efx.c 75.8 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82 83
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85 86
};

87 88
#define EFX_MAX_MTU (9 * 1024)

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100 101 102 103
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
104 105
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
106
 *
107
 * This is only used in MSI-X interrupt mode
108
 */
109 110
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
111 112
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
113 114 115 116 117 118 119

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
120 121 122
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123
 */
S
stephen hemminger 已提交
124
static unsigned int efx_monitor_interval = 1 * HZ;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157
 * The default (0) means to assign an interrupt to each core.
158 159 160 161 162
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

163 164
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
165 166
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

167
static unsigned irq_adapt_low_thresh = 8000;
168 169 170 171
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

172
static unsigned irq_adapt_high_thresh = 16000;
173 174 175 176
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

177 178 179 180 181 182 183
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

184 185 186 187 188
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
189

190 191 192
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
193
static void efx_remove_channels(struct efx_nic *efx);
194
static const struct efx_channel_type efx_default_channel_type;
195
static void efx_remove_port(struct efx_nic *efx);
196
static void efx_init_napi_channel(struct efx_channel *channel);
197
static void efx_fini_napi(struct efx_nic *efx);
198
static void efx_fini_napi_channel(struct efx_channel *channel);
199 200 201
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
202 203 204

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
205
		if ((efx->state == STATE_READY) ||	\
206
		    (efx->state == STATE_DISABLED))	\
207 208 209
			ASSERT_RTNL();			\
	} while (0)

210 211 212 213 214 215 216 217 218 219
static int efx_check_disabled(struct efx_nic *efx)
{
	if (efx->state == STATE_DISABLED) {
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

220 221 222 223 224 225 226 227 228 229 230 231 232
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
233
static int efx_process_channel(struct efx_channel *channel, int budget)
234
{
235
	int spent;
236

237
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
238
		return 0;
239

240
	spent = efx_nic_process_eventq(channel, budget);
241 242 243 244 245 246 247 248 249
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
250
		if (rx_queue->enabled)
251
			efx_fast_push_rx_descriptors(rx_queue);
252 253
	}

254
	return spent;
255 256 257 258 259 260 261 262 263 264
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
265 266 267
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
268
	channel->work_pending = false;
269 270
	smp_wmb();

271
	efx_nic_eventq_read_ack(channel);
272 273 274 275 276 277 278 279 280 281 282
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
283
	struct efx_nic *efx = channel->efx;
284
	int spent;
285

286 287 288
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
289

290
	spent = efx_process_channel(channel, budget);
291

292
	if (spent < budget) {
293
		if (efx_channel_has_rx_queue(channel) &&
294 295 296 297
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
298 299
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
300
					efx->type->push_irq_moderation(channel);
301
				}
302 303
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
304 305 306
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
307
					efx->type->push_irq_moderation(channel);
308
				}
309 310 311 312 313
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

314 315
		efx_filter_rfs_expire(channel);

316
		/* There is no race here; although napi_disable() will
317
		 * only wait for napi_complete(), this isn't a problem
318 319 320
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
321
		napi_complete(napi);
322 323 324
		efx_channel_processed(channel);
	}

325
	return spent;
326 327 328 329 330 331 332 333
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
334 335
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
336 337 338 339 340
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

341
	BUG_ON(channel->channel >= efx->n_channels);
342
	BUG_ON(!channel->enabled);
343
	BUG_ON(!efx->loopback_selftest);
344 345

	/* Disable interrupts and wait for ISRs to complete */
346
	efx_nic_disable_interrupts(efx);
347
	if (efx->legacy_irq) {
348
		synchronize_irq(efx->legacy_irq);
349 350
		efx->legacy_irq_enabled = false;
	}
351
	if (channel->irq)
352 353 354 355 356 357
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
358
	efx_process_channel(channel, channel->eventq_mask + 1);
359 360 361 362 363 364

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
365 366
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
367
	efx_nic_enable_interrupts(efx);
368 369 370 371 372 373 374 375 376
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
377 378 379
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

380
	netif_dbg(efx, probe, efx->net_dev,
381
		  "chan %d create event queue\n", channel->channel);
382

383 384 385 386 387 388
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

389
	return efx_nic_probe_eventq(channel);
390 391 392
}

/* Prepare channel's event queue */
393
static void efx_init_eventq(struct efx_channel *channel)
394
{
395 396
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
397 398 399

	channel->eventq_read_ptr = 0;

