2544 2545 2546

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2547 2548 2549 2550
}

static void efx_fini_struct(struct efx_nic *efx)
{
2551 2552 2553 2554 2555
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2573 2574 2575 2576 2577 2578
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

2579 2580 2581 2582
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2583
	efx_stop_interrupts(efx, false);
2584
	efx_nic_fini_interrupt(efx);
2585
	efx_fini_port(efx);
2586
	efx->type->fini(efx);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
2605
	efx_stop_interrupts(efx, false);
2606 2607
	rtnl_unlock();

2608
	efx_sriov_fini(efx);
2609 2610
	efx_unregister_netdev(efx);

2611 2612
	efx_mtd_remove(efx);

2613 2614 2615
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2616
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2617 2618

	efx_fini_struct(efx);
2619
	pci_set_drvdata(pci_dev, NULL);
2620
	free_netdev(efx->net_dev);
2621 2622

	pci_disable_pcie_error_reporting(pci_dev);
2623 2624
};

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2688
	efx_init_napi(efx);
2689

2690
	rc = efx->type->init(efx);
2691
	if (rc) {
2692 2693
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2694
		goto fail3;
2695 2696 2697 2698
	}

	rc = efx_init_port(efx);
	if (rc) {
2699 2700
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2701
		goto fail4;
2702 2703
	}

2704
	rc = efx_nic_init_interrupt(efx);
2705
	if (rc)
2706
		goto fail5;
2707
	efx_start_interrupts(efx, false);
2708 2709 2710

	return 0;

2711
 fail5:
2712 2713
	efx_fini_port(efx);
 fail4:
2714
	efx->type->fini(efx);
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2725
 * theoretically).  It sets up PCI mappings, resets the NIC,
2726 2727 2728 2729 2730
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2731
static int efx_pci_probe(struct pci_dev *pci_dev,
2732
			 const struct pci_device_id *entry)
2733 2734 2735
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2736
	int rc;
2737 2738

	/* Allocate and initialise a struct net_device and struct efx_nic */
2739 2740
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2741 2742
	if (!net_dev)
		return -ENOMEM;
2743 2744 2745
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2746
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2747
			      NETIF_F_RXCSUM);
2748
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2749
		net_dev->features |= NETIF_F_TSO6;
2750 2751
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2752 2753 2754 2755
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2756
	pci_set_drvdata(pci_dev, efx);
2757
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2758
	rc = efx_init_struct(efx, pci_dev, net_dev);
2759 2760 2761
	if (rc)
		goto fail1;

2762
	netif_info(efx, probe, efx->net_dev,
2763
		   "Solarflare NIC detected\n");
2764

2765 2766
	efx_print_product_vpd(efx);

2767 2768 2769 2770 2771
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2772 2773 2774
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2775 2776 2777

	rc = efx_register_netdev(efx);
	if (rc)
2778
		goto fail4;
2779

2780 2781 2782 2783 2784
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2785
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2786

2787
	/* Try to create MTDs, but allow this to fail */
2788
	rtnl_lock();
2789
	rc = efx_mtd_probe(efx);
2790
	rtnl_unlock();
2791 2792 2793 2794
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2795 2796 2797 2798 2799
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2800 2801 2802
	return 0;

 fail4:
2803
	efx_pci_remove_main(efx);
2804 2805 2806 2807 2808
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2809
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2810
	WARN_ON(rc > 0);
2811
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2812 2813 2814 2815
	free_netdev(net_dev);
	return rc;
}

2816 2817 2818 2819
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2820 2821
	rtnl_lock();

2822 2823
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2824

2825
		efx_device_detach_sync(efx);
2826

2827 2828 2829
		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);
	}
2830

2831 2832
	rtnl_unlock();

2833 2834 2835 2836 2837 2838 2839
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2840 2841
	rtnl_lock();

2842 2843
	if (efx->state != STATE_DISABLED) {
		efx_start_interrupts(efx, false);
2844

2845 2846 2847
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2848

2849
		efx_start_all(efx);
2850

2851
		netif_device_attach(efx->net_dev);
2852

2853
		efx->state = STATE_READY;
2854

2855 2856
		efx->type->resume_wol(efx);
	}
2857

2858 2859
	rtnl_unlock();

2860 2861 2862
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2873
	efx->reset_pending = 0;
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2915
static const struct dev_pm_ops efx_pm_ops = {
2916 2917 2918 2919 2920 2921 2922 2923
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
				       enum pci_channel_state state)
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3023
static struct pci_driver efx_pci_driver = {
3024
	.name		= KBUILD_MODNAME,
3025 3026 3027
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3028
	.driver.pm	= &efx_pm_ops,
3029
	.err_handler	= &efx_err_handlers,
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3052 3053 3054 3055
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3056 3057 3058 3059 3060
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3061 3062 3063 3064 3065 3066 3067 3068

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3069 3070
	destroy_workqueue(reset_workqueue);
 err_reset:
3071 3072
	efx_fini_sriov();
 err_sriov:
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3083
	destroy_workqueue(reset_workqueue);
3084
	efx_fini_sriov();
3085 3086 3087 3088 3089 3090 3091
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3092 3093
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3094 3095 3096
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);