400
	efx_nic_init_eventq(channel);
401 402
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

431 432
static void efx_fini_eventq(struct efx_channel *channel)
{
433 434
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
435

436
	efx_nic_fini_eventq(channel);
437 438 439 440
}

static void efx_remove_eventq(struct efx_channel *channel)
{
441 442
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
443

444
	efx_nic_remove_eventq(channel);
445 446 447 448 449 450 451 452
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

453
/* Allocate and initialise a channel structure. */
454 455 456 457 458 459 460 461
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

462 463 464
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
465

466 467 468
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
469

470 471 472 473 474 475
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
476

477 478 479 480
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
481

482 483 484 485 486 487 488 489 490 491 492 493 494
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
495

496 497 498 499 500 501 502 503
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
504

505 506 507
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
508
			tx_queue->channel = channel;
509 510
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
511 512 513
	}

	rx_queue = &channel->rx_queue;
514 515
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
516 517 518 519 520 521
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

522 523 524 525 526 527
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

528 529
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
530

531 532 533 534
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

535 536
	rc = efx_probe_eventq(channel);
	if (rc)
537
		goto fail;
538 539 540 541

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
542
			goto fail;
543 544 545 546 547
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
548
			goto fail;
549 550 551 552 553 554
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

555 556
fail:
	efx_remove_channel(channel);
557 558 559
	return rc;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
578

579 580 581 582
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

583 584 585 586
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
587 588
}

589 590 591 592 593 594 595 596
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

597 598 599 600 601 602
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

620 621 622 623
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
624
static void efx_start_datapath(struct efx_nic *efx)
625 626 627 628 629
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

630 631 632 633 634 635
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
636
			      efx->type->rx_buffer_hash_size +
637
			      efx->type->rx_buffer_padding);
638 639
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
640

641 642 643 644 645 646 647 648 649 650
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

651 652
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
653 654
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
655

656
		efx_for_each_channel_rx_queue(rx_queue, channel) {
657
			efx_init_rx_queue(rx_queue);
658 659
			efx_nic_generate_fill_event(rx_queue);
		}
660 661 662 663

		WARN_ON(channel->rx_pkt != NULL);
	}

664 665
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
666 667
}

668
static void efx_stop_datapath(struct efx_nic *efx)
669 670 671 672
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
673
	struct pci_dev *dev = efx->pci_dev;
674
	int rc;
675 676 677 678

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	/* Only perform flush if dma is enabled */
	if (dev->is_busmaster) {
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
697
	}
698

699
	efx_for_each_channel(channel, efx) {
700 701 702 703 704 705 706 707 708 709
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
710 711 712

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
713
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
714 715 716 717 718 719 720 721 722
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

723 724
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
725 726 727

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
728
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
729 730
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
731
	channel->type->post_remove(channel);
732 733
}

734 735 736 737 738 739 740 741 742 743 744 745 746
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
747
	unsigned i, next_buffer_table = 0;
748 749 750 751 752
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
775

776
	efx_device_detach_sync(efx);
777
	efx_stop_all(efx);
778
	efx_stop_interrupts(efx, true);
779

780
	/* Clone channels (where possible) */
781 782
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
783 784 785
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

804 805
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
806 807

	for (i = 0; i < efx->n_channels; i++) {
808 809 810 811 812 813 814
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
815
	}
816

817
out:
818 819 820 821 822 823 824 825 826
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
827

828
	efx_start_interrupts(efx, true);
829
	efx_start_all(efx);
830
	netif_device_attach(efx->net_dev);
831 832 833 834 835 836 837 838 839 840 841 842 843 844
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

845
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
846
{
847
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
848 849
}

850 851
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
852
	.post_remove		= efx_channel_dummy_op_void,
853 854 855 856 857 858 859 860 861 862
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

863 864 865 866
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

867 868 869 870 871 872 873 874 875 876
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
877
void efx_link_status_changed(struct efx_nic *efx)
878
{
879 880
	struct efx_link_state *link_state = &efx->link_state;

881 882 883 884 885 886 887
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

888
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
889 890
		efx->n_link_state_changes++;

891
		if (link_state->up)
892 893 894 895 896 897
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
898
	if (link_state->up)
899 900 901 902 903
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
904
	else
905
		netif_info(efx, link, efx->net_dev, "link down\n");
906 907
}

B
Ben Hutchings 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

921
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

936 937
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
938 939 940 941 942 943 944 945
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
946
{
B
Ben Hutchings 已提交
947 948
	enum efx_phy_mode phy_mode;
	int rc;
949

B
Ben Hutchings 已提交
950
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
951

952
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
953 954
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
955

B
Ben Hutchings 已提交
956 957
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
958 959 960 961 962
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
963
	rc = efx->type->reconfigure_port(efx);
964

B
Ben Hutchings 已提交
965 966
	if (rc)
		efx->phy_mode = phy_mode;
967

B
Ben Hutchings 已提交
968
	return rc;
969 970 971 972
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
973
int efx_reconfigure_port(struct efx_nic *efx)
974
{
B
Ben Hutchings 已提交
975 976
	int rc;

977 978 979
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
980
	rc = __efx_reconfigure_port(efx);
981
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
982 983

	return rc;
984 985
}

986 987 988
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
989 990 991 992 993
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
994
	if (efx->port_enabled)
995
		efx->type->reconfigure_mac(efx);
996 997 998
	mutex_unlock(&efx->mac_lock);
}

999 1000 1001 1002
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1003
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1004

1005 1006 1007
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1008 1009
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1010
	if (rc)
1011
		return rc;
1012

1013 1014
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1015 1016 1017 1018 1019 1020 1021 1022

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1023
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1024

1025 1026
	mutex_lock(&efx->mac_lock);

1027
	rc = efx->phy_op->init(efx);
1028
	if (rc)
1029
		goto fail1;
1030

1031
	efx->port_initialized = true;
1032

B
Ben Hutchings 已提交
1033 1034
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1035
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1036 1037 1038 1039 1040 1041

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1042
	mutex_unlock(&efx->mac_lock);
1043
	return 0;
1044

1045
fail2:
1046
	efx->phy_op->fini(efx);
1047 1048
fail1:
	mutex_unlock(&efx->mac_lock);
1049
	return rc;
1050 1051 1052 1053
}

static void efx_start_port(struct efx_nic *efx)
{
1054
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1055 1056 1057
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1058
	efx->port_enabled = true;
1059 1060 1061

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1062
	efx->type->reconfigure_mac(efx);
1063

1064 1065 1066
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1067
/* Prevent efx_mac_work() and efx_monitor() from working */
1068 1069
static void efx_stop_port(struct efx_nic *efx)
{
1070
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1071 1072

	mutex_lock(&efx->mac_lock);
1073
	efx->port_enabled = false;
1074 1075 1076
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1077 1078
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1079 1080 1081 1082
}

static void efx_fini_port(struct efx_nic *efx)
{
1083
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1084 1085 1086 1087

	if (!efx->port_initialized)
		return;

1088
	efx->phy_op->fini(efx);
1089
	efx->port_initialized = false;
1090

1091
	efx->link_state.up = false;
1092 1093 1094 1095 1096
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1097
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1098

1099
	efx->type->remove_port(efx);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1115
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1116 1117 1118

	rc = pci_enable_device(pci_dev);
	if (rc) {
1119 1120
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1132 1133
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1134 1135 1136
			if (rc == 0)
				break;
		}
1137 1138 1139
		dma_mask >>= 1;
	}
	if (rc) {
1140 1141
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1142 1143
		goto fail2;
	}
1144 1145
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1146
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1147
	if (rc) {
1148 1149
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1150 1151
		 * but just in case...
		 */
1152 1153
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1154 1155 1156
		goto fail2;
	}

1157 1158
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1159
	if (rc) {
1160 1161
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1162 1163 1164
		rc = -EIO;
		goto fail3;
	}
1165 1166
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1167
	if (!efx->membase) {
1168 1169 1170 1171
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1172 1173 1174
		rc = -ENOMEM;
		goto fail4;
	}
1175 1176 1177 1178
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1179 1180 1181 1182

	return 0;

 fail4:
1183
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1184
 fail3:
1185
	efx->membase_phys = 0;
1186 1187 1188 1189 1190 1191 1192 1193
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1194
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1195 1196 1197 1198 1199 1200 1201

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1202
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1203
		efx->membase_phys = 0;
1204 1205 1206 1207 1208
	}

	pci_disable_device(efx->pci_dev);
}

1209
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1210
{
1211
	cpumask_var_t thread_mask;
1212
	unsigned int count;
1213
	int cpu;
1214

1215 1216 1217 1218 1219 1220 1221 1222
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1234 1235
	}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1247 1248 1249 1250 1251
	}

	return count;
}

1252 1253 1254 1255
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1256 1257
	unsigned int i;
	int rc;
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1275 1276 1277
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1278
static int efx_probe_interrupts(struct efx_nic *efx)
1279
{
1280 1281
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1282 1283
	unsigned int extra_channels = 0;
	unsigned int i, j;
1284
	int rc;
1285

1286 1287 1288 1289
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1290
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1291
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1292
		unsigned int n_channels;
1293

1294
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1295 1296
		if (separate_tx_channels)
			n_channels *= 2;
1297
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1298
		n_channels = min(n_channels, max_channels);
1299

B
Ben Hutchings 已提交
1300
		for (i = 0; i < n_channels; i++)
1301
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1302
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1303
		if (rc > 0) {
1304 1305
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1306
				  " available (%d < %u).\n", rc, n_channels);
1307 1308
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1309 1310
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1311
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1312
					     n_channels);
1313 1314 1315
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1316
			efx->n_channels = n_channels;
1317 1318
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1319
			if (separate_tx_channels) {
1320 1321 1322 1323
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1324
			} else {
1325 1326
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1327
			}
1328 1329 1330 1331 1332
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1333
			for (i = 0; i < efx->n_channels; i++)
1334 1335
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1336 1337 1338
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1339 1340
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1341 1342 1343 1344 1345
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1346
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1347 1348
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1349 1350
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1351
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1352
		} else {
1353 1354
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1355 1356 1357 1358 1359 1360
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1361
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1362 1363
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1364 1365
		efx->legacy_irq = efx->pci_dev->irq;
	}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1382
	/* RSS might be usable on VFs even if it is disabled on the PF */
1383
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1384 1385
			   efx->n_rx_channels : efx_vf_size(efx));

1386
	return 0;
1387 1388
}

1389
/* Enable interrupts, then probe and start the event queues */
1390
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1391 1392 1393
{
	struct efx_channel *channel;

1394 1395
	BUG_ON(efx->state == STATE_DISABLED);

1396 1397 1398 1399 1400
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1401 1402
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1403 1404 1405 1406 1407 1408
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1409
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1410 1411 1412
{
	struct efx_channel *channel;

1413 1414 1415
	if (efx->state == STATE_DISABLED)
		return;

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1429 1430
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1431 1432 1433
	}
}

1434 1435 1436 1437 1438
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1439
	efx_for_each_channel(channel, efx)
1440 1441 1442 1443 1444 1445 1446 1447
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1448
static void efx_set_channels(struct efx_nic *efx)
1449
{
1450 1451 1452
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1453
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1454
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1455

1456 1457
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1458 1459 1460
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1461 1462 1463 1464 1465
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1466 1467 1468 1469
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1470 1471 1472 1473
}

static int efx_probe_nic(struct efx_nic *efx)
{
1474
	size_t i;
1475 1476
	int rc;

1477
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1478 1479

	/* Carry out hardware-type specific initialisation */
1480
	rc = efx->type->probe(efx);
1481 1482 1483
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1484
	/* Determine the number of channels and queues by trying to hook
1485
	 * in MSI-X interrupts. */
1486 1487 1488
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1489

1490 1491
	efx->type->dimension_resources(efx);

1492 1493
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1494
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1495
		efx->rx_indir_table[i] =
1496
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1497

1498
	efx_set_channels(efx);
1499 1500
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1501 1502

	/* Initialise the interrupt moderation settings */
1503 1504
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1505 1506

	return 0;
1507 1508 1509 1510

fail:
	efx->type->remove(efx);
	return rc;
1511 1512 1513 1514
}

static void efx_remove_nic(struct efx_nic *efx)
{
1515
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1516 1517

	efx_remove_interrupts(efx);
1518
	efx->type->remove(efx);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1533
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1534 1535 1536 1537 1538
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1539
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1540 1541 1542
		goto fail2;
	}

1543 1544 1545 1546 1547
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1548
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1549

B
Ben Hutchings 已提交
1550 1551 1552 1553
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1554
		goto fail3;
B
Ben Hutchings 已提交
1555 1556
	}

1557 1558 1559 1560
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1561 1562
	return 0;

B
Ben Hutchings 已提交
1563
 fail4:
1564
	efx_remove_filters(efx);
1565 1566 1567 1568 1569 1570 1571 1572
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1573 1574 1575 1576 1577 1578
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1579
 */
1580 1581 1582
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1583
	BUG_ON(efx->state == STATE_DISABLED);
1584 1585 1586

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1587
	if (efx->port_enabled || !netif_running(efx->net_dev))
1588 1589 1590
		return;

	efx_start_port(efx);
1591
	efx_start_datapath(efx);
1592

1593 1594 1595 1596
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1597 1598
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1599 1600 1601 1602 1603 1604
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1605

1606
	efx->type->start_stats(efx);
1607 1608 1609 1610 1611 1612 1613
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1614
	/* Make sure the hardware monitor and event self-test are stopped */
1615
	cancel_delayed_work_sync(&efx->monitor_work);
1616
	efx_selftest_async_cancel(efx);
1617
	/* Stop scheduled port reconfigurations */
1618
	cancel_work_sync(&efx->mac_work);
1619 1620
}

1621 1622 1623 1624 1625
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1626 1627 1628 1629 1630 1631 1632 1633
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1634
	efx->type->stop_stats(efx);
1635 1636
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1637
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1638 1639
	efx_flush_all(efx);

1640 1641 1642 1643 1644 1645
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1646 1647 1648
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1649 1650 1651 1652
}

static void efx_remove_all(struct efx_nic *efx)
{
1653
	efx_remove_channels(efx);
1654
	efx_remove_filters(efx);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1665
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1666
{
1667 1668
	if (usecs == 0)
		return 0;
1669
	if (usecs * 1000 < quantum_ns)
1670
		return 1; /* never round down to 0 */
1671
	return usecs * 1000 / quantum_ns;
1672 1673
}

1674
/* Set interrupt moderation parameters */
1675 1676 1677
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1678
{
1679
	struct efx_channel *channel;
1680 1681 1682 1683 1684
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1685 1686 1687

	EFX_ASSERT_RESET_SERIALISED(efx);

1688
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1689 1690
		return -EINVAL;

1691 1692 1693
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1694 1695 1696 1697 1698 1699 1700
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1701
	efx->irq_rx_adaptive = rx_adaptive;
1702
	efx->irq_rx_moderation = rx_ticks;
1703
	efx_for_each_channel(channel, efx) {
1704
		if (efx_channel_has_rx_queue(channel))
1705
			channel->irq_moderation = rx_ticks;
1706
		else if (efx_channel_has_tx_queues(channel))
1707 1708
			channel->irq_moderation = tx_ticks;
	}
1709 1710

	return 0;
1711 1712
}

1713 1714 1715
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1716 1717 1718 1719
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1720
	*rx_adaptive = efx->irq_rx_adaptive;
1721 1722 1723
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1724 1725 1726 1727 1728 1729 1730 1731

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1732
		*tx_usecs = DIV_ROUND_UP(
1733
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1734 1735
			efx->timer_quantum_ns,
			1000);
1736 1737
}

1738 1739 1740 1741 1742 1743
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1744
/* Run periodically off the general workqueue */
1745 1746 1747 1748 1749
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1750 1751 1752
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1753
	BUG_ON(efx->type->monitor == NULL);
1754 1755 1756

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1757 1758 1759 1760 1761 1762
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1779
	struct efx_nic *efx = netdev_priv(net_dev);
1780
	struct mii_ioctl_data *data = if_mii(ifr);
1781

1782 1783 1784
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1785 1786 1787 1788 1789 1790
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1791 1792 1793 1794 1795 1796 1797 1798
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1799 1800 1801 1802 1803 1804 1805 1806 1807
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1808
static void efx_init_napi(struct efx_nic *efx)
1809 1810 1811
{
	struct efx_channel *channel;

1812 1813
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1814 1815 1816 1817 1818 1819 1820
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1821 1822 1823 1824 1825 1826
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1827 1828
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1845
	struct efx_nic *efx = netdev_priv(net_dev);
1846 1847
	struct efx_channel *channel;

1848
	efx_for_each_channel(channel, efx)
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1863
	struct efx_nic *efx = netdev_priv(net_dev);
1864 1865
	int rc;

1866 1867
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1868

1869 1870 1871
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1872 1873
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1874 1875
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1876

1877 1878 1879 1880
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1881
	efx_start_all(efx);
1882
	efx_selftest_async_start(efx);
1883 1884 1885 1886 1887 1888 1889 1890 1891
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1892
	struct efx_nic *efx = netdev_priv(net_dev);
1893

1894 1895
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1896

1897 1898
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1899 1900 1901 1902

	return 0;
}

1903
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1904 1905
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1906
{
1907
	struct efx_nic *efx = netdev_priv(net_dev);
1908 1909
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1910
	spin_lock_bh(&efx->stats_lock);
1911

1912
	efx->type->update_stats(efx);
1913 1914 1915 1916 1917

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1918
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1936 1937
	spin_unlock_bh(&efx->stats_lock);

1938 1939 1940 1941 1942 1943
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1944
	struct efx_nic *efx = netdev_priv(net_dev);
1945

1946 1947 1948
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1949

1950
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1951 1952 1953 1954 1955 1956
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1957
	struct efx_nic *efx = netdev_priv(net_dev);
1958
	int rc;
1959

1960 1961 1962
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1963 1964 1965
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

1966
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1967

1968 1969 1970
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
1971
	mutex_lock(&efx->mac_lock);
1972
	net_dev->mtu = new_mtu;
1973
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1974 1975
	mutex_unlock(&efx->mac_lock);

1976
	efx_start_all(efx);
1977
	netif_device_attach(efx->net_dev);
1978
	return 0;
1979 1980 1981 1982
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1983
	struct efx_nic *efx = netdev_priv(net_dev);
1984 1985 1986 1987
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
1988 1989 1990
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1991
		return -EADDRNOTAVAIL;
1992 1993 1994
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1995
	efx_sriov_mac_address_changed(efx);
1996 1997

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1998
	mutex_lock(&efx->mac_lock);
1999
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2000
	mutex_unlock(&efx->mac_lock);
2001 2002 2003 2004

	return 0;
}

2005
/* Context: netif_addr_lock held, BHs disabled. */
2006
static void efx_set_rx_mode(struct net_device *net_dev)
2007
{
2008
	struct efx_nic *efx = netdev_priv(net_dev);
2009
	struct netdev_hw_addr *ha;
2010 2011 2012 2013
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2014
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2015 2016

	/* Build multicast hash table */
2017
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2018 2019 2020
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2021 2022
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2023
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2024
			__set_bit_le(bit, mc_hash);
2025 2026
		}

2027 2028 2029 2030
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2031
		__set_bit_le(0xff, mc_hash);
2032
	}
2033

2034 2035 2036
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2037 2038
}

2039
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2050 2051 2052
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2053
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2054 2055 2056 2057 2058 2059
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2060
	.ndo_set_rx_mode	= efx_set_rx_mode,
2061
	.ndo_set_features	= efx_set_features,
2062 2063 2064 2065 2066 2067
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2068 2069 2070
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2071
	.ndo_setup_tc		= efx_setup_tc,
2072 2073 2074
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2075 2076
};

2077 2078 2079 2080 2081 2082 2083
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2084 2085 2086
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2087
	struct net_device *net_dev = ptr;
2088

2089 2090 2091
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2092 2093 2094 2095 2096 2097 2098 2099

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2100 2101 2102 2103 2104 2105 2106 2107
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2108 2109 2110
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2111
	struct efx_channel *channel;
2112 2113 2114 2115
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2116
	net_dev->netdev_ops = &efx_netdev_ops;
2117
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2118
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2119

2120
	rtnl_lock();
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2135 2136 2137
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2138
	efx_update_name(efx);
2139

2140 2141 2142
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2143 2144 2145 2146
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2147 2148
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2149 2150
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2151 2152
	}

2153
	rtnl_unlock();
2154

B
Ben Hutchings 已提交
2155 2156
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2157 2158
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2159 2160 2161
		goto fail_registered;
	}

2162
	return 0;
B
Ben Hutchings 已提交
2163

2164 2165 2166
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2167
fail_locked:
2168
	efx->state = STATE_UNINIT;
2169
	rtnl_unlock();
2170
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2171
	return rc;
2172 2173 2174 2175
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2176
	struct efx_channel *channel;
2177 2178 2179 2180 2181
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2182
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2183 2184 2185 2186

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2187 2188 2189 2190
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2191

2192 2193
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2194 2195 2196 2197 2198

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2199 2200 2201 2202 2203 2204 2205 2206
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2207 2208
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2209
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2210 2211 2212
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2213
	efx_stop_all(efx);
2214
	efx_stop_interrupts(efx, false);
2215 2216

	mutex_lock(&efx->mac_lock);
2217 2218
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2219
	efx->type->fini(efx);
2220 2221
}

B
Ben Hutchings 已提交
2222 2223 2224 2225 2226
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2227
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2228 2229 2230
{
	int rc;

B
Ben Hutchings 已提交
2231
	EFX_ASSERT_RESET_SERIALISED(efx);
2232

2233
	rc = efx->type->init(efx);
2234
	if (rc) {
2235
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2236
		goto fail;
2237 2238
	}

2239 2240 2241
	if (!ok)
		goto fail;

2242
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2243 2244 2245 2246
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2247 2248
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2249 2250
	}

2251
	efx->type->reconfigure_mac(efx);
2252

2253
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2254
	efx_restore_filters(efx);
2255
	efx_sriov_reset(efx);
2256 2257 2258 2259 2260 2261 2262 2263 2264

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2265 2266 2267

	mutex_unlock(&efx->mac_lock);

2268 2269 2270
	return rc;
}

2271 2272
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2273
 *
2274
 * Caller must hold the rtnl_lock.
2275
 */
2276
int efx_reset(struct efx_nic *efx, enum reset_type method)
2277
{
2278 2279
	int rc, rc2;
	bool disabled;
2280

2281 2282
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2283

2284
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2285
	efx_reset_down(efx, method);
2286

2287
	rc = efx->type->reset(efx, method);
2288
	if (rc) {
2289
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2290
		goto out;
2291 2292
	}

2293 2294 2295 2296
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2297 2298 2299 2300 2301 2302 2303

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2304
out:
2305
	/* Leave device stopped if necessary */
2306 2307 2308 2309 2310 2311
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2312 2313
	}

2314
	if (disabled) {
2315
		dev_close(efx->net_dev);
2316
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2317 2318
		efx->state = STATE_DISABLED;
	} else {
2319
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2320
		netif_device_attach(efx->net_dev);
2321
	}
2322 2323 2324 2325 2326 2327 2328 2329
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2330
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2331
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2332

2333
	if (!pending)
2334 2335
		return;

2336
	rtnl_lock();
2337 2338 2339 2340 2341 2342 2343 2344

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
		(void)efx_reset(efx, fls(pending) - 1);

2345
	rtnl_unlock();
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2358 2359
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2360 2361
		break;
	default:
2362
		method = efx->type->map_reset_reason(type);
2363 2364 2365
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2366 2367
		break;
	}
2368

2369
	set_bit(method, &efx->reset_pending);
2370 2371 2372 2373 2374 2375 2376
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2377

2378 2379 2380 2381
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2382
	queue_work(reset_workqueue, &efx->reset_work);
2383 2384 2385 2386 2387 2388 2389 2390 2391
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2392
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2393 2394
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2395
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2396 2397
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2398
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2399
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2400
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2401
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2402
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2403 2404 2405 2406 2407
	{0}			/* end of list */
};

/**************************************************************************
 *
2408
 * Dummy PHY/MAC operations
2409
 *
2410
 * Can be used for some unimplemented operations
2411 2412 2413 2414 2415 2416 2417 2418 2419
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2420 2421

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2422 2423 2424
{
	return false;
}
2425

2426
static const struct efx_phy_operations efx_dummy_phy_operations = {
2427
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2428
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2429
	.poll		 = efx_port_dummy_op_poll,
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2442
static int efx_init_struct(struct efx_nic *efx,
2443 2444
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2445
	int i;
2446 2447 2448

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2449 2450 2451
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2452 2453
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2454
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2455
	efx->pci_dev = pci_dev;
2456
	efx->msg_enable = debug;
2457
	efx->state = STATE_UNINIT;
2458 2459 2460 2461 2462 2463
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2464
	efx->mdio.dev = net_dev;
2465
	INIT_WORK(&efx->mac_work, efx_mac_work);
2466
	init_waitqueue_head(&efx->flush_wq);
2467 2468

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2469 2470 2471
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2472 2473 2474 2475 2476 2477 2478 2479
	}

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2480 2481 2482 2483
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2484
	if (!efx->workqueue)
2485
		goto fail;
2486

2487
	return 0;
2488 2489 2490 2491

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2492 2493 2494 2495
}

static void efx_fini_struct(struct efx_nic *efx)
{
2496 2497 2498 2499 2500
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2518 2519 2520 2521 2522 2523
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

2524 2525 2526 2527
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2528
	efx_stop_interrupts(efx, false);
2529
	efx_nic_fini_interrupt(efx);
2530
	efx_fini_port(efx);
2531
	efx->type->fini(efx);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
2550
	efx_stop_interrupts(efx, false);
2551 2552
	rtnl_unlock();

2553
	efx_sriov_fini(efx);
2554 2555
	efx_unregister_netdev(efx);

2556 2557
	efx_mtd_remove(efx);

2558 2559 2560
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2561
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2562 2563

	efx_fini_struct(efx);
2564
	pci_set_drvdata(pci_dev, NULL);
2565 2566 2567
	free_netdev(efx->net_dev);
};

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2631
	efx_init_napi(efx);
2632

2633
	rc = efx->type->init(efx);
2634
	if (rc) {
2635 2636
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2637
		goto fail3;
2638 2639 2640 2641
	}

	rc = efx_init_port(efx);
	if (rc) {
2642 2643
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2644
		goto fail4;
2645 2646
	}

2647
	rc = efx_nic_init_interrupt(efx);
2648
	if (rc)
2649
		goto fail5;
2650
	efx_start_interrupts(efx, false);
2651 2652 2653

	return 0;

2654
 fail5:
2655 2656
	efx_fini_port(efx);
 fail4:
2657
	efx->type->fini(efx);
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2668
 * theoretically).  It sets up PCI mappings, resets the NIC,
2669 2670 2671 2672 2673
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2674
static int efx_pci_probe(struct pci_dev *pci_dev,
2675
			 const struct pci_device_id *entry)
2676 2677 2678
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2679
	int rc;
2680 2681

	/* Allocate and initialise a struct net_device and struct efx_nic */
2682 2683
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2684 2685
	if (!net_dev)
		return -ENOMEM;
2686 2687 2688
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2689
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2690
			      NETIF_F_RXCSUM);
2691
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2692
		net_dev->features |= NETIF_F_TSO6;
2693 2694
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2695 2696 2697 2698
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2699
	pci_set_drvdata(pci_dev, efx);
2700
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2701
	rc = efx_init_struct(efx, pci_dev, net_dev);
2702 2703 2704
	if (rc)
		goto fail1;

2705
	netif_info(efx, probe, efx->net_dev,
2706
		   "Solarflare NIC detected\n");
2707

2708 2709
	efx_print_product_vpd(efx);

2710 2711 2712 2713 2714
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2715 2716 2717
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2718 2719 2720

	rc = efx_register_netdev(efx);
	if (rc)
2721
		goto fail4;
2722

2723 2724 2725 2726 2727
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2728
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2729

2730
	/* Try to create MTDs, but allow this to fail */
2731
	rtnl_lock();
2732
	rc = efx_mtd_probe(efx);
2733
	rtnl_unlock();
2734 2735 2736 2737
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2738 2739 2740
	return 0;

 fail4:
2741
	efx_pci_remove_main(efx);
2742 2743 2744 2745 2746
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2747
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2748
	WARN_ON(rc > 0);
2749
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2750 2751 2752 2753
	free_netdev(net_dev);
	return rc;
}

2754 2755 2756 2757
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2758 2759
	rtnl_lock();

2760 2761
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2762

2763
		efx_device_detach_sync(efx);
2764

2765 2766 2767
		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);
	}
2768

2769 2770
	rtnl_unlock();

2771 2772 2773 2774 2775 2776 2777
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2778 2779
	rtnl_lock();

2780 2781
	if (efx->state != STATE_DISABLED) {
		efx_start_interrupts(efx, false);
2782

2783 2784 2785
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2786

2787
		efx_start_all(efx);
2788

2789
		netif_device_attach(efx->net_dev);
2790

2791
		efx->state = STATE_READY;
2792

2793 2794
		efx->type->resume_wol(efx);
	}
2795

2796 2797
	rtnl_unlock();

2798 2799 2800
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2811
	efx->reset_pending = 0;
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2853
static const struct dev_pm_ops efx_pm_ops = {
2854 2855 2856 2857 2858 2859 2860 2861
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2862
static struct pci_driver efx_pci_driver = {
2863
	.name		= KBUILD_MODNAME,
2864 2865 2866
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2867
	.driver.pm	= &efx_pm_ops,
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2890 2891 2892 2893
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

2894 2895 2896 2897 2898
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2899 2900 2901 2902 2903 2904 2905 2906

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2907 2908
	destroy_workqueue(reset_workqueue);
 err_reset:
2909 2910
	efx_fini_sriov();
 err_sriov:
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2921
	destroy_workqueue(reset_workqueue);
2922
	efx_fini_sriov();
2923 2924 2925 2926 2927 2928 2929
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2930 2931
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2932 2933 2934
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